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Preface

This volume contains the collected contributions of three conferences, AISC 2008,
Calculemus 2008, and MKM 2008. AISC 2008 was the 9th International Con-
ference on Artificial Intelligence and Symbolic Computation that is concerned
with the use of AI techniques within symbolic computation as well as the ap-
plication of symbolic computation to AI problem solving. Calculemus 2008 was
the 15th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning dedicated to the combination of computer algebra systems and
automated deduction systems. MKM 2008 was the 7th International Conference
on Mathematical Knowledge Management, an emerging interdisciplinary field of
research in the intersection of mathematics, computer science, library science,
and scientific publishing. All three conferences are thus in general concerned with
providing intelligent computer mathematics. Although the conferences have sep-
arate communities and separate foci, there is a significant overlap in the interests
in building systems for intelligent computer mathematics. For this reason it was
decided to collocate the three events in 2008, at the University of Birmingham,
UK. While the proceedings are shared, the submission process was separate.
The responsibility for acceptance/rejection rests completely with the three Pro-
gramme Committees. By this collocation we made a contribution against the
fragmentation of communities which work on different aspects of different inde-
pendent branches, traditional branches (e.g., computer algebra, theorem proving
and artificial intelligence in general), as well as newly emerging ones (on user
interfaces, knowledge management, theory exploration, etc.). This will also fa-
cilitate the development of systems for intelligent computer mathematics that
will be routinely used by mathematicians, computer scientists, and engineers
in their every-day business. In total, 37 papers were submitted to AISC. For
each paper there were up to four reviews, out of which 14 papers were accepted
for publication in these proceedings. Calculemus received 10 submissions, which
were all reviewed by three Programme Committee members. This number was
quite low, but fortunately all submissions were of good quality and on topic for
the Calculemus conference. For this reason all papers were accepted for presen-
tation at the conference and for publication in this proceedings volume. MKM
received 34 submissions. For each paper there were at least two reviews; if the
evaluation was not uniform there was a third review. After discussions, 18 papers
were accepted for these proceedings. In addition to the contributed papers, the
proceedings include the contributions of five invited speakers of AISC, Calcule-
mus, and MKM. In the preparation of these proceedings and in managing the
whole discussion process, Andrei Voronkov’s EasyChair conference management
system proved itself an excellent tool.
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XII Table of Contents

Towards an Implementation of a Computer Algebra System in a
Functional Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Oleg Lobachev and Rita Loogen

Automated Model Building: From Finite to Infinite Models . . . . . . . . . . . . 155
Nicolas Peltier

A Groebner Bases Based Many-Valued Modal Logic Implementation in
Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Eugenio Roanes-Lozano, Luis M. Laita, and Eugenio Roanes-Maćıas
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Symmetry and Search – A Survey

Steve Linton

Searches of one form or another are a central unifying theme in Artificial Intelli-
gence and effective management of symmetry is a key practical consideration in
the practical application of a huge range of search techniques. It is almost never
desirable to search, but frequently hard to avoid searching, very large numbers of
equivalent sections of the search tree. Likewise many searches, if symmetry is not
accounted for, will return very large numbers of unwanted equivalent solutions.

Symmetry, is, of course, a phenomenon much studied in pure mathematics,
where group theory provides both a language for discussing it and a large body of
knowledge about it. Computational group theory is a well-developed area within
symbolic computation.

In this talk I will survey efforts to apply group theory and especially compu-
tational group theory to the management of symmetry in a range of AI search
problems.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, p. 1, 2008.
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On a Hybrid Symbolic-Connectionist Approach

for Modeling the Kinematic Robot Map - and
Benchmarks for Computer Algebra

Jochen Pfalzgraf

Department of Computer Sciences, University of Salzburg, Austria
jochen.pfalzgraf@sbg.ac.at

Dedicated to Professor Jacques Calmet

Keywords: Robotic Kinematics, Computer Algebra (CA), Connectionism, In-
verse Kinematics Problem, Artificial Neural Networks, Simulation, Benchmarks
for CA.

1 Introduction

The kinematics model of a robot arm (we are considering open kinematic chains)
is described by a corresponding robot map having the configuration space as its
domain and the workspace as codomain. In other words, the robot map assigns
to every configuration of the joint parameters a unique point of the workspace
of the robot arm. We briefly discuss the general introduction of the robot map
where the parameters of a translational joint are represented by points of the
real line and the parameters of a rotational joint by points of the unit circle
in the real plane, respectively. Thus, in general, a concrete joint configuration
(point of the configuration space) is an element of an abelian Lie group being a
direct product of some copies of the real line and the unit circle. The position
and orientation of the endeffector of a robot arm is represented by an element
of the euclidean motion group of real 3-space. The standard problems like the
direct kinematics problem, the inverse kinematics problem and the singularity
problem can easily be defined.

A classical method to establish the robot map is the approach by Denavit-
Hartenberg. It leads to a completely symbolic description of the direct kinematics
model of an arm and forms the basis for the treatment of the inverse kinematics
problem. In order to represent an entire robot arm class it is of basic interest
to find a completely symbolic closed form solution of the inverse kinematics
problem. Using a two joint robot arm, B.Buchberger demonstrated the principle
how to solve this problem with the help of a computer algebra (CA) system
applying his Gröbner bases method (Buchberger Algorithm) - cf. [1], [2], [3], [4].

Later we made own investigations and constructed a more complex test ex-
ample (cf. [5]). We observed that very hard performance problems arose, in the
corresponding CA applications, when the degree of freedom of a robot arm in-
creases. An interesting aspect is the fact that these investigations show a natural
way how to construct benchmarks for CA.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 2–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A completely different method to represent the kinematic model of a robot
arm is a Connectionist Network approach. The idea is to learn a robot map with
the help of a suitably chosen Artificial Neural Network (ANN) using a powerful
ANN simulator. The training data for learning consists of selected input/output
pairs generated by the given robot map. This approach also reaches soon its
limits when the number of joints increases.

The experiences which we made with both approaches, symbolic and connec-
tionist, formed the basis of the idea to combine both - constructing a hybrid
system - trying to cope with the increasing complexity. Special investigations
of a sample robot arm showed that it is worthwhile considering such a hybrid
system for use in concrete applications.

In a short section we give a brief report on a former project dealing with the
design and implementation of an ANN simulation tool (FlexSimTool). Its the-
oretical fundament was a general mathematical network structure model which
we have developed based on notions from category theory and noncommuta-
tive geometry leading to the category of geometric networks (GeoNET) where
learning can be interpreted in terms of morphisms ([6], [7]).

Some remarks on Benchmarks for CA conclude the article. We briefly describe
two classes, one class is constructed with the help of the Denavit-Hartenberg
approach for establishing the robot map of a robot arm, as considered in the
corresponding section below. Another class of benchmarks for CA coming from
Noncommutative Geometry (NCG) is briefly discussed.

2 The ROBOT Map and Computer Algebra Applications

A classical case of modeling a Knowledge-based System (KBS) in robotics is the
development of the Robot Map leading to the mathematical model of a robot
arm (open kinematic chain) which forms the basis for the formal definition of
the problems in direct kinematics, inverse kinematics, singularity detection, path
control and their computational treatment. A crucial point is the exploitation
of the geometry of a robot arm. The robot arms we are considering are open
kinematic chains with two types of joints, translational joints and rotational
joints. For more details on the topics presented in this section we refer to [5]
and the references cited there.

The Base of a robot is that part where a robot is fixed to the ground or where
the wheels are attached, for example, in the case of a mobile robot. The first
sub-arm is then linked with the base. The end of the last sub-arm of the whole
robot (in that order) is mostly used for attaching the corresponding tools like
screw driver, welding device, etc., it is called the End Effector, abbreviated by
EE, for short.

Let t denote the number of translational joints and r the number of rotational
joints. The robot map will be considered as a mathematical map R : C → W
from joint space (configuration space) C to work space W, this is the space where
the movement of the end effector (EE) is described (cf. [5], section 2).
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The Degree of Freedom (DOF) is defined by DOF = r + t (this is the total
number of joints), i.e. the “joint space manifold” C has dimension r + t.

Now we are going to consider the largest possible joint space.
The parameter of a translational joint runs through a real interval, we model

this more generally by the whole real line�. Rotational joint parameters (angles)
can be represented by corresponding points of the unit circle S1 in the real plane;
we recall that S1 = {eiφ|0 < φ ≤ 2π} (for the algebraic description we prefer
here the complex number representation of points of the real plane). A rotation
through angle φ corresponds to a multiplication of a 2-dimensional vector by eiφ

in the corresponding “rotation plane”. The complex numbers are represented
as 2-dimensional vectors (and vice versa) with real and imaginary parts as x-
and y- components in the real plane - we recall that eiφ = cos(φ) + i sin(φ).
The configuration space (joint space) manifold C can be described in the
general case by (�× . . .×�) × (S1 × . . .× S1) = �t × (S1)r.

The cartesian product (S1)r is also called r-dimensional torus Tr with T =
S1, the 1-dimensional torus. This big configuration space is a nice differentiable
manifold, actually it is an abelian Lie group.

Concerning the work space the question arises what is the complete informa-
tion necessary to describe the location of the end effector (EE) of a robot? The
complete information about the EE location is described by a position vector
a = (a1, a2, a3) ∈ �3 and the orientation of the EE. Orientation in Euclidean
3-space can be uniquely described by an orthonormal frame (representable by
an orthogonal 3 × 3−matrix having determinant +1). The variety of all these
frames can be described by the group of all proper rotations, the Special Orthog-
onal Group: SO3(�) = {A|At = A−1, det(A) = +1}.

The work space manifold describing all possible EE locations in the most
general case is �3 × SO3(�), the Euclidean Motion Group. Again, this is a
nice differentiable manifold and a Lie group (semidirect product of groups).
It is of dimension 6, this is why 6-DOF robots are so widespread in practical
applications. More precisely, a manipulator with the capability that the EE can
reach every point in the complete work space must at least have six DOF, i.e. it
needs six joints and at least three of them have to be rotational (to provide all
possible orientations).

Thus, in the most general case, a robot can be mathematically described by
a (differentiable) map, the Robot Map R : Rt × (S1)r −→ R3 × SO3(R).

Let R : C → W , in general, denote the robot map describing a selected
robot model with joint space C and work space W . Let q ∈ C denote the joint
coordinate vector (n-dimensional) and x ∈ W the corresponding image R(q)
(m-dimensional) in the work space.

The degree of freedom (DOF) of the manipulator system is defined by the
dimension of the configuration space manifold, i.e. DOF = dim(C) = n.

A Redundant Manipulator is defined as a robot arm having more DOF than is
necessary in comparison with the dimension of the workspace, i.e.: dim(C) =
n > m = dim(W). Redundant manipulators are of interest for complex industrial
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applications where difficult EE movements have to be performed and where
redundancy is exploited practically.

With the help of the robot map it is now straight forward to formulate the two
typical problems in robot kinematics (the direct or forward kinematics problem
and the inverse kinematics problem). Let x = (a,A) ∈ W denote a point in
work space specifying an EE location and q = (q1, . . . , qn) ∈ C a point in the
configuration space with joint coordinates (parameters) q1, . . . , qn.

Forward (direct) kinematics problem: Given a joint configuration q, de-
termine the EE location corresponding to these joint parameter values. That
means in terms of the robot map for the given input q determine R(q) = x.

Inverse kinematics problem: Given a point x = (a,A) which specifies an EE
location, then determine a suitable joint configuration q = (q1, . . . , qn) such
that the robot points to the given EE location x. In terms of the robot map:
Given x find a suitable q (pre-image) such that x = R(q).

When dealing with the general kinematics model a main problem is to express
the location of the end effector EE in terms of the world coordinate system
(WCS). This latter reference frame is frequently fixed in the robot base or in
a selected point of the assembly hall where the robot is at work. To this end,
local coordinate frames are attached to each sub-arm (link) and then the EE
coordinates are successively transformed backwards by (local) transformations
from the last sub-arm where the EE is situated to its predecessor and so on until
the robot base is reached.

There are four invariants implicitly given by thegeometryof the robot. In the
figure below (showing the situation of two neighboring local coordinate systems)
ai−1, di−1 are distance parameters and αi−1, Θi−1 are angle parameters.

Let Bi denote the i−th coordinate frame and Oi its origin. The Denavit and
Hartenberg approach describes the convention how to fix the local coordinate
systems and to establish the corrresponding local transformations Bi−1 → Bi

using the parameters ai−1, αi−1, di−1, Θi−1 (cf. [5] and references there for more
details - we mention here the books [8], [9], [10]).

The local transformation can then be expressed by the composition of the fol-
lowing operations: - Rot(zi−1, Θi−1), - translation along zi by distance di−1, -
translation along new xi-axis by distance ai−1, - Rot(xi, αi−1). Where Rot(x,Θ)
means rotation around an axis x by an angle Θ.

In this way we obtain the corresponding local transformation matrix T i−1
i .

Thus, each pair of neighbored links contributes a local transformation T i−1
i . The

product T 0
n of these successive local transformations T 0

n = T 0
1 ◦ T 1

2 ◦ . . . ◦ T n−1
n

establishes a relationship between the coordinate system of the robot EE (system
(n)) and the world coordinate system (system (0)) – involving all the “local
contributions” (cf. the picture of the rtrr-robot for a special illustration).

In the article [5] I devised an own robot arm example with 4-DOF of type
rtrr (cf. the corresponding figure below, the type notation is explained in a
later section) and used it to apply the pure symbolic approach for computing
the inverse kinematic solutions with the help of a computer algebra system and
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Fig. 1. Denavit-Hartenberg parameters

Buchberger’s Algorithm (method of Gröbner bases) for solving the complex mul-
tivariate polynomial equations.

Actually, itwas Bruno Buchberger who had the idea of such a symbolic modeling
approach applying computer algebra. He demonstrated it with a 2-DOF rotational
robot arm and found the closed form solution to the inverse kinematics problem.
His example is included in [5], we point here to his publications [1], [2], [3].

The investigations of the rtrr-robot arm demonstrated the complexity that
arises when many variables are involved in the corresponding multivariate poly-
nomials and coefficient fields. Thus we found a rich source for constructing hard
benchmarks for computer algebra (for details cf. [5] and the last section of
this article).

3 Connectionist Approach: Learning the Robot Map

A completely different way to represent the kinematic model of a robot arm
is a Connectionist Network approach. The idea is to learn a robot map with
the help of a suitably chosen artificial neural network (ANN) using a powerful
ANN simulator. The training data for learning consists of selected input-output
pairs generated by a given robot map R : C → W . We generate a set of pairs
Td = {(q, x)} where q ∈ C and x = R(q) ∈ W is the unique EE-location
belonging to the input-configuration q = (q1, . . . , qn), we recall that x = (a,A) ∈
�3 × SO3(�). Training a selected ANN using the first component q as input
and the second component x as desired output of the ANN, where (q, x) runs
through all pairs of Td, means that we do learn the forward kinematic model
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Fig. 2. rtrr-Robot

of the robot arm represented by its map R. This is the method of supervised
learning in ANN theory.

Remark: We have to point out here that in the case where we do not have an
explicit description of the robot map available, for a given robot arm, we use
a corresponding robot simulation (RobSim) as a representation of the direct
kinematic model. That means that we use the simulator RobSim for producing
corresponding input-output pairs as previously described.

From the point of view of Inverse Kinematics (InvKin, for short) we can say
that for the component x of a pair (q, x) ∈ Td the component q is a suitable
joint configuration fulfilling R(q) = x, i.e. it is a solution to the corresponding
InvKin problem: “Given x find a suitable q such that the EE reaches the correct
location x with the joint paramenters in q”.

Having produced a set of pairs Td = {(q, x)}, the idea now is to use this set
for training a selected ANN in the following way. We take the second component
x of a pair (q, x) as input and the first component q as desired output and apply,
for example, supervised learning with the aim (and hope) that the training
procedure yields a trained network (shortly denoted by N ) which represents the
inverse kinematic (InvKin) model of the given robot arm.

Now it is necessary to test the trained network N , i.e. to check the “InvKin-
quality” of N . To this end we select a set of pairs (q′, x′) which have not been
used for training the net.

TEST of N : Let (q′, x′) be such a pair of the test-set. Taking x′ as input to
N an actual output qx′ is produced by the network. We have to check whether
qx′ is an acceptable configuration in comparison with the correct joint param-
eter configuration q′. This means we have to compare R(qx′) with R(q′) using
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a suitable measure for doing this. The result of this test should give insight how
good the net N can function as an InvKin problem solving unit.

Visualization of the TEST: with the help of a Robot Simulation Tool (RobSim).
We construct a Path Tracking Task by selecting a curve (path) γ in 3-space,
γ : [a, b] −→ �3, where the EE has to move along. We produce a sequence of
consecutive points on the graph of the curve (graph(γ), for short), for example
γ(t0), γ(t1), . . . , γ(ti), . . . , γ(tN ), where t0 < t1 < .... < ti < .... < tN are
elements of the real interval [a, b]. Usually we set t0 = a and tN = b.

We use the points γ(ti) as input to the trained net N and, for the sake of
simplicity, we select a suitable orientation A ∈ SO3(�) as second component
of the input xi = (γ(ti), A). There are cases where the handling of A can be
simplified, for example if we consider movements in a plane (cf. the example in
the figure below) where the axes of the rotational joints are perpendicular to the
plane.

The network produces a sequence of corresponding actual outputs denoted by
q0, q1, . . . , qi, . . . , qN .
This produced sequence of joint parameter configurations will be used as input
to a robot simulator (RobSim). For the input qi RobSim finds R(qi) and dis-
plays it graphically. Note that RobSim represents the direct kinematic model of
the robot. We assume that we can also visualize with the same graphical sys-
tem the given curve graph(γ). Thus we can achieve a kind of an “optical com-
parison” of the produced sequence of results R(q0), . . . , R(qN ) with the points
γ(t0), γ(t1), . . . , γ(ti), . . . , γ(tN ) of the given curve.

A former diploma student (J.Sixt) in my working group ANNig at RISC-Linz
did first experiments of this kind. For a first demonstration of the principle he
used a simple robot arm with two rotational joints moving in the real plane and
trained an ANN in the way as previously explained to generate a network N
which represented the learned InvKin model. He selected as test curve γ a circle
in the plane, this is simple enough, but not linear. More explicitly, he used for
example γ : [0, 1] −→ S1, t �→ (cos2πt, sin2πt), for the path tracking test of N .
The visualization of the test (“optical comparison”), as desribed above, showed
an interesting result. The curve produced by N and the circle were displayed
with a simple computer graphics system and one could see a superposition of
the circle by that produced curve. Its shape was a topological approximation in
the sense that it was homeomorphic to the circle but not a circle itself. It looked
like a closed chain of a few consecutive sine curve pieces (“waves”) lying over
the circle (cf. the picture). One might interpret this outcome as qualitatively
acceptable or not.

Actually, then at RISC-Linz, I had the possibility to show the whole experi-
ment to an engineer, an expert in robotics. He liked the approach and he found
the result useful from the viewpoint of practical applications. He gave me the
following explanation. In real robotics applications (where forward and inverse
kinematics problems are treated) it can already be useful to have a reasonable
InvKin solution which is a qualitatively acceptable approximation, as previously
described in that experiment. The reason for this is the fact that in modern
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Fig. 3. TEST: Path Tracking visualized with RobSim

robotics high level Sensor Systems will be applied for the fine tuning of a path
tracking task. Thus, the approximate curve generated with the deployment of
the network N is the rough guideline for concrete path tracking and on this basis
the sensors achieve the fine tuning rather easily.

In particular cases this method can lead to much faster solutions to a given
InvKin problem in comparison to try to find exact mathematical solutions and,
consequently, from a practical (possibly industrial) point of view it could be
the case that it is cheaper in a concrete project to apply such a connectionist
approach in combination with sensors.

Final Remark: As expected, the method of learning the InvKin model on basis of
the robot map also reaches soon its limits when the number of joints increases.

Network Structure Modeling and ANN Simulation
In the beginning of my time as a faculty at RISC-Linz (1990-1996), University
of Linz, Austria, I established a neural network interest goup called ANNig.
Rather soon I came into contact with the ANN Section of the big European
project JESSI (Joint European Submicron Silicon Initiative). I was invited to
apply for becoming an associated member of the project group JESSI-ANN (the
project title of that group was: “Advanced Neural Circuits and Networks on
Silicon”). The main topic of my proposal was the previously described idea and
approach to learn the robot map and the InvKin model of a given robot arm
using methods from connectionism. I had a cooperation contact with IMS, the
Institute for Microelectronics Stuttgart (Germany), and it was the aim to apply
our approach to support IMS in the development and test of ANN hardware
(microchips) for fast robotics applications. Actually, with my group ANNig I
became an associated member of JESSI-ANN and was included in the JESSI
Blue Book in October 1990.

A few years ago, project work started in my working group (in Salzburg) to
establish a flexible simulation tool (FlexSimTool) for simulation of a large class
of ANN-types that have neurophysiological roots.

An own mathematical approach for modeling network structures that uses
methods from Category Theory and Noncommutative Geometry (cf. [6], [7])
provided a precise formal guideline for the generic implementation of networks
in that simulation tool. The first version of FlexSimTool was implemented in
C++. The project terminated and it was not possible to continue it due to
lack of manpower. There are still ideas to extend the simulator by further mod-
ules in order to have tools for fuzzy techniques, sensor data processing, logical
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reasoning (logical fibering module) and interfaces to: CA system, robot simula-
tion, multiagent system simulation, heuristic optimization system (and others).

In my research work on ANN structure modeling, I introduced the category
GeoNET where the instance of learning can be modeled by morphisms - a learn-
ing step is a corresponding morphism (cf. [7]). It can be shown theoretically
with an argument from category theory that the mathematical network structure
model can help to reduce complexity of learning in concrete ANN simulations. A
final version of the FlexSimTool would have been well suited for the treatment
of industrial application problems. Comparable, in some respect, to the power
of the ANN simulator of a former cooperation partner, H.Geiger, who had de-
veloped a neurophysiologically inspired own ANN paradigm and implemented it
in his ANN simulator which he applied in many industrial projects (a variety of
them were on optical quality control). The former cooperation with him showed
me the way to my work on GeoNET. It was H.Geiger who demonstrated the
“economic effect” of the new categorical and geometric ANN structure modeling
approach: In a concrete industrial project, where he exploited the new model
in his ANN simulator for the first time, it could be observed that the effect of
reduction of complexity of learning (as mentioned before) resulted in consider-
able reduction of project costs (cf. [6]) due to the fact that “learning became
cheaper” than in former ANN simulations.

4 A Hybrid Symbolic-Connectionist Approach

The experiences with the symbolic and connectionist approaches (both have
limitations) formed the basis of the idea to combine both methods - constructing
a hybrid system - with the objective to exploit the advantages of each method and
to try to cope with the increasing complexity when the degree of freedom grows.
The simple idea is to decompose the joints of a robot arm into disjoint subsets
of consecutive, neighbored joints and then model some subsets of consecutive
joints symbolically, the other subsets with the connectionist method and finally
compose the parts to represent the complete robot map.

Let us consider the general case of a robot arm R using the same notation
as in the previous discussion of the robot map. The DOF (degree of freedom)
is n = r + t, where r is the number of rotational joints and t the number of
translational joints. Let J1, . . . , Jn be the sequence of consecutive joints (cf. the
rtrr-example above showing the local coordinates). Again, q1, . . . , qn denote the
corresponding joint parameters. We do not consider the virtual joints in the base
and the EE as depicted in the figure of the rtrr-robot example.

Now we describe the most general case of a subdivision of the set of joints into
subsets of consecutive joints: R1, R2, ...., Rk, where every subset Ri contains at
least two joints, we use the notation | Ri |= ρi, with ρi > 1, for i = 1, . . . , k, and
ρ1 + . . .+ ρk = n. More explicitly, for n sufficiently large, we have the following
decomposition of the whole set of joints

R1 = {J1, . . . , Jρ1}, R2 = {Jρ1+1, . . . , Jρ1+ρ2}, Rk = {Jρ1+...+ρk−1+1, . . . , Jn}.
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But this is still not yet the complete description because we have to specify
for each Ri its type. We point out that every Ri represents a possibly very small
robot arm itself (we call it a “local part” or “sub-arm” of the given robot R).
Consequently, such a sub-arm Ri has a local robot base, called Basei, and a
local end effector denoted by EEi.

The letters R and Ri are also used as names of the corresponding robot maps,
respectively. We explain the use of our notation by an example, for short. Let
us take R1, for example, and assume that ρ1 = 3 and that J1 is a translational
joint and J2, J3 are rotational joints, then R1 is of type trr. Corresponding to
this, we denote R1 by < trr >1. Following this notation, the sub-arm Ri might
have the type description < rrtrt >i, for example.

The original objective was to combine symbolic and connectionist methods in
a hybrid approach. To this end we have to determine which sub-arm is modeled
symbolically and which one is represented by a trained ANN. We introduce the
following notation:

Symbolic: RiCAi (CA for computer algebra).
Connectionist: RiNNi (NN for neural network).

Again, let us illustrate this notation by giving the following example of a
robot of type rtrrrtr. We choose a decomposition into three sub-armsR1, R2, R3

selecting the types and modeling methods as follows
< rtr >1 CA1 < rr >2 NN2 < tr >3 CA3.
The corresponding parameter tupels are (q1, q2, q3)1, (q4, q5)2, (q6, q7)3.

Sometimes it is technically more convenient to use a special notation for the
local parts (sub-arms), introduced as follows. For Ri let J i

1, . . . , J
i
ρi

denote the
sequence of consecutive local joints of that sub-arm. For a joint J i

l the corre-
sponding local coordinate frame is denoted by Bi

l with origin Oi
l .

Principle of Composing Robot Arms. If there is no reason to do it differently, we
introduce the following convention to compose a pair of consecutive, neighbored
robot sub-arms Ri and Ri+1. We fix the reference point of Basei in the first
joint of Ri, more precisely in the origin Oi

1 of the corresponding frame Bi
1. Since

we want to combine Ri with Ri+1, at first sight it is plausible to fix the reference
point of EEi in the origin Oi+1

1 of the frame Bi+1
1 of the first joint of Ri+1,

this is the joint J i+1
1 . The combination (composition) of both sub-arms will be

denoted by Ri+1 ◦Ri according to the notation used for the composition of the
corresponding local robot maps (“first Ri then Ri+1”, from right to left).

Concerning the treatment of the InvKin problem with respect to the com-
position Ri+1 ◦Ri we introduce the following convention. Let (a,A) be a given
position and orientation of EEi+1 (cf. the notation in the section on the robot
map), this is the input to the InvKin model of the robot arm Ri+1 ◦Ri. In the
first step we apply the InvKin model of sub-arm Ri+1 to this input obtaining
corresponding joint parameters for the joints of Ri+1. For the second step, where
we apply the InvKin model of Ri, we use as input (b, A), the position vector b of
EEi and the same orientation if it is possible (e.g. considering robot movement
in a plane - otherwise we have to evaluate a new orientation depending on the
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geometry of Ri+1). The position vector b of EEi is easy to compute, it is the
sum of the position vector a and the vector pointing from EEi+1 to the origin
Oi+1

1 in the first joint of Ri+1, this is the position of EEi.

rtrr-Robot as Demo-example of the Hybrid Approach. First Steps
A former diploma student (B.Jerabek) in my group here in Salzburg worked
on my idea of a hybrid symbolic-connectionist approach in his diploma thesis.
With a few selected robot arm types he made some ANN applications (learning
a robot model), especially some experiments with rr- and rrr-arms moving in a
plane perpendicular to the rotational joint axes which are pairwise parallel. His
investigations showed advantages and limitations of the connectionist approach.
Then he worked on the CA-ANN hybrid approach. It turned out that the rtrr-
robot arm example is a good sample demonstrator for making first steps. We
briefly describe the investigations and experiences of this work. The rtrr-robot
was decomposed into the following parts < rt >1 CA1 and < rr >2 NN2.
Based on the experiences gained so far it was plausible to model the first part
symbolically (its workspace is 3-dimensional), the second part is represented by
a trained network, NN2, the < rr >2 sub-arm moves in the plane perpendicular
to the two parallel axes of the rotational joints.

The results of the experiments and tests showed a rather well functioning
combination where the advantage of each method (symbolic CA1, connectionist
NN2) could be deployed. One could say that these first experiences with the
Hybrid CA-ANN Approach look promising and that it is worthwhile considering
such a hybrid system for use in concrete applications. As previously remarked,
we point to the importance of corresponding sensor applications for fine tun-
ing in a path tracking task. Shortly speaking a general strategy could be: Exact
Positioning and Control of the End Effector is the combination of the Math-
ematical Robot Model and Sensors. There remain interesting topics of future
work in this direction.

Alternative Aspect and Question. Concerning the approach to model parts
of a robot arm individually another aspect arises. Let us assume that we consider
a sequence of small sub-arms where each Ri can be easily modeled with one and
the same method, i.e. every local robot arm Ri has a well functioning CAi- or
NNi-representation. Then it would be natural to think about the combination
of these local representations without mixing different models and the basic
question arises how to describe the composition (interaction) of neighboring
subarms Ri and Ri+1 (cf. the convention considered previously). In the special
case of the rtrr-robot an example corresponding to such a question could be
< rt >1 CA1 put together with < rr >2 CA2, both symbolically modeled
separately. Question: Is there a possibility to compose these two parts in such
a way that the treatment of the InvKin problem will be less complex than the
computation of the purely symbolic closed form solution considered above?

In the field of hybrid symbolic-connectionist methods and numerical-symbolic
scientific computing approaches there are many interesting and challenging
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questions and topics for future work on robotics. So far we have not done yet a
literature search and review in my working group, this is also of future interest.

5 Conclusions: Benchmarks for Computer Algebra (CA)

As previously mentioned, the Denavit-Hartenberg approach for establishing the
robot map (kinematic model of the robot arm) provides a systematic way to
construct benchmark examples for computer algebra. This observation is based
on experiences in work on finding a closed form, purely symbolic solution to
the invese kinematics problem of a robot arm using the Buchberger Algorithm
to compute corresponding Gröbner Bases with the help of a computer algebra
system. The concrete example of the rtrr-robot arm which I constructed in [5]
showed some hard performance problems in the CA applications and the main
reason for this seems to be the fact that we have to deal with many parameters
and variables. The following polynomial ring was used
�(l2, l3, l4, px, py, r11, r31)[c0, c3, c4, s0, s3, s4, d1, pz, r12, r13, r21, r22, r23, r32, r33]

and the following lexical ordering for the polynomial variables c0 ≺ c3 ≺ c4 ≺
s0 ≺ s3 ≺ s4 ≺ d1 ≺ pz ≺ r12 ≺ r13 ≺ r21 ≺ r22 ≺ r23 ≺ r32 ≺ r33.

The experience with this example gave the motivation to propose this symbolic
approach to construct benchmarks for computer algebra. Obviously, it is easy
to increase the degree of freedom of a robot arm arbitrarily by adding further
joints (e.g. rtrrtrr-robot arm, etc.) and thus increase the degree of complexity
in the computations. Thus we obtain a concrete nice class of benchmarks for CA
from robotics.

Benchmarks from Noncommutative Geometry. Concluding, another class
of benchmarks for CA is briefly introduced. Noncommutative Geometry (NCG)
is a rather new field in geometry, it was introduced by Johannes André about
35 years ago as a generalization of classical affine geometry (selected references:
[11,12,13,14], [15]). Elementary geometric configurations are the basis of the
axioms which determine the structure of a geometry.

In the beginning of my own work on NCG, I introduced a new model to repre-
sent a geometric space (X,<,>,R) by a so-called parallel map <,>: X2 → R,
this led to the introduction of the category of Noncommutative Geometric Spaces
NCG (selected references: [16,17,18], a brief summary of the main notions is
contained in [19], for a summary with more details cf. [20]). Geometric axioms
can be expressed by corresponding equations in the <,>-model (thus leading
to a certain algebraization). The verification of an axiom amounts to verify the
solvability of the corresponding system of equations and that means to verify
the validity of corresponding geometric constraints.

This aspect suggested to think about computer applications for such auto-
mated deduction problems in NCG and I started to work on some selected
examples of geometric spaces and concrete verification of geometric conditions
(constraints) involving corresponding geometric configurations. At first sight the
most interesting class of examples are “polynomial geometric spaces” being de-
fined by polynomial parallel maps, the reason for that is the intention to apply
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well established methods for solving polynomial systems with computer alge-
bra, especially the Buchberger Algorithm (Gröbner Bases method, [1], [2], [3],
[4]), Cylindrical Algebraic Decomposition, c.a.d. (G.Collins, H.Hong, [21], [22]),
Characteristic Sets (W.T.Wu, D.Wang, [23], [24]).

Considering the example of a circle space in the real plane, where a noncom-
mutative line x � y, joining the points x and y, is a circle with center x and
radius ‖x− y‖, it is a special case (n = 2) of the more general sphere space:

Let X := �n and R := �+ , then the (n− 1) - sphere space is defined by the
polynomial parallel map < x, y >:=

∑n
i=1(xi − yi)2 for x = (x1, ..., xn), y =

(y1, ..., yn) ∈ X . The value < x, y > is called direction of the line x � y. Parallel
lines have the same value (“direction”).

We recall that lines are defined by x�y := x � y ∪ {< x, y >}, (for points
x, y ∈ X) where < x, y > is called ideal point or direction (or color) of the
line x�y and x � y := {x}∪{ζ| < x, ζ >=< x, y >} is called the set of proper
points of the line - it is the variety of solutions of the equation < x, ζ >=< x, y >
together with the base point x.

Noncommutativity of the join operation � means, that in general x � y �=
y � x holds for lines.

A main axiom in NCG is called Tamaschke Condition (Tam), it deals with
parallel shifting of triangels (formed by lines) over a space subject of correspond-
ing constraints. In the case of a sphere space (more general polynomial geometric
space) this is expressed by corresponding polynomial equations. The verification
problem is equivalent to find solutions to these polynomial equations. This prob-
lem can be interpreted as a quantifier elimination problem and therefore it is
amenable to apply the Cylindrical Algebraic Decomposition (c.a.d.) method.

In the article [25] the circle space (i.e. sphere space in the real plane) is
discussed. The verification of (Tam) corresponds to the solution of the following
quantifier elimination problem (we include the corresponding material of the
article).

The general form of the (Tam) axiom is as follows

∀ x, y, z, x′, y′ ∈ X with < x, y >=< x′, y′ > (I)

∃ ζ ∈ X s.th. < x′, ζ >=< x, z > (II)
and < y′, ζ >=< y, z > (III)

Translated into the corresponding polynomial equations we obtain the follow-
ing system:

(x1 − y1)2 + (x2 − y2)2 − (x′1 − y′1)
2 − (x′2 − y′2)

2 = 0 (I)
(initial constraint)
(x′1 − ζ1)2 + (x′2 − ζ2)2 − (x1 − z1)2 − (x2 − z2)2 = 0 (II)
(y′1 − ζ1)2 + (y′2 − ζ2)2 − (y1 − z1)2 − (y2 − z2)2 = 0 (III)

These polynomials are considered in �(x1, x2, y1, . . . , y
′
2)[ζ1, ζ2].

Problem: Existence of solutions (zeros) in ζ1, ζ2 has to be verified.
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This is the most general formulation of the verification problem (for arbitrary
points) in a pure algebraic setting.

In its formulation as a quantifier elimination problem, we gave the above
equations and the corresponding variables as input to the c.a.d. system QEPCAD
implented and used by my former colleague at RISC-Linz, Hoon Hong.

Result: Since 12 variables (two variables for each of the points x, y, z, x′, y′, ζ)
are involved this problem then, when I was at RISC-Linz, could not be treated
- too many variables are involved. This was the comment by Hoon Hong when
we discussed about this special c.a.d. application with his system QEPCAD.

In addition to the previous considerations, in [25] the above (Tam)-verification
problem was treated with the Gröbner Bases approach using a CA implementa-
tion of Buchberger’s Algorithm in Mathematica. Doing this, once more we could
make the observation that these types of verification problems lead to a class of
benchmarks for CA. At this point we should note that the circle space example is
even the simplest case of a sphere space (for n = 2) and the degree of complexity
can simply be increased by considering sphere spaces in higher dimensions.

The article [19] is the result of a short period of joint work with my former
PhD student Wolfgang Gehrke who spent three months with me in Salzburg
as a guest researcher in 1998. He is a very experienced programmer knowing
several programming languages. In our cooperation he motivated why he used
specific declarative programming languages (just as it was convenient) for all the
implementations and computer applications.

To make it short, I just mention that constructing finite geometric spaces ful-
filling given geometric configurations (axioms) can lead to very hard (constraint
satisfaction) problems - it provides a rich source of benchmarks for computer
applications and many interesting topics for future work.
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14. André, J.: Configurational conditions and digraphs. Journal of Geometry 43, 22–29
(1992)
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Abstract. In this paper, we present a Machine Translation (MT) sys-
tem from English to Indonesian by applying Link Grammar (LG) for-
malism. The Annotated Disjunct (ADJ) technique available in the LG
formalism is utilized to map English sentences into equivalent Indone-
sian sentences. The ADJ is a promising technique to deal with target
languages that do not have grammar formalism, parser, and corpus avail-
able like Indonesian language. An experimental evaluation shows that
the applicability of LG for Indonesian language worked as expected. We
have also discussed some significant issues to be considered in future
development.

Keywords: Annotated Disjunct, Link Grammar, Parsing Algorithm,
Natural Language Processing.

1 Introduction

Generally, Indonesia is a country in which English is not the first language. As
such, the level of English competency among Indonesians is considered low. Due
to the vast amount of available digital information nowadays is in English, there
is a need for a means to translate this information into the Indonesian language.

Machine Translation (MT) is a study to automate the translation process of
one natural language into other natural languages. A notable MT activity for
Indonesian language is the Multilingual Machine Translation System (MMTS)
project [7]. This project was conducted by the Agency for Assessment and Ap-
plication of Technology (BPPT) as part of a multi-national research project be-
tween China, Indonesia, Malaysia, Thailand, and led by Japan. A team of NLP
students from Gadjah Mada University in Indonesia [8] has built an English-
Indonesian MT application using a direct method in Visual Basic. This method

� Teguh Bharata Adji is a lecturer at the Department of Electrical Engineering, Gadjah
Mada University.
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gives advantages when combined with the rule-based method using ADJ tech-
nique as explained in [1].

Currently, some English-Indonesian MT software systems have become avail-
able - Rekso Translator [5], Translator XP [9], and KatakuTM.1 There is a sig-
nificant need to study the English-Malay MT research as Indonesian language
shares many aspects with the Malay language. Close similarities are found in
phonetic, morphology, semantics and syntax of both languages. An intensive re-
search in English-Malay MT was conducted by Malaysia University of Science
(USM) using example-based methods [4]. A technique to construct the Struc-
tured String-Tree Correspondence (SSTC) for Malay sentences by means of a
synchronous parsing technique was introduced. The technique used synchronous
parsing technique to parse the Malay sentences based on the English sentence
parse tree together with the alignment result obtained from the alignment al-
gorithms. The advantage is this technique can solve non-projective cases. The
limitations to the approach are the extra work required to annotate all con-
stituent levels and the effort to formalize the English and Malay grammars. In
our research, the ADJ technique [2] is proposed since it has some advantages
over the SSTC:

1. ADJ uses LG formalism which is more closely related to human intuition,
2. ADJ only needs parsing for the source language (English),
3. ADJ is suitable to MT where the target language does not have corpus and

parser, such as Indonesian language.

However, the limitations to ADJ are it is unable to solve non-projective cases
and bi-directional translation [1]. Other research [12] was also using LG to de-
velop an MT system. The work used bilingual corpus to build a bilingual statisti-
cal parsing system that can infer a structural relationship between two languages.
This model included syntax, but did not involve word-segmentation, morphology
and phonology. As there is no available bilingual English-Indonesian corpus at
present, building statistical parsing may not be possible in this study. Therefore,
we merely utilize the link parser in [1] and [2].

2 Implementation

The architecture of the English to Indonesian MT system is given in Fig. 1. This
system consists of four main modules: (1) pruning algorithm module, (2) parsing
algorithm module, (3) ADJ algorithm module, (4) transfer rules algorithm mod-
ule. The pruning algorithm and parsing algorithm modules have been introduced
by Grinberg et. al. as part of the LG formalism [5]. After the pruning algorithm
module prunes an English sentence, the result is parsed into a linkage. A linkage
contains a sequence of words and all links that connect each word satisfying the
linking requirement, as proposed by Sleator et. al. [10]. Fig. 2 illustrates the

1 KatakuTM is available at http://www.toggletext.com/kataku trial.php but no
detail is found on the underlying algorithm.

http://www.toggletext.com/kataku_trial.php


Applying LG Formalism in English-Indonesian MT System 19

Fig. 1. Diagram of the developed MT system

Fig. 2. An example of a linkage

linkage of an English sentence “I saw the red saw”. In this example, S link con-
nects subject-nouns to finite verbs, O link connects transitive verbs to objects,
D link connects determiners to nouns, and A link connects adjectives to nouns.

Based on each word’s links, a word disjunct generator is developed to get the
disjunct of each word in a sentence. A disjunct is a list of left and right links of
a word in a linkage. The proper disjunct for each word in the sentence “I saw
the red saw” could be written in a disjunctive form [6] as follows:

– disjunct of “I”: (( )(S )),
– disjunct of “saw”: ((S )(O)),
– disjunct of “the”: (( )(D)),
– disjunct of “red”: (( )(A)),
– disjunct of “saw”: ((O,D,A)( )).

The two appearances of “saw” in Fig. 2 signify that this word is recognised as
ambiquous. It is thus represented as two syntactically different words in the LG
formalism. The first “saw” is a verb which has the disjunct of d = ((S )(O)), and
the second “saw” is a noun of the disjunct of d = ((O,D,A)( )). The first “saw”
is translated into “melihat” in Indonesian and the second “saw” is translated
into “gergaji”.

The original parsing algorithm in LG generates a list of linkages at their own
cost [10]. The ADJ algorithm module in this developed system is designed to
consider only the first linkage in the generated list as it holds the lowest cost.
Consequently, only single set of word disjuncts are obtained. These disjuncts
are components used for producing ADJ. Processing disjunct annotations was
explained in detail in [2]. The following lines describe the annotation briefly.
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The single set of disjuncts of an English sentence that are obtained by ADJ
algorithm are of the form {di | 1 ≤ i ≤ n, n = the total number of words in an
English sentence}. Thus, the words “I”, “saw”, “the”, “red”, and “saw” in the
previous example have the disjuncts of d1, d2, d3, d4, and d5 respectively sorted
in sequence.

We developed the ADJ algorithm module to process the first linkage passed
from the parsing algorithm module in obtaining the ADJ. ADJ is a set of
source words (English), target words (Indonesian), and their associated dis-
juncts. It is represented in the following structure: {(Wi,W

′
i , di) | 1 ≤ i ≤

n}. For example, the sentence “I saw the red saw” is literally translated into
the Indonesian sentence “Saya melihat itu merah gergaji” giving the following
ADJ: (I,Saya,(( )(S ))), (saw,melihat, ((S )(O))), (the,itu,(( )(D))), (red,merah,((
)(A))), (saw,gergaji, ((O,D,A)( ))). The ADJ algorithm is as follows:

0. ADJ algo(first linkage)
1. char∗∗ d ← get words disjuncts(sentence, first linkage);
2. for 1 <= i <= n
3. char∗ di ← d[i];
4. char∗ Wi ← sentence[i];
5. W ′

i ← insert word translation(Wi, di);
6. ADJ ← annotate disjuncts(Wi,W

′
i , di);

7. return ADJ ;

The variables used in the above algorithm are as follows:

– first linkage is a struct data type variable,
– sentence (struct data type) is an English source sentence (SS ) that consists

of n words,
– i is for identifying the ith position of a word in an English sentence,
– di = d[i] is the disjunct of Wi,
– Wi is the source word located in the ith position in the SS,
– W ′

i is the translation of Wi, inserted by referring to its proper disjunct,
– ADJ is a struct data type variable consisting of Wi,W

′
i , and di. This ADJ

is stored in an Annotated Dictionary (see Fig. 1).

Based on this set of ADJ, a transfer rules algorithm module is developed to
arrange all the target words in a correct target sentence (TS ) structure by refer-
ring to the syntactic analysis (see Fig. 1) of Indonesian language structure. For
example, in English, adjective and determiner always precede the noun. This
structure is against the structure in Indonesian language where the noun al-
ways precedes the adjective and determiner. Illustration in Fig. 3 shows how the
above mapping problem can be solved using ADJ. When the sentence “I saw the
red saw” is applied to the transfer rules algorithm module, the result produced
is “Saya melihat gergaji merah itu”. Now, the word “gergaji” (noun) precedes
“merah” (adjective). The produced result also shows that the word “itu” (de-
terminer) is located after “merah”. This is due to the result of the word “the”
in the 3rd position of the SS being mapped into “itu” in the 5th position of the
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Fig. 3. Illustration of the English-Indonesian words mapping using ADJ

TS, while the word “saw” in the 5th position of SS is mapped into “gergaji” in
the 3rd position of TS.

The transfer rules algorithm for implementing the illustration in Fig. 3 is:

0. char∗∗ transfer rules algo( )
1. ADJ algo(first linkage);
2. if (ADJ.disjunct[1] = d1 & ADJ.disjunct[2] = d2 & ...

& ADJ.disjunct[n] = dn)
3. for 1 ≤ i ≤ n
4. temporary word[i] ← ADJ.W ′

i ;
5. wordi ← temporary word[xi];
6. return word;

The variables used in the above algorithm are explained as follows:

– disjunct[i] is a temporary variable for checking the disjunct of Wi,
– temporary word[i] is a temporary buffer to store W ′

i ,
– xi is for identifying the position of W ′

i before shifting to the correct position,
where xi has a value from 1 to n,

– wordi is for locating the target word in the ith position of TS.

In the above transfer rule, line 2 checks whether all disjuncts of an input sentence
equal certain disjuncts. If the input sentence is “I saw the red saw”, and if
the disjuncts matches with the condition, then all target words are stored in
a temporary word variable. For example, line 4 will store the Indonesian word
“itu” (English: “the”) in the 3rd position of temporary word. Assigning xi = 3
in line 5 will then shift the word “itu” from the 3rd to the 5th position in TS.

3 Results and Discussions

The performance of the system is discussed in this section. 150 English sentences
that have been translated by three Indonesian linguists were used to generate the
transfer rules. An unseen 150 English sentences were used to test the developed
system. The same sentences were also used as input to the proprietary MT
systems. The results from all tested systems were evaluated by the Indonesian
linguists for accuracy. The accuracy of all the tested software is shown below:
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– Translator XP = 52.00%,
– Rekso Translator = 56.78%,
– KatakuTM = 61.00%,
– Link Grammar based MT system = 71.17%.

At present, we can consider the result produced by our system to be better
than the result of the other software. Unfortunately, the error rate is still higher
(28.83%). However, it seems quite possible that this will give a significant im-
provement in the accuracy if the amount of training data is large [11]. Hence,
the accuracy is also very much reflected by the generation of more transfer rules.
We have also analyzed the possible causes of the high error rate based on the
data in Table 1.

Table 1. Performance analysis data

Category Linguists’ Score Total Sentences Total Sentences(%)

I 5 ≤ score < 6 2 1.33%
II 6 ≤ score < 7 55 36.67%
III 7 ≤ score < 8 58 38.67%
IV 8 ≤ score < 9 30 20.00%
V 9 ≤ score ≤ 10 5 3.33%

We categorized the score assigned by the Indonesian linguists into 5 categories
together with the number of sentences (from the total of 150 tested sentences) fall
within each category. It was found that 13.33% of the tested English sentences
were not in LG formalism, hence some of their words have no disjuncts which
have made the system fail to produce correct translations. This has contributed
to the lower scores given by the linguists for sentences in Category I-IV. For
example, all sentences in Category I dealt with idiomatic phrases or sayings such
as “What a wonderful day!”. Meanwhile Category V shows that the linguists
were happy with the translated results which provide the best level of system’s
performance.

It was also found that Category II, III, and IV contributed to the most er-
ror i.e. 95.34%, which prompted us to further explore the causes. The sentences
in those categories contained certain noun phrases (e.g. “the next morning”,
“Footballer Beckham”), verb phrases with prepositions (e.g. “look for”, “dream
of”), and translations that require morphological analysis. Further morphologi-
cal studies on Indonesian language are vital since the language employs affixes
more heavily than English [3]. Some of the tested sentences were in the English
interrogative forms and negative forms which needs morphological analysis. For
example, “paid” in the negative sentence “You will be paid” was translated into
an Indonesian inflectional verb “dibayar”. Meanwhile, “paid” is frequently trans-
lated into the inflectional verb “membayar” in affirmative sentences like “I paid
you”. For this example, surprisingly the ADJ algorithm can generate different
disjuncts for the word “paid” in both forms. Two opportunities exist to improve
the work i.e. adding a word stemmer and a morphological analyzer for the ADJ
approach, which is likely to solve the mentioned problem.
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4 Conclusions and Future Researches

The research contributes to a hybrid transfer approach using ADJ technique
in LG formalism. In summary, the performance can be improved not only by
considering the word stemmer and morphological analyzer but also the use of
part of speech and ontology. Assuming that the system is already completed, the
development of LG formalism for the Indonesian language should be possible
provided that all source and target words are completely annotated with the
ADJ. A new parser can be automatically induced for the language, without the
aid of the language experts.

Acknowledgments. Thanks to Dr. Mohd Fadzil Hassan and Dr. Mohd Nordin
Zakaria from Universiti Teknologi PETRONAS for their valuable helps.

References

1. Adji, T.B., Baharudin, B., Zamin, N.: Annotated Disjunct in Link Grammar for Ma-
chine Translation. In: 2007 ICIAS (International Conference on Intelligent & Ad-
vanced Systems), KL Convention Centre, Kuala Lumpur, November 25-28 (2007)

2. Adji, T.B., Baharudin, B., Zamin, N.: Building Transfer Rules using Annotated
Disjunct: An Approach for Machine Translation. In: 2007 5th SCOReD (Student
Conference on Research and Development), Malaysia, December 11-12 (2007)

3. Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S.M.M.: Stemming Indonesian: A
Confix-Stripping Approach. ACM Transactions on Asian Language Information
Processing 6(4), Article 13 (December 2007)

4. Al-Adhaileh, M.H., Kong, T.E.: Synchronous Structured String-Tree Correspon-
dence (S-SSTC). In: 20th IASTED 2002 International Conference, Innsbruck, Aus-
tria (February 2002)

5. Anonymous: Rekso Translator. Indonesia Commerce, Indonesia (2007),
http://reksotranslator.com

6. Grinberg, D., Lafferty, J., Sleator, D.: A Robust Parsing Algorithm for A Link
Grammar. In: 1995 4th International Workshop on Parsing Technologies, Prague
(1995)

7. Nazief, B.: Development of Computational Linguistics Research: a Challenge for
Indonesia. Faculty of Computer Science, University of Indonesia (internal publica-
tion, 1996)

8. Novento, F.: Perangkat Lunak Penerjemah Kalimat Inggris-Indonesia Menggu-
nakan Metode Loading Data Sementara. Undergraduate final project, Electrical
Engineering Department, Gadjah Mada University (2003)

9. Poulsen, C.S.: Translator XP. CV Media Internusa Enterprice, Yogyakarta, Indone-
sia (2008), http://translatorxp.com

10. Sleator, D.D., Temperley, D.: Parsing English with A Link Grammars. In: 3rd
International Workshop on Parsing Technologies. ACL - SIGPARSE conference.
University of Tilburg, The Netherlands (1993)

11. Tanaka, Y.: Example data for machine translation systems. In: IEEE International
Conference on Systems, Man, and Cybernetics, October 7-10, vol. 2, pp. 915–920
(2001)

12. Venable, P.: Modelling Syntax for Parsing and and Translation. Ph.D. Thesis,
Carnegie Mellon University (2003)

http://reksotranslator.com
http://translatorxp.com


Case Studies in Model Manipulation for

Scientific Computing

J. Carette, S. Smith, J. McCutchan, C. Anand, and A. Korobkine

Computing and Software Department, McMaster University, Hamilton, ON,
CANADA

{carette, smiths, mccutcjs, anandc, korobkao}@mcmaster.ca

Abstract. The same methodology is used to develop 3 different applica-
tions. We begin by using a very expressive, appropriate Domain Specific
Language, to write down precise problem definitions, using their most
natural formulation. Once defined, the problems form an implicit def-
inition of a unique solution. From the problem statement, our model,
we use mathematical transformations to make the problem simpler to
solve computationally. We call this crucial step “model manipulation.”
With the model rephrased in more computational terms, we can also
derive various quantities directly from this model, which greatly simplify
traditional numeric solutions, our eventual goal. From all this data, we
then use standard code generation and code transformation techniques
to generate lower-level code to perform the final numerical steps. This
methodology is very flexible, generates faster code, and generates code
that would have been all but impossible for a human programmer to get
correct.

1 Introduction

Collectively, the authors have been developing various scientific applications for
several decades. Over time, we have independently drifted towards the same
development methodology. The basic ingredients involve a (declarative) domain-
specific language (DSL) in which to express our model(s)1, model transforma-
tions, code generation and program transformation. The steps involved are shown
in Fig. 1. Through 3 case studies, we show that the methodology is flexible, gen-
erates faster code, and generates code that would have been all but impossible
for a human programmer to get correct.

For scientific applications, the most appropriate DSL is well-known: mathe-
matics. More difficult is finding computer-based tools that can easily deal with
the kinds of mathematics involved in typical scientific applications. Further-
more, not only does this language need to be “declarative,” it should also allow
direct manipulation, in and by the language itself, of mathematical expressions
(and more generally of mathematical specifications). The only languages that
currently combine the necessary richness and ease of manipulation are the lan-
guages of Computer Algebra Systems. In our case, because it is the system we are
1 Note that where we use “model,” mathematicians would use “problem” instead.
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1. Express the Model - the model is declaratively expressed in a DSL,
2. Transform the Model - transform the initial model into a form more suitable

for computational solutions,
3. Extract Structure - structure and properties are directly extracted from the

model,
4. Optimize the Computation - the structure is used to optimize the computa-

tional “solution” of the model,
5. Generate the Code - low-level code is generated for the solution.

Fig. 1. Typical model manipulation steps

(by far) the most familiar with, we have used Maple. It is then straightforward
to directly phrase the kinds of models we are most interested in: (solutions of)
differential equations, and (solutions of) continuous optimization equations.

We will show that given explicit representations of equations whose solution
we seek, the intentional structure of those equations can be mined to obtain a
wealth of information about the structure of the solution. This, in turn, allows
one to make better choices about (numerical) solution methods. We call this step
“model manipulation.” This is the step where human creativity and ingenuity is
most needed. This is also the step where the domain expert can bring important
insights. We recommend spending relatively more time on model manipulation
because an investment of time here makes subsequent steps much simpler to
automate.

With a model rephrased in more computational terms, we can apply well-
known techniques (like symbolic differentiation, common subexpression elimina-
tion, finding of differential or recurrence relations, etc.) to further optimize the
computational structure of the model. At this point, classical code generation
techniques can be applied to generate C code with embedded calls to optimized
numerical libraries.

In scientific computation, there are at least two circumstances in which code
generation has proven to be quite effective:

1. when complex program transformations are needed [11,22],
2. when a program can be expressed succinctly in a domain-specific language,

but requires lengthy and complex code in a mainstream language. [6,7]

The first situation occurs most famously when automatic differentiation [13]
is required and applicable. There is ample literature (from [25] onwards) that
shows that smooth optimization problems are incomparably easier to solve when
Jacobians and Hessians are available. Computing derivatives numerically is well-
known to be a futile task, and computing them by hand (symbolically) is so
fraught with error as to be deemed impossible. On the other hand, differentiation
is a simple (symbolic) program.

The second situation from the above list is now emerging as rather common
as well, which has caused the growing popularity of GUI-builders, lexer and
parser generators, Java-from-DTD builders, etc. This trend is also present in the
scientific computation community [8,9].
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The problems well-suited to our approach are those which:

1. can be succinctly described using mathematics as the “domain language,”
2. needs information, like derivatives, easily obtained from the model, and
3. requires experimentation and manipulation at the “model” level.

The downsides of using a DSL, as given by [7], are not relevant when using a
mathematical programming language (such as Maple).

It is worth repeating that the most important step is that of “model manipu-
lation.” Our aim is to automate every other step of the problem-solving process
to ensure that a designer’s time is spent thinking about the semantics and the
structure of the problem to solve, and not wasted on mundane computational
tasks. Eventually, we would hope to provide higher-level abstractions for this
step as well. Several reviewers have, näıvely in our opinion, asked why we do
not provide more automation for this step. The answer is simple: we only know
how to automate very particular cases, and in fact believe that there are no
general recipes to follow. This is not to say that particular cases cannot be fully
automated, nor even that these particular cases are “rare” – quite the contrary.

Part of our aim is to free our own time, so that we can concentrate on the pure
problem-solving parts of scientific software development. Once we have reliably
achieved that, we will then strive to develop automated tools, using our scientific
and engineering knowledge of typical solutions, to as many problem classes as
possible.

We will present 3 applications developed using this methodology: real-time
visual tracking of a target, data fitting in model-based time series and material
behaviour modelling. To highlight the similarities between the examples, in each
case reference will be made to the model manipulation steps shown in Fig. 1.
Significantly more details on these examples can be found in [3].

2 Visual Tracking

This example is based on [1]. In visual tracking applications, a series of images
captured from CCD (Charge-Coupled Device) cameras must be processed in
real-time to extract information about spatial positioning. This information can
be used for target identification, object measurement, and closed-loop target
acquisition. Here we will focus on recognition of radially-symmetric, essentially
compact targets, which we will call spots.

2.1 Model of Spot Fitting

We can Express the Model of spot recognition as the least squares fit between
actual light intensity (φp) and the equation (v1f(p) + v0) describing the spot:

min
U

F =
∑

p∈Ω

(φp − (v1f(p) + v0))2 (1)
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1

2

3

4

Fig. 2. Actual image of a gray-scale
target, showing the spot’s centre (1),
shape (2) and cross-section (3, 4)

where v0 is the background illumination,
v1 is the brightness of the centre of the
spot, p is a pixel, Ω is a region of pix-
els and f(p) is a polynomial. The func-
tion f(p) depends on k1, k2, which de-
termine the radial profile of the spot;
bx, by, which define the coordinates of
the ellipse centre; and finally a1, a2, a3,
which define the shape of the elliptical
boundary. We minimize F over U , where
U ⊆ {v0, v1, k1, k2, bx, by, a1, a2, a3}. Fig-
ure 2 shows an example.

Equation 1 actually represents a fam-
ily of models, distinguished by the choice
of U . Domain-specific information allows
us to Extract Structure via appropriate
choices of U . Note that a naive implemen-
tation where we simultaneously optimize
all variables will fail because the target recognition problem is not convex, forcing
us into multiple solver stages.

2.2 Transformed Model (Newton’s Method Solver)

The Transformed Model for finding the minimum in Eq. 1 consists of searching
for a common zero of all the partial derivatives with respect to all the parameters
of U , using Newton’s method. Denoting by JU the Jacobian of F and HU the
Hessian of F with respect to the variables U , Newton iteration for an iterative
solution vector un is defined by:

un+1 = un − HU(un)−1JU (un) (2)

2.3 Extracting Structure and Generating Code

To improve performance, we can Extract Structure (again) from the transformed
model. In particular, we know that large arrays are needed to store the captured
images and that computing the sum over each elements in those arrays is expen-
sive. Efficient use of cache would help reduce execution time (as this is bounded
by memory accesses). This is most easily done by localizing computations within
a solver iteration. Furthermore, from their definitions, we know that Jacobian
and Hessian matrices will contain many common subexpressions; therefore, op-
timization on the “the inner sum” is crucial. We also know that since Hessian
matrices are symmetric, we only need to calculate their upper triangular por-
tion. Using this information suggests that for the Jacobian and the Hessian we
should jointly Optimize the Code. Measurements of floating point operations
in code generated using these optimization strategies confirms our expectations
(see Table 1).
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Table 1. Number of flops per pixel in generated solvers

jointly optimized separately optimized
+tryhard +tryhard

b 78 112 97 152

a 88 135 117 176

a,b 205 325 220 396

a,b,v 230 394 284 461

There is an advantage to the joint optimization of the Jacobian and the Hes-
sian matrices, which would not be feasible without Optimizing the Code. Maple’s
codegen[optimize] function, especially with the tryhard option, eliminates
common subexpressions very effectively when these matrices are generated to-
gether. If the optimization of code is performed separately and the results are
concatenated (which is closer to the code that would be obtained without using
the model manipulation process), both the length of the solver and the number
of flops per pixel are roughly doubled. This does not reflect the equally im-
portant reduction in memory traffic and reduction in local variables by jointly
calculating the Jacobian and Hessian in one loop.

3 Parameter Estimation in Model-Based Time Series

This example of parameter estimation from time-series data is extracted from [2].
Parameter estimation is important in many problem domains including determi-
nation of rate constants in pharmaceutical drug transport, decomposing audio
signals and voice recognition, and measurement of metabolite levels in Magnetic
Resonance Spectroscopy (MRS) and Relaxometry. Figure 3 shows an example
from MRS of the decomposition of a measured magnetic resonance spectrum for
soya bean oil.

3.1 Expressing the Mathematical Model

Expressing the Model for parameter estimation shows that we have a more gen-
eral version of the least squares fitting example presented in the previous section.
A common method of parameter estimation for time series data involves mod-
elling signal sources, f(x1, x2, . . . , xn, t), (where the xi are the model parameters
and f is in general a vector-valued function) and fitting a superposition of the

Fig. 3. Soya bean oil spectrum (maroon) and component estimates
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various sources to the measured data. Through minimization of an objective
function F , an optimal set of parameters may be determined:

min
x1
1,x1

2,...,x1
n,...,xs

n

∑

t

∥
∥
∥
∥
∥
∥
y(t) −

∑

s∈{sources}
asfs(xs

1, x
s
2, . . . , x

s
n, t)

∥
∥
∥
∥
∥
∥

2

. (3)

where xs
j denotes the xj ’th parameter of peak s. Equation 3 Expresses the Model

for parameter estimation of a time series. An important part of the mathematical
modelling step is to explicitly declare the class of functions f to consider, which
parameters to optimize for, and how many superpositions of the basis function
should be used for fitting. This gives important structural information from
which we can Extract Structure.

As our objective functions will all be analytic, we can safely use Newton’s
method to solve the minimization problem; therefore, Newton’s method forms
the Transformed Model, as it did for the last example (see subsection 2.2).

3.2 Extracting Structure

Extracting Structure from the model shows the frequent occurrence of recur-
rence relations, since in many time-series models, a simple time evolution ex-
ists. This allows the use of recurrence relations instead of explicit calculations
of the model function. This greatly increases the efficiency of objective func-
tion evaluations, as well as the calculation of the Jacobian and Hessian on each
solver iteration. For instance, in the case of an exponentially damped oscilla-
tory signal, ae−(d+if)t of frequency f , amplitude a, and damping coefficient d,
the sequence a, ae−(d+if), ae−2(d+if), . . . can be calculated using the recursion
z0 = a, zj+1 = kzj, k = e−(d+if).

We symbolically obtain the recurrence equation satisfied by the model f with
respect to the main variable t via the IsHypergeometricTerm function from the
RationalNormalForms Maple package. This function uses advanced symbolic
techniques to decide if a given term f(t) is such that f(t+1)

f(t) is a rational function
of t, and returns this rational function if this is the case.

Further efforts to Extract Structure show that if the model happens to have
a simple dependence on the parameters, then it is usually the case that the
derivatives that appear in the Jacobian and Hessian are simply expressible in
terms of the model itself. Considering a simple model with first-order dependence
on a parameter b,

f(b) = aebp(x) and
∂f

∂b
= p(x)aebp(x) = p(x)f(b) (4)

which shows that the derivative can be expressed in terms of f . If the dependence
is algebraic, which can be considered to be a zeroth order differential equation,
this can also be used for simplifications. As such dependencies are sources of
redundant computations, it is important to factor them out.
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gfun[holexprtodiffeq] is used to determine the differential equation(s) sat-
isfied by the model f . The abbreviations stand respectively for generating func-
tion and holonomic expression to differential equation. The package gfun and
the theory of holonomic (or D-finite) functions are described in [24] and [4],
respectively.

3.3 Code Generation

We need to Generate Code that computes F , its Jacobian and Hessian, taking
full advantage of the fact that F is a sum, and that all of its sub-terms satisfy
a recurrence. Using this structure allows us to Optimize the Computation.

The Jacobian with respect to the parameters α is computed symbolically,
using the previously computed differential relations. If the differential equation
technique fails for any a ∈ α, that partial derivative is computed by direct
symbolic differentiation. Direct symbolic differentiation is then used on the Ja-
cobian to get the Hessian. Any occurrence of ∂f

∂a in the Hessian is replaced by
the Jacobian entry.

If f is a complex (vector) function, then f , and the Jacobian and Hessian of
f are separated into real and imaginary parts at this point. We must eventually
convert all our computations to real computations only, and this point in the
algorithm is where we gain the most benefit: previous computations are simpler
on the complex function, while more common sub-expressions can be pulled out
from the expanded version.

The code to calculate F , J and H is combined with the code to calcu-
late successive terms of f . This then makes up the body of a loop on the
main variable t. Common sub-expression elimination is used on the loop body
via codegen[optimize] with the tryhard option, and the optimized code is
wrapped in a loop on t from 0 to n− 1, where n (number of data points) is an
argument of the generated function. The loop is then spliced with the previous
code and transformed into a C function.

The generation algorithm can be explained more specifically as

1. get recurrence relation for f on t (via IsHypergeometricTerm),
2. construct the Jacobian and the Hessian for the model function f in terms of

f ,
3. if f is a complex function, split the above into real and imaginary parts,
4. generate code to calculate the initial value of f , the recurrence ratio h, as

well as code to calculate successive terms using h and the last calculated
term; do this for each superposition of f ;

5. generate code to calculate, by summing in a loop, F , Jacobian(F ),
Hessian(F ); use previously computed relations on derivatives of f (from step
(2)), as well as re-using the recurrence for f ;

6. the above code uses local variables (in the generated code) to store the
Jacobian and Hessian, to enable common-sub-expression elimination (as it
cannot be done on Matrix/Vector entries).

7. generate “cleanup” code to assign locally stored Jacob(F ) and Hess(F ) to
arrays that are “returned”
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8. wrap F , Jacob(F ), Hess(F ) and recurrence code in a loop on t and apply
sub-expression elimination optimization

9. “paste” code together and transform to C code

This is about 500 lines (counting comments and blank lines) of very clear Maple
code. The core ideas fit in about 50 lines, with the rest needed to get around
various idiosyncracies, keep the code modular and clean, and simply further
automate the process.

Using model manipulation we have measured a 120-fold reduction in exe-
cution time for real valued exponential models when compared to a “vanilla”
implementation, and a 540-fold reduction for complex valued exponential mod-
els. Although we would not expect this to be the case for all applications, we
certainly expect significant gains for many applications.

4 Material Behaviour Modelling

Modelling the response of materials under loading is of critical importance to
scientists and engineers. To model the deformation and stress within a solid
body, we turn to the constitutive equation, which postulates a dependence of
the stress on the history of deformation. A wide range of varied and complex
constitutive equations are used in practise. Although the behaviour of these
models can vary greatly, the underlying mathematics is very similar. Using the
correct abstraction, a wide range of material behaviours form a family of material
models. Using model manipulation we can quickly generate code for a specific
member of this family.

4.1 The Mathematical Model Relating Stress and Deformation

The goal of material modelling is to find the stress (σ : R6) as a function of time
(t : R). That is, to return the function σ(t) : {t : R|tbeg ≤ t ≤ tend} → R6, where
tbeg and tend delimit the duration of the simulation. The stress can be found by
solving the constitutive equation, which in rate form is:

σ̇ = D
(

ε̇ − γ < φ(F (σ, κ)) >
∂Q(σ)
∂σ

)

and σ(tbeg) = σ0 (5)

where < φ(F ) >= φ(F ), if F > 0, and 0 otherwise. This equation is based on
the viscoplastic constitutive equation presented by Perzyna [19], which depends
on the elastic constitutive matrix (D : R6×6), the fluidity parameter (γ : R),
the function φ (φ : R → R), the yield function (F (σ, κ) : R6 × R → R), the
plastic potential function (Q(σ) : R6 → R), the stress tensor (σ : R6), the strain
rate tensor (ε̇ : R6) and the hardening parameter (κ : R6 → R), which measures
the accumulated strain. In Eq. 5, the condition F = 0 defines a surface in 6
dimensional stress space, which can be visualized as in Fig. 4. Inside the surface
(F < 0) the material response will be purely elastic, and outside the response is
viscoplastic. When the material has yielded, which occurs when the stress path



32 J. Carette et al.

F = 0

∂Q

∂σ

Q = 0

Fig. 4. Yield Function, Hardening and the Plastic Potential in Stress Space

reaches the yield surface, this surface may change shape, as shown in Fig. 4 by
the dashed line. Details on material behaviour modelling can be found in [16].

The above constitutive equation, together with the equilibrium equation, are
the Expression of the Model. The model is very similar between different prob-
lems. The only variabilities, which need to be set for a specific material before
solving a given problem, are the following: F , Q, φ, κ, γ and the property vector,
where the property vector consists of the material properties. These variabilities
can be explicitly specified in a DSL that describes (declaratively) a particular
material model from the family.

4.2 Transformed Model (Finite Element Algorithm)

The second step in the model manipulation process is Transforming the Model.
In this example, the common parts of the model are transformed into their
finite element (FE) method [27] equivalents. This step leaves the variabilities as
unspecified; therefore, the algorithm will remain generic and thus be applicable
to any material in the family. At the moment, there is no clear algorithm to
automatically transform Eq. 5 to an FE equivalent. Currently the transformation
seems to require human insight and expert knowledge of the available family of
algorithms. However, by keeping the algorithm generic, multiple instances that
apply to a variety of materials can quickly be generated.

The FE algorithm selected is a fully implicit time-stepping algorithm that
includes a correction back to the yield surface when this is required. The algo-
rithm involves vector and matrix operations and the calculation of the gradients
of F and Q with respect to σ [3]. The FE equation to solve for the displacement
degrees of freedom (a) is as follows:

Ka = F (6)

where K is known as the stiffness matrix and F as the load vector. Neither of
these quantities depends on a, which makes this a linear system of equations.
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For the first iteration of the algorithm, the values of K and F are as follows:

K =
∫

V

BTDvpBdV ;F = Ri −
∫

V

BT σidV +
∫

V

BTΔσvpdV (7)

with

Dvp = D

[

I −ΔtC1λ
′ ∂Q
∂σ

(
∂F

∂σ

)T

D

]

, λ′ =
dλ

dF
(8)

Δσvp = ΔtC1λD
∂Q

∂σ
(9)

C1 = [1 + λ′Δt(He +Hp)]−1 (10)

He =
(
∂F

∂σ

)T

D(
∂Q

∂σ
) (11)

Hp = −∂F

∂κ

(
∂κ

∂εvp

)T
∂Q

∂σ
(12)

where I is the identity matrix.
For subsequent passes within an equilibrium iteration loop, the FE equations,

which provide a correction Δai for ai, simplify to

K =
∫

V

BTDBdV ;F = Ri −
∫

V

BT σidV (13)

The equilibrium iteration loops ceases when the convergence criteria satisfies a
given tolerance (toler) as follows:

||Δa||
||a|| ≤ toler (14)

where ||a|| represents the Euclidean norm of the vector a. After solving for the
displacements for a given time step the local stresses and strains are updated
using a return map algorithm [26], which is described in [17].

4.3 Extracting Structure and Code Generation

After Extracting the Structure, which consists of the terms involving F , Q etc.,
from the Transformed Model, the next step is Generating Code using a DSL
specification to replace the generic parts with material specific code. A program
called MatGen [17] was developed to do this. MatGen needs to calculate the
required derivatives and output source code for terms such as He (Eq. 11). Like
the other examples in this paper, Maple was used to do this. Maple performs the
necessary symbolic computations and is then used to convert from mathematical
expressions into C expressions using the “CodeGeneration” package. These C
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expressions are inlined into a C++ class defining the material model. This class
can then be used by an FE analysis program.

Note that the step Optimize the Computation was not emphasized in this
example. Instead the goal was to automatically generate code for new constitu-
tive equations in a manner that is simpler, less time consuming and less error
prone than using hand calculations. We can illustrate that we reached this goal
by considering the calculation of the example term, He. Comparing the sym-
bolic output from Maple to a hand derived versions of He for a viscoelastic fluid
shows the same result that He = 3G, where G is the shear modulus [17]. How-
ever, the hand derivation was complicated, took a nontrivial amount of time,
and required expert knowledge. In particular, the hand derivation took 5 pages
of equations and explanation [17, pages 77–81]. The derivation used the chain
rule of calculus, several stress invariants, the Einstein index notation, vector cal-
culus, and knowledge from continuum mechanics, such as the fact that the trace
of the deviatoric stress tensor is zero. The MatGen version, on the other hand,
only required using the DSL to specify the model for a viscous fluid, as follows:
F = Q = q;φ = F ;κ = 0; γ = 1/2η, where q is the effective stress, which is
provided by a macro in MatGen, and η is the material property of viscosity. The
calculation of other terms in the FE algorithm are at least as complex, time con-
suming and error prone, as the calculation of He. In these other cases MatGen
was just as simple and effective, although Maple was unable to simplify these
other expressions to be identical to the hand derived versions. In these cases
though the expressions were found to be equivalent by verifying their numerical
agreement.

Although the Optimize the Computation step was not emphasized for the cur-
rent example, the possibility certainly exists that the FE algorithm can be mined
for structure in a manner similar to what was done for the previous two exam-
ples. Although the code generated by Maple is not currently efficient, an expert
could potentially further Extract Structure to improve the efficiency. This possi-
bility illustrates the current need for human insight in the model manipulation
process. Additional human creativity and ingenuity at the initial stages of the
model manipulation process can facilitate the subsequent automated steps and
result in much more efficient code. Further investigation of material behaviour
modelling is left as future work.

5 Related Work

The many people working on Problem Solving Languages [25] and Problem Solv-
ing Environments [10,12,14,18,20,21,23] (to cite just a few) implicitly believe in
our thesis. By and large, they are however working at creating environments for
solving particular problems. For each problem class, the solving methodology
is well-enough understood that most of the process can be encapsulated in one
piece of software.

Take one of the most impressive examples: SPIRAL [21]. They are essen-
tially following the same approach that we are, but they have concentrated on
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documenting different aspects of their work. We have concentrated on pulling out
the process, and making sure that we automate all that we can. In the domain of
signal processing, they have achieved a high level of automation by doing exactly
as we preach: automating the “rest” of the process, and then concentrating on
the part where new mathematical insight makes a real difference. We believe
that this can be done in general by using “mathematics” as the DSL.

Another approach is code extraction from constructive proofs, most notably
from Coq proofs [15]. This is an extremely exciting prospect, but is too far on the
leading edge of current research to be properly evaluated at this time. Certainly
there are issues [5] where the style of one’s proof has dramatic effects on the
quality of the extracted software! Of course, there is also the issue that many
parts of advanced mathematics (like holonomy) are not yet implemented in Coq,
but have quite mature implementations in CASes.

6 Conclusion

We have demonstrated that the model manipulation development methodology
for generation of (numeric) solution to scientific computation problems has sev-
eral advantages.

1. The conventional approach, for example where the various gradients are
worked out by hand in advance of implementation, is difficult and error
prone. Replacing this step by symbolic processing reduces the workload,
allows non-experts to deal with new problems, and increases reliability.

2. Although the generated code is for a particular numerical algorithm, given
the existing framework, it is straightforward to generate new programs that
meet the needs of other algorithms.

3. Any additional information available at the symbolic processing stage can
be used to improve performance. For instance, if there is a known differential
or recurrence relation in the model, this can be used for optimizing the code.

4. In certain situations, the performance gains from taking advantage of the
problem structure can be impressive.

We have chosen to be pragmatic and reuse a well-known existing tool: Maple.
We are well aware that this is a far from optimal choice. A better approach
would require the use of a semantically richer tool (as provided by many theorem
proving environments); but none of these tools have existing libraries as rich as
Maple’s. Certainly none of them, to our knowledge, contain tools for dealing
with holonomic functions. We look forward to the day where semantically richer
environments are as computationally capable as today’s CASes.

We believe that we are discovering a new development methodology for high-
level scientific applications that leverages DSLs, model transformations and pro-
gram transformation to yield a process that is friendlier to the domain expert,
provides insights into the original problem, and produces faster and more reli-
able code. We believe that tool developers who keep this process firmly in mind
when they design new tools (or improve old ones) can produce environments
which will improve the productivity of scientific software developers.
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Abstract. Craig’s Interpolation Theorem is an important meta-
theoretical result for several logics. Here we describe a formalisation of
the result for first-order intuitionistic logic without function symbols or
equality, with the intention of giving insight into how other such results
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1 Introduction

Maehara’s proof [11] of the Craig Interpolation Theorem stands as one of the
more beautiful and intricate consequences of cut-elimination in the sequent cal-
culus [13] for first-order logic. Properly stated, it involves both the polarity of
subformulae, and the first-order language of terms that may occur in the inter-
polant formula. The aim of this paper is to present a formalised proof adapted for
an intuitionistic G3-like system, in which routine informal considerations of free
and bound variables in the language of first-order logic are rendered tractable
by the use of Nominal Isabelle.

We build on the work of Ridge [10] and Boulmé [1] and have formalised the
result in Nominal Isabelle [12]. The work of [10] is incomplete; there is a condition
missing in the statement of the theorem. This condition constrains the interpolant
formula F for a sequent Γ1, Γ2 ⇒ Δ1, Δ2, where the two computed sequents are
Γ1 ⇒ Δ1, F and Γ2, F ⇒ Δ2, as follows: the language of F , denoted L(F ), should
be common to the languages L(Γ1, Δ1) and L(Γ2, Δ2). The definition of common
language in [10] accounts for the predicate constants (with their polarities),but not
the individual constants (zero-arity functions and free variables). This condition
is the most difficult to formalise, but is likewise an important part of the correct
statement of the theorem; the additional complexity in enforcing the condition
arises inductively when one considers the rules for the quantifiers.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 38–52, 2008.
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The work of Boulmé was undertaken in Coq [2], and used the locally-named
syntax of McKinna and Pollack [5] to attempt to formalise Craig’s theorem.
This syntax was developed to deal with variable binding and reasoning up to
α-conversion, as an alternative to de Bruijn notation. Substitution in a reduction
rule was formalised by substituting a suitably fresh parameter (i.e. one that oc-
cured nowhere else in a particular derivation) for the bound variable, performing
whichever reduction rule was needed, and then rebinding the original name. The
method is constructive; a new fresh name need not actually be supplied, it is
enough that such a fresh name actually exists, but the syntax stipulates that
an explicit new parameter be given. Boulmé focused on a restricted language
for classical first-order logic consisting of only NAND and ∀ (hence expressively
complete). The interpolant for a particular case was shown to be valid for that
case in individual lemmata, rather than as inductive cases of one theorem.

Here, we use instead the Nominal Isabelle system, with the intention of han-
dling variable binding more cleanly, and show that the proof of the theorem for
full first-order intuitionistic logic can be formalised, including the tricky details
that arise in the quantifier rule cases. The choice of intuitionistic logic simplifies
the analysis of sequents Γ ⇒ Δ, as Δ then consists of at most one formula. The
nominal approach goes back to the work of Gabbay and Pitts [3].

Parts of this paper are the actual checked proof script; every result has been
verified as correct by the Isabelle system. The type-setting facilities which come
with Isabelle allow us to suppress the output of parts of the theory file for the
sake of readability [7]. We intersperse the formal proofs with the proofs that
one would normally see in a text book on proof theory. The informal proofs are
displayed in a natural deduction style, and use the abbreviation Γ,Δ for Γ ∪Δ.

2 The Development

2.1 A Brief Introduction to Nominal Isabelle

Nominal Isabelle is a package in the Isabelle proof assistant, specifically a package
within Isabelle-HOL. A comprehensive introduction to the package is given in
[12]. We can declare that certain types are atoms. This means that we can bind
objects of this type within a datatype, and the system will automatically prove
results about α-equivalence for the datatype. It is this mechanism which greatly
reduces the number of lemmata which the user needs to prove when reasoning
about variable binding.

We have formalised first-order intuitionistic logic as an object logic within
Isabelle. As such, we cannot reuse the reserved symbols and words of Isabelle. For
this reason, we have that object-level connectives are suffixed by �. For instance,
∧� represents conjunction within our object-logic, and ∧ is conjunction in the
meta-logic of Isabelle. We also cannot use ⊥ to represent falsehood within the
formalisation, so we have instead used ff.

Datatypes are introduced using the keyword datatype, followed by the name
of the datatype and its constructors. After each constructor, we can introduce a
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notational abbreviation for that constructor in brackets, and augment this ab-
breviation with additional information about its precendence and associativity.
Note that we have supressed this output in the paper. In the case where the
datatype uses atoms, we use the keyword nominal-datatype. In clauses where
binding actually occurs, the atom is enclosed within ��.

Functions are introduced introduced using the keyword consts, followed by
its name, type, and any notational abbreviation for it in brackets. Note that
Isabelle uses the syntax A :: τ for “A has type τ”. If the function is defined by
primitive recursion, then the keyword primrec is used, followed by the clauses
for each constructor of the datatype over which recursive calls are made. There
is an exception to this; when the the function is defined for a nominal datatype,
we use the keyword nominal-primrec, and we are given a number of proof
obligations to fulfill. Whilst these obligations are not trivial, the proofs of them
are not the aim of the paper, and so we have suppressed the output in the
document.

Rewriting forms the basis of the Isabelle system. Rules of inference and derived
lemmata may be used as rewrite rules. The syntax for such rules in Isabelle is
[A0;A1; . . . ;An] =⇒ C. Note here that Isabelle uses a semi-colon for the meta-
level conjunction of premisses. In a natural deduction style, this rule would be
represented as

A0 A1 . . . An

C

The proof is written using the Isar framework [8]. This allows us to write for-
malised proofs which are also human-readable. In particular, we can name state-
ments so that we can refer to them by name later in a proof. For instance,
“a : A ∈ Γ1 ∪ Γ2” means “the statement A ∈ Γ1 ∪ Γ2 has the name a.” Isar
proofs consist of a series of statements which are linked by various keywords,
such as from, have and by. Whatever follows “by” is an Isabelle proof-tactic.
Common ones are auto, simp and blast. As an example, the statement “from
a have b by auto” can be read as “from the statement a we can derive the
statement b using the auto tactic.”

2.2 The Formalisation

2.2.1 (Formulae). We build formulae as follows. An atomic formula is a pred-
icate applied to a list of terms. We formalise a logic without equality; terms are
either variables or zero-arity function symbols, which can be simulated by vari-
ables. The result would have been obscured beneath a mass of technical details
were we to consider a logic with equality, or terms constructed of non-nullary
function symbols. The interested reader is directed to [13]. First-order formulae
are built in the usual way; note that, since we are using intuitionistic logic, all
of the logical connectives must be given as primitives. In the quantifier cases,
the variable that is bound is more accurately called a representative of an α-
equivalence class. This is the power of the nominal approach; it allows us to
reason effectively about substitution and binding.
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nominal-datatype form =
Atom pred var list
| Conj form form (- ∧∗ - )
| Disj form form (- ∨∗ - )
| Impl form form (- ⊃∗ - )
| ALL �var�form (∀ ∗ [-].- )
| EX �var�form (∃ ∗ [-].- )
| ff

We have a notational shorthand for a quantification over a list of variables. These
are “∀s” and “∃s” for the universal and existential quantifiers respectively. They
are defined by primitive recursion on the list as follows

consts
ALL-list :: var list ⇒ form ⇒ form (∀ s [-].- )

primrec
∀ s [Nil ].A = A
∀ s [x#xs].A = ∀ ∗ [x ].(∀ s [xs].A)

consts
EX-list :: var list ⇒ form ⇒ form (∃ s [-].- )

primrec
∃ s [Nil ].A = A
∃ s [x#xs].A = ∃ ∗ [x ].(∃ s [xs].A)

2.2.2 (Free Variables and the Polarity of Predicates). We use an aspect
of the Nominal Isabelle package when we consider the individual constants of a
formula. We model the constants as the free variables of a formula.

nominal-primrec
frees (Atom n xs) = frees xs
frees (A ∧∗ B) = (frees A) ∪ (frees B)
frees (A ∨∗ B) = (frees A) ∪ (frees B)
frees (A ⊃∗ B) = (frees A) ∪ (frees B)
frees (∀ ∗ [x ].A) = (frees A) − {x}
frees (∃ ∗ [x ].A) = (frees A) − {x}
frees (ff ) = {}

The presence of implication as a primitive connective means that the positivity
and negativity of a predicate must be defined simultaneously. We use a pair of
lists, the first list containing the positive predicates, and the second containing
the negative predicates, as follows

nominal-primrec
pn (Atom n xs) = ([n],[])
pn (A ∧∗ B)= (let (pA,nA)=(pn A) in (let (pB ,nB)=(pn B) in (pA@pB ,nA@nB)))
pn (A ∨∗ B)=(let (pA,nA)=(pn A) in (let (pB ,nB) = (pn B) in (pA@pB ,nA@nB)))
pn (A ⊃∗ B)=(let (pA,nA)=(pn A) in (let (pB ,nB) = (pn B) in (nA@pB ,pA@nB)))
pn (∀ ∗ [x ].A) = pn A
pn (∃ ∗ [x ].A) = pn A
pn (ff ) = ([],[])
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We also need to define capture avoiding substitution. This is straightforward
when using Nominal Isabelle; the package allows us to say when a variable is fresh
for another, denoted x�y. Here, we are really talking about α-equivalence classes,
rather than individual variables. The notation [t, x]A means we substitute the
term t for the variable x in the formula A. Recall that our terms are simply
variables.

nominal-primrec
[z ,y ](Atom P xs) = Atom P ([z ,y ]xs)
[z ,y ](A ∧∗ B) = ([z ,y ]A) ∧∗ ([z ,y ]B)
[z ,y ](A ∨∗ B) = ([z ,y ]A) ∨∗ ([z ,y ]B)
[z ,y ](A ⊃∗ B) = ([z ,y ]A) ⊃∗ ([z ,y ]B)
x�(z ,y) =⇒ [z ,y ](∀ ∗ [x ].A) = ∀ ∗ [x ].([z ,y ]A)
x�(z ,y) =⇒ [z ,y ](∃ ∗ [x ].A) = ∃ ∗ [x ].([z ,y ]A)
[z ,y ]ff = ff

2.2.3 (Rules of the Calculus). Rather than build derivations as explicit ob-
jects, we rather give an inductive definition of what it means to be a provable
sequent, written Γ ⇒� C. A provable sequent is simply the root of a valid deriva-
tion; it is a straightforward induction to show that Γ ⇒� C and ∃d.d � Γ ⇒ C
are equivalent. Since we do not transform derivations (we are only interested in
the roots of various derivations supplied by the induction hypothesis) this dras-
tically simplifies the work. The rules we use are for a G3i calculus, for example
given in [13], except that we have altered them slightly because we use sets and
not multisets, and we have explicit weakening1 . Note that we do not have the
Cut rule; our provable sequents are by definition Cut-free.

inductive
provable :: form set ⇒ form ⇒ bool (- ⇒∗ - )

where
Ax : [[finite Γ ; C∈Γ ]] =⇒ Γ ⇒∗ C
| LBot : [[finite Γ ; ff ∈Γ ]] =⇒ Γ ⇒∗ C
| ConjR: [[Γ ⇒∗ A; Γ ⇒∗B ]] =⇒ Γ ⇒∗ A ∧∗ B
| DisjR1 : [[Γ ⇒∗A]] =⇒ Γ ⇒∗ A ∨∗ B
| DisjR2 : [[Γ ⇒∗B ]] =⇒ Γ ⇒∗ A ∨∗ B
| ImpR: [[{A}∪Γ ⇒∗ B ]] =⇒ Γ ⇒∗ A ⊃∗ B
| AllR: [[x /∈frees Γ ; Γ ⇒∗ A]] =⇒ Γ ⇒∗ ∀ ∗ [x ].A
| ExR: [[Γ ⇒∗ [y ,x ]A]] =⇒ Γ ⇒∗ ∃∗ [x ].A
| ConjL: [[(A ∧∗ B)∈Γ ; {A,B} ∪ Γ ⇒∗ C ]] =⇒ Γ ⇒∗ C
| DisjL: [[(A ∨∗ B)∈Γ ; {A}∪Γ ⇒∗ C ; {B}∪Γ ⇒∗ C ]] =⇒ Γ ⇒∗ C
| ImpL: [[(A ⊃∗ B)∈Γ ; Γ ⇒∗ A; {B}∪Γ ⇒∗ C ]] =⇒ Γ ⇒∗ C
| AllL: [[(∀ ∗ [x ].A)∈Γ ; {[y ,x ]A}∪Γ ⇒∗ C ]] =⇒ Γ ⇒∗ C
| ExL: [[(∃ ∗ [x ].A)∈Γ ; x /∈frees (Γ ,C ); {A}∪Γ ⇒∗ C ]] =⇒ Γ ⇒∗ C
| wk : [[Γ ⇒∗C ]] =⇒ {A}∪Γ ⇒∗ C

Certain cases in the proof call for some derived rules. We have generalised weak-
ening so that if Γ ⇒� C, and Γ is a subset of a finite set Γ ′, then Γ ′ ⇒� C. More
1 The use of sets for contexts also means that contraction is admissible, since Γ ∪A∪

A = Γ ∪ A.
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importantly, we have derived four rules which perform the appropriate quantifier
rule over all the variables in a given list. As an example, here is the derived rule
corresponding to R∀:

Γ ⇒� C
Γ ⇒� ∀s L.C R∀s

where frees L ∩ frees Γ = ∅.

3 The Proof

We have formalised the following theorem

Theorem 3.1 (Craig’s Interpolation Theorem). Suppose that Γ ⇒� C.
Then, for any splitting of the context Γ ≡ Γ1 ∪ Γ2, there exists an E such that

1. Γ1 ⇒� E and Γ2, E ⇒� C.
2. Any predicate that occurs positively in E occurs positively in Γ1 and C and

negatively in Γ2.
3. Any predicate that occurs negatively in E occurs negatively in Γ1 and C and

positively in Γ2.
4. frees(E) ⊆ frees(Γ1) ∩ frees(Γ2, C)

We use the notation Γ1;Γ2

E

=⇒ C to represent that E is a suitable interpolant
for a splitting Γ1 ∪ Γ2. We have formalised this as

theorem Craigs-Interpolation-Theorem:
assumes a: Γ 1∪Γ 2 ⇒∗ C
shows ∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc

where the notation “Γ1, Γ2, C � E pnc” is an abbreviation for E satisfying the
conditions 2-4 with respect to Γ1, Γ2 and C. Normally, we would prove the
theorem by induction on the height of the derivation of Γ ⇒ C, and then by
case analysis on the last rule used in the derivation. This approach is possible
in Isabelle, see [10] for instance. Here we prove the theorem by induction on
the “provable sequent” definition. This means we show the theorem is valid
for the conclusion of each rule given that it is valid for the premisses. This
induction scheme is derived and proved automatically by Isabelle when we write
out inductive definitions.

Where a left rule was used to derive Γ1 ∪ Γ2 ⇒� C, there are two subcases:
either the principal formula is in the left part of the split context, or it is in the
right part. In other words, it is in Γ1 or Γ2. When we refer to “the left case” and
“the right case”, we really mean that “the principal formula is in the left part of
the split context...” etc. Since we have a single succedent calculus, we have no
such splitting when using right rules. This leads to a total of 22 subcases: 4 base
cases, 10 cases from left rules, 5 cases from right rules, and 3 weakening cases.

In what follows, the names of the subsections refer to the rule(s) used in
deriving the provable sequent. The use of variable binding is only evident in the
first-order cases, therefore we give only sketches of the propositional cases, where
there is no binding. They are still fully formalised, but the output is suppressed.
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3.1 Axioms and L⊥

In the case where the derivation of Γ1, Γ2 ⇒� C is an axiom, there are two cases.
The left has C ∈ Γ1 and the right has C ∈ Γ2. In the former, we need to find a
formula E such that

Γ1 ⇒� E and E,Γ2 ⇒� C

A suitable candidate is E ≡ C, which would make both provable sequents in-
stances of Ax. We must also check that Γ, Γ ′, C � C pnc, which is trivially true.

For this case we can conclude Γ1;Γ2

C

=⇒ C.
In the other case, we require an E so that

Γ1 ⇒� E and E,Γ2 ⇒� C

which only hold for general Γ1 if we have E ≡ ⊥⊃⊥; in other words, �. Since
⊥ has neither free variables nor predicate symbols, the condition Γ1, Γ2, C �
⊥⊃⊥ pnc is trivially true for any Γ1 and Γ2. Therefore, for this case we have

Γ1;Γ2

⊥⊃⊥
=⇒ C.

Likewise, the provable sequents we require in the case where the rule used is
L⊥ are straightforward. We have two subcases, where ⊥ is either in Γ1 or Γ2.
In the former, we have that the interpolant is ⊥, and in the latter we have the
interpolant is ⊥⊃⊥:

case (LBot Γ C )
then have a1 : finite Γ 1 ∧ finite Γ 2

and a2 : ff ∈ Γ 1∪Γ 2 by simp-all
have ff ∈ Γ 1 ∨ ff ∈ Γ 2 using a2 by blast
moreover
{assume ff ∈ Γ 1

with a1 have ∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc by auto
}
moreover
{assume b2 : ff ∈ Γ 2

with a1 have Γ 1 ⇒∗ ff ⊃∗ ff
and {ff ⊃∗ ff }∪Γ 2 ⇒∗ C
and Γ 1,Γ 2,C � (ff ⊃∗ ff ) pnc

by (auto)
then have ∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc by blast

}
ultimately show ∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc by blast

3.2 R⊃ and L⊃

For the right rule, there is only one possible way to split the antecedent, since
there is no distinguished formula in it. We split the premiss on the right, and
suppose the interpolant of the premiss is E. We therefore have the two sequents



Mechanising a Proof of Craig’s Interpolation Theorem 45

Γ1 ⇒� E and Γ2, A,E ⇒� B. Leaving the first alone, we have the simple deduc-
tion for the second

Γ2, A,E ⇒� B

Γ2, E ⇒� A⊃B
R⊃

which gives us the interpolant for the whole as E:

Γ1;A,Γ2

E

=⇒ B

Γ1;Γ2

E

=⇒ A⊃B

There are two subcases for L⊃. The left subcase has A⊃B ∈ Γ1 and is the most
unusual of the propositional cases. Since the statement of the theorem says “for
any splitting of the context”, this means from our induction hypothesis we can
choose whichever splitting we want. In this case, we choose a different splitting
for the premisses than for the conclusion. Some brief experimentation reveals
that we should split the first premiss as Γ2 and Γ1 and the second as Γ1 ∪B and
Γ2. In the formalisation below, we have instantiated the induction hypotheses
to reflect this. This gives us four sequents: Γ2 ⇒� E1 and Γ1, E1 ⇒� A and
Γ1, B ⇒� E2 and Γ2, E2 ⇒� C.

Taking the first and fourth of these we can create the deduction

Γ2 ⇒� E1

Γ2, E1⊃E2 ⇒� E1
w

Γ2, E2 ⇒� C

Γ2, E1⊃E2 ⇒� C
L⊃

whereas using the second and third we can create the deduction

Γ1, E1 ⇒� A

Γ1, B ⇒� E2

B,Γ1, E1 ⇒� E2
w

Γ1, E1 ⇒� E2
L⊃

Γ1 ⇒� E1⊃E2
R⊃

This is precisely the form we need, with the interpolant being E1⊃E2. We can
therefore conclude that the following is a valid deduction for this case, recalling
that A⊃B ∈ Γ1

Γ2;Γ1

E1
=⇒ A Γ1, B;Γ2

E2
=⇒ C

Γ1;Γ2

E1⊃E2
=⇒ C

We can see this formalised in the following fragment, where the language condi-
tions are also verified

case (ImpL A B Γ C Γ 1 Γ 2)
then have (A⊃∗B) ∈ Γ 1∪Γ 2 by simp
then have (A⊃∗B) ∈ Γ 1 ∨ (A⊃∗B) ∈ Γ 2 by blast
moreover
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{ assume b1 : (A⊃∗B)∈Γ 1

have ihL: ∃E . Γ 2 ⇒∗ E ∧ ({E} ∪ Γ 1) ⇒∗ A ∧ Γ 2,Γ 1,A � E pnc by (simp)
have ihR: ∃E . ({B}∪Γ 1) ⇒∗ E ∧ ({E} ∪ Γ 2) ⇒∗ C ∧ ({B}∪Γ 1),Γ 2,C � E pnc

by (simp)
from ihL ihR obtain E1 E2
where c1 : Γ 2 ⇒∗ E1 and c2 : {E1}∪Γ 1 ⇒∗ A
and d1 : {B}∪Γ 1 ⇒∗ E2 and d2 : {E2}∪Γ 2 ⇒∗ C
and c3 : Γ 2,Γ 1,A � E1 pnc and d3 : ({B}∪Γ 1),Γ 2,C � E2 pnc by auto

from d1 have {B ,E1}∪Γ 1 ⇒∗ E2 using provable.wk by (blast)
then have {E1}∪Γ 1 ⇒∗ E2 using b1 c2 provable.ImpL by (auto)
then have Γ 1 ⇒∗ E1 ⊃∗ E2 using provable.ImpR by auto
moreover
from c1 d2 have {E1 ⊃∗ E2}∪ Γ 2 ⇒∗ E1

and {E1 ⊃∗ E2 ,E2}∪Γ 2 ⇒∗ C by (blast)+
then have {E1⊃∗E2}∪Γ 2 ⇒∗ C using provable.ImpL by (auto)
moreover
from c3 d3 have Γ 1,Γ 2,C � E1 ⊃∗ E2 pnc using b1 by (auto)
ultimately have ∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc by blast

}

In the right case (A ⊃ B ∈ Γ2), assuming via the induction hypothesis that
the first premiss has interpolant E1 and the second premiss interpolant E2,

we split both premisses on the right, so Γ1;Γ2

E1
=⇒ A and Γ1;B,Γ2

E2
=⇒ C. We

then obtain four sequents: Γ1 ⇒� E1 and Γ2, E1 ⇒� A and Γ1 ⇒� E2 and
Γ2, B,E2 ⇒� C. Naturally, we pair them up according to contexts. The first and
third premisses therefore give

Γ1 ⇒� E1 Γ1 ⇒� E2

Γ1 ⇒� E1 ∧E2
R∧

whereas the remaining two sequents give

Γ2, E1 ⇒� A

Γ2, E1, E2 ⇒� A
w

Γ2, B,E2 ⇒� C

Γ2, B,E1, E2 ⇒� C
w

Γ2, E1, E2 ⇒� C
L⊃

Γ2, E1 ∧ E2 ⇒� C
L∧

which gives us the required interpolant as E1 ∧ E2:

Γ1;Γ2

E1
=⇒ A Γ1;B,Γ2

E2
=⇒ C

Γ1;Γ2

E1∧E2
=⇒ C

3.3 R∧ and L∧

For R∧, we can only split the conclusion in one way, likewise we can only split
the premisses in one way. Therefore, assuming that the interpolant for the first
premiss is E1 and the interpolant for the second premiss is E2, we get four



Mechanising a Proof of Craig’s Interpolation Theorem 47

sequents: Γ1 ⇒� E1 and Γ2, E1 ⇒� A and Γ1 ⇒� E2 and Γ2, E2 ⇒� B. Pairing
them up by context, we get

Γ1 ⇒� E1 Γ1 ⇒� E2

Γ1 ⇒� E1 ∧E2
R∧

and
Γ2, E1 ⇒� A

Γ2, E1, E2 ⇒� A
w

Γ2, E2 ⇒� B

Γ2, E1, E2 ⇒� B
w

Γ2, E1, E2 ⇒� A ∧B
R∧

Γ2, E1 ∧ E2 ⇒� A ∧B
L∧

which means that E1 ∧ E2 is the interpolant:

Γ1;Γ2

E1
=⇒ A Γ1;Γ2

E2
=⇒ B

Γ1;Γ2

E1∧E2
=⇒ A ∧B

The two subcases for L∧ are simple. For the left case, assume that the interpolant
is E, and split A,B likewise on the left, we get the two sequents Γ1, A,B ⇒� E
and Γ2, E ⇒� C. We leave the second of these alone, and taking the first apply
L∧. We can then conclude that E is the interpolant:

Γ1, A,B;Γ2

E

=⇒ C

Γ1;Γ2

E

=⇒ C

The right case is symmetrical, therefore E, the interpolant supplied by the in-
duction hypothesis, is also the interpolant for the conclusion:

Γ1;A,B, Γ2

E

=⇒ C

Γ1;Γ2

E

=⇒ C

3.4 R∨ and L∨

We have two rules for R∨. However, the two cases are almost identical, so we
will only show one. We can only split the conclusion in one way, and likewise
the premiss. Suppose the interpolant from the induction hypothesis is E, and
assume further that we used the rule R∨1. Then we have the sequents Γ1 ⇒� E
and Γ2, E ⇒� A. Using the rule R∨1 on the second, we obtain Γ2, E ⇒� A ∨B.
Therefore the interpolant in this case is E, and is given by the deduction

Γ1;Γ2

E

=⇒ A

Γ1;Γ2

E

=⇒ A ∨B

We get the same result if R∨2 was used in both situations.
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Now we consider L∨. In the left case assume that the interpolant for the first
premiss is E1, and the interpolant for the second premiss is E2. Now, split both
of the premisses on the left, to obtain the two sequents from the left premiss
Γ1, A ⇒� E1 and Γ2, E1 ⇒� C, and the two sequents from the right premiss
Γ1, B ⇒� E2 and Γ2, E2 ⇒� C. Again, pairing up by contexts, we have

Γ2, E1 ⇒� C Γ2, E2 ⇒� C

Γ2, E1 ∨ E2 ⇒� C
L∨

and

Γ1, A ⇒� E1

Γ1, A ⇒� E1 ∨ E2
R∨

Γ1, B ⇒� E2

Γ1, B ⇒� E1 ∨E2
R∨

Γ1 ⇒� E1 ∨E2
L∨

This means the required interpolant is E1 ∨E2, giving a derivation:

Γ1, A;Γ2

E1
=⇒ C Γ1, B;Γ2

E2
=⇒ C

Γ1;Γ2

E1∨E2
=⇒ C

For the right case, we again split both premisses on the right, so the following
deductions suffice, assuming that E1 and E2 are the interpolants,

Γ1 ⇒� E1 Γ1 ⇒� E2

Γ1 ⇒� E1 ∧E2
R∧

and

Γ2, A,E1 ⇒� C

Γ2, A,E1, E2 ⇒� C
w

Γ2, B,E2 ⇒� C

Γ2, B,E1, E2 ⇒� C
w

Γ2, E1, E2 ⇒� C
L∨

Γ2, E1 ∧ E2 ⇒� E
L∧

meaning that E1 ∧ E2 is the interpolant:

Γ1;A,Γ2

E1
=⇒ C Γ1;B,Γ2

E2
=⇒ C

Γ1;Γ2

E1∧E2
=⇒ C

3.5 R∃

A first attempt at finding an interpolant for this case would yield using the
interpolant supplied by the induction hypothesis. Whilst it would give us the
two provable sequents that we need for the theorem, this interpolant fails the
language condition for the conclusion. Suppose the induction hypothesis gives
us the two provable sequents Γ1 ⇒� E and E,Γ2 ⇒� [y, x]A. The induction
hypothesis will also gives us that the free variables of E are contained in the free
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variables of Γ1 and the free variables of Γ2, [y, x]A. Suppose that there were some
free variables in E that were in the free variables of t, but not in the free variables
of Γ2 or A. These free variables will no longer appear in the conclusion, and so
the language condition would fail when using E. This is the crucial difference
between our definitions and formalisation and those in [10]: E would be a valid
interpolant in that formalisation. We need to remove these free variables, which
we do by quantification. In this case, we use existential quantification.

Let the set of such variables be L. Since they are finite, we can form a list
from this set, which we will also call L, in a slight abuse of notation. We know
that all the variables in this list will not appear in Γ1, and hence every variable
in L is not in the free variables of Γ1, which means we can apply R∃ for every
variable in the list:

Γ1 ⇒� E

Γ1 ⇒� ∃s L.E R∃s

On the second sequent, we can apply the derived rule L∃s, after applying R∃:

Γ2, E ⇒� [y, x]A
Γ2, E ⇒� ∃xA R∃

Γ2, ∃s L.E ⇒� ∃xA L∃s

We can see this argument formalised as follows

case (ExR Γ y x A)
then have a1 : Γ 1∪Γ 2 ⇒∗ [y ,x ]A

and ih:∃E . Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ [y ,x ]A ∧ Γ 1,Γ 2,[y ,x ]A � E pnc by simp-all
from ih obtain E where b1 : Γ 1 ⇒∗ E

and b2 : {E}∪Γ 2 ⇒∗ [y ,x ]A
and b3 : Γ 1,Γ 2,[y ,x ]A � E pnc by blast

have finite ((frees E ) − frees (Γ 2,∃ ∗ [x ].A)) by (simp)
then obtain L where eq : set L = (frees E ) − (frees (Γ 2,∃ ∗ [x ].A))
using exists-list-for-finite-set by auto

from b1 have Γ 1 ⇒∗ ∃ s [L].E by (rule exists-right-intros)
moreover
from b2 have {E} ∪ Γ 2 ⇒∗ ∃∗ [x ].A using provable.ExR by auto
then have {∃ s [L].E} ∪ Γ 2 ⇒∗ ∃∗ [x ].A using eq by (rule-tac exists-left-intros)
moreover
from b3 have Γ 1,Γ 2,∃ ∗ [x ].A � ∃ s [L].E pnc using eq by (auto)
ultimately show ∃E . Γ 1 ⇒∗ E ∧ {E} ∪ Γ 2 ⇒∗ ∃∗ [x ].A ∧ Γ 1,Γ 2,∃ ∗ [x ].A � E
pnc by blast

3.6 L∀

We have the same problem in this case as in the case for R∃. In the left subcase,
we again define L as the list of variables which appear in t and nowhere else in the
provable sequents supplied by the induction hypothesis, namely Γ1, [y, x]A ⇒� E
and Γ2, E ⇒� C, with ∀xA ∈ Γ1. Using the former, we first apply L∀, and then,
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since we know that the variables in L appear nowhere free in Γ1 by construction,
then we can apply one instance of R∀ for every variable in L:

Γ1, [y, x]A ⇒� E

Γ1 ⇒� E
L∀

Γ1 ⇒� ∀s L.E R∀s

Using the other sequent, we can simply apply our derived rule L∀s, thus ∀s L.E
is the required interpolant.

In the right case, we again define L as above. The interesting sequent is now
the second obtained from the induction hypothesis, Γ2, [y, x]A,E ⇒� C. We first
apply L∀, and then we know that the variables in L do not appear free in the
new sequent, therefore we can apply L∃ for each of the variables in L

Γ2, [y, x]A,E ⇒� C

Γ2, E ⇒� C
L∀

Γ2, ∃s L.E ⇒� C
L∃s

The proof for the left case is formalised as follows

case (AllL x A Γ y C Γ 1 Γ 2)
then have ∀ ∗ [x ].A ∈ (Γ 1 ∪ Γ 2) by simp
then have ∀ ∗ [x ].A ∈ Γ 1 ∨ ∀ ∗ [x ].A ∈ Γ 2 by simp
{ assume b1 : ∀ ∗ [x ].A ∈ Γ 1

have ih: ∃ E . {[y ,x ]A} ∪ Γ 1 ⇒∗ E ∧ {E}∪Γ 2 ⇒∗ C ∧ {[y ,x ]A}∪Γ 1,Γ 2,C � E pnc
by auto
from ih obtain E where

c1 : {[y ,x ]A}∪Γ 1 ⇒∗ E
and c2 : {E}∪Γ 2 ⇒∗ C
and c3 : {[y ,x ]A}∪Γ 1,Γ 2,C � E pnc by auto

have finite (frees E − frees Γ 1) by (simp)
then obtain L where

eq : set L = frees E − frees Γ 1 using exists-list-for-finite-set by auto
then have set L ∩ frees Γ 1 = {} by auto
from c1 have Γ 1 ⇒∗ E using provable.AllL 〈∀ ∗ [x ].A ∈ Γ 1〉 by auto
then have Γ 1 ⇒∗ ∀ s [L].E using 〈set L ∩ frees Γ 1 = {}〉 by (rule forall-right-intros)
moreover
from c2 have {∀ s [L].E} ∪ Γ 2 ⇒∗ C by (rule forall-left-intros)
moreover
from c3 have Γ 1,Γ 2,C � ∀ s [L].E pnc using eq b1
by (auto)

ultimately have ∃ E . Γ 1 ⇒∗ E ∧ {E} ∪ Γ 2 ⇒∗ C ∧ Γ 1,Γ 2,C � E pnc by blast
}

3.7 R∀ and L∃

In the case of R∀, we can only split the premiss and conclusion in one way. Thus,
we have the provable sequents, supplied by the induction hypothesis, Γ1 ⇒� E
and Γ2, E ⇒� A, and further that x /∈ frees(Γ1, Γ2, E). This means that we can
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simply apply R∀ to the second of these two provable sequents, and then have
the required sequents. Furthermore, since we know that x /∈ frees(E), we have
that the free variables of E are contained in the free variables of Γ2, ∀xA.

The two cases for L∃ are symmetrical to that of R∀; the induction hypothesis
supplies that the quantified variable will be not be in the free variables of the
interpolant, and so we can just apply the rule L∃ to the appropriate sequent,
leaving the other alone.

The weakening cases are uninteresting and so are not shown. All of the cases
have now been shown, and the proof of the theorem is complete.

4 Mechanisation Statistics and Other Comments

The current work stands at 823 lines 2, including white space and comments. The
first author adapted the proof in [10] for intuitionistic logic, and that comprised
1002 lines; moreover the theorem in that work was not as powerful as the one
in the current work. We also use the more verbose Isar language, and not a
tactic script, which necessarily adds to the length of our proof. The main insight
that made this proof much shorter was the removal of explicitly mentioning
derivations, in favour of the notion of a provable sequent. As an example, the
first author attempted a proof of the theorem in the current work using explicit
derivations, and the work was around 1200 lines. The use of Nominal Isabelle
also greatly reduced the need for proving complicated lemmata about capture-
avoiding substitution, which was required in this proof.

Weakening (wk from the definition in §2.2.3) is logically admissible because we
have used a generalised axiom, Ax. We could prove wk as a lemma as part of the
formalisation. We are interested in formalising a proof of Craig’s Interpolation
Theorem, rather than proving structural rules admissible for intutionistic first-
order logic. Therefore, we have kept weakening as an explicit rule.

It would be a relatively straightforward to adapt this development and proof
for classical logic without equality. We would need more subcases for each rule,
since a sequent calculus for classical logic permits sets, or multisets, of formulae
for succedents (see for instance [13]). However, we could also interdefine the
connectives, meaning one needs to consider fewer rules. It would be possible,
but by no means straightfoward, to extend the result to a logic with equality
and non-nullary function symbols.

Our definitions and proof technique can also be used to formalise other meta-
mathematical results from proof theory. Furthermore, the Isar language allows
us to do this in a more human-readable way than other proof theory formalisa-
tions, such as [9].

Interpolation results form an important part of computer science. They can
be applied to type-checking in C programs, as shown in [4], and also to model
checking, as in [6], amongst other things.

2 Available as part of the Nominal Isabelle distribution at “http://isabelle.in.tum.de/
nominal/”

http://isabelle.in.tum.de/nominal/
http://isabelle.in.tum.de/nominal/
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We believe that the current work is a clean and effective proof of a non-trivial
result for first-order intuitionistic logic. It also shows how similar results for first-
order logic could be mechanically verified, which in the abstract was stated as
an aim of the paper. We have further shown that Nominal Isabelle is an effective
and immensely useful tool when one deals with bound variables and substitution.

Acknowledgements. We would like to thank Roy Dyckhoff and the anonymous
referees for their many helpful comments on an earlier version of this paper.
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Abstract. McDermott [12,13] introduced the concept “Artificial Intelli-
gence meets Natural Stupidity”. In this paper, we explore how Artificial
Intelligence and Symbolic Computation can meet Natural Typography,
and how the conventions for expressing mathematics that humans un-
derstand can cause us difficulties when designing mechanised systems.

1 Introduction

Notation exists to be abused1

the abuses of language without which any mathematical text threatens
to become pedantic and even unreadable. [3, pp. viii–ix]

but some abuse is more harmful than others, and may cause real problems in a
mechanised context, or even to unwary human beings.

“Semantics”, in a general context, has been defined as [14, ‘semantic’]

Also, (the study or analysis of) the relationships between linguistic sym-
bols and their meanings.

In the same vein, “Notation” has been defined as [14, ‘notation’ 6] (which goes
on to give special meanings in mathematics, music, choreography and “in other
disciplines, as chemistry, logic, chess, linguistics, etc.”)

The process or method of representing numbers, quantities, relations,
etc., by a set or system of signs or symbols, for the purpose of record or
analysis; (hence) any such system of signs or symbols.

Another way of looking at this paper is to ask how the semantics relate to the
notation.

2 The Trivial Differences

While occasionally embarrassing, these are cases due to a difference in conven-
tions and, at least in theory, could be avoided by a “sufficiently clever” context
mechanism. Many of them are discussed in more detail in [8].
1 On 10.6.2007, a quick use of Google demonstrated 783 uses of “abus de notation”,

roughly 10% of which were in english-language papers.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 53–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Intervals. There are two well-known notations: the “Anglo-saxon” way (0, 1]
and the “French” way ]0, 1]. The semantics are clear, though: in OpenMath
they would be

<OMA>
<OMS name="interval_oc" cd="interval1’’/>
<OMI>0</OMI>
<OMI>1</OMI>

</OMA>

Inverse functions. If f is a many–one function C → C, its inverse2, which
will be denoted g, has two possible definitions: the one–one discontinuous
one, and the one–many continuous one. It is usual in Anglo-saxon cultures
to denote a3 one–one function with a lower-case initial letter, as g, and
the one–many one with an upper-case initial letter, as G. Regrettably, in
France the convention is apparently reversed4. Here the situation is worse
than in the previous example: the notations are not merely different but
contradictory, and any attempt at understanding them will need to know the
(linguistic, in this case) context. Attempting to understand precisely which
one-to-one function is intended seems futile, and we also note (with regret)
that there is no standard notation for distinguishing between functions which
differ only in their branch cuts: the author and his colleagues have generally
resorted to ad hoc subscripts or notation such as arctan︸ ︷︷ ︸

Derive

. In terms of [13,

p. 150], attempting to understand this mathematically is an example of the
“unnatural language” fallacy: there is no internal way of deducing which
function is meant (and indeed in some circumstances, some choices of the
one-to-one function may not matter).

Metric tensor. It is possible to define the metric tensor for flat Minkowski

space as

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ or its negative

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠. Furthermore, one can

2 We use a different letter, to avoid the usual problem of iterated functions versus
inverse functions.

3 It would be tempting, but wrong, to write “the one-one function”. Since it is ‘obvious’
that the correct inverse of x �→ x2 as R → R is the positive square root, we may
be tempted to think there is an obvious inverse in other circumstances. While it is
normal these days to define log to have imaginary part in (−π, π], the author was
initially taught to have the imaginary part in [0, 2π). [1] changed the branch cut of
arctan between printings, and systems have been known to be internally inconsistent
[5].

4 Various mathematical textbooks seem to indicate this. However [2, Arcsin] gives
capitals to Arcsin, Arccos and Arctan, but not to the others. There is clearly an
inconsistency here, as [2, Arctan] describes arctan as the inverse function, and makes
no mention of Arctan. The other inverse functions seem to have no entries in [2].
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decide that the temporal variable is the last, rather than the first, co-

ordinate, giving

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ or its negative. Again, a human being generally

has little difficulty with this, but it is hard to explain exactly why.
i or j This divergence of notation between electrical engineers and the rest of

the world has been discussed before [7]: we merely note that we need a
‘discipline’ context as well as a ‘linguistic’ context to resolve ambiguities.

0 ∈ N? This is discussed in [8]: we say here only that knowledge of linguistic
context may help decide this question, but is far from certain.

3 Deep Semantics

Attempts to formalise mathematics often say “this has the usual mathematical
meaning”, or words to that effect. Let us look at union in this respect. There
are three possible mathematical expressions, for which we give the MathML(-
Content) and the OpenMath.
1. n-ary infix operator.

Mathematics a1 ∪ a2 ∪ a3

LATEX a_1 \cup a_2 \cup a_3
OpenMath <OMS name="union" cd="set1"/>
MathML <apply> <union/> <i>a1</i>...</apply>

2. Acting on a set of arguments5.
Mathematics

⋃
{a1, a2, a3}

LATEX \bigcup \{a_1,a_2,a_3\}
OpenMath <OMS name="big union" cd="set3"/>
or <OMS name="apply to list" cd="fns2"/>
MathML <apply> <union/> <bvar>i</bvar> <domain ...> <set> <i>

a1 </i>...</set>
3. Iterating over a sequence.

Mathematics
⋃3

i=1 ai

LATEX \bigcup_{i=1}^3 a_i
OpenMath big union on make list
MathML <apply> <union/> <bvar>i</bvar> <lowlimit>...

It could be argued that the OpenMath is trying to mimic the LATEX too closely,
and that MathML has the right idea, that there is only one concept of ‘union’.
This seems to the author as being analogous to the “wishful mnemonics” issue
of [13]. ∪ and

⋃
do not mean the same thing: we should note that ∪{{a}, {b}} =

{{a}, {b}}, while
⋃
{{a}, {b}} = {a, b}.

In the analogy of [7],
⋃

is a different part of the conjugation of ∪, and
mathematics has more strikingly irregular verbs, so that Σ plays the same rôle
to + as

⋃
does to ∪, and indeed as

∏
does to juxtaposition, or MathML’s

&InvisibleTimes;.
5 And therefore clearly associative and commutative. Not quite so obviously however,

it should also be idempotent, since {a, a} = {a}. This may explain why
⋃
{a1, a2, a3}

looks natural, but Σ{a1, a2, a3} does not.
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4 Plus or Minus

This is familiar to us all from the solution to the quadratic:

−b±
√
b2 − 4ac

2a
, (1)

which can be seen as shorthand for
{
−b−

√
b2 − 4ac

2a
,
−b+

√
b2 − 4ac

2a

}

. (2)

We are prepared to accept it in formulae such as [1, Equation 4.3.38]

tan z1 ± tan z2 =
sin(z1 ± z2)
cos z1 cos z2

, (3)

which we read as shorthand for two equations:

tan z1 − tan z2 =
sin(z1 − z2)
cos z1 cos z2

tan z1 + tan z2 =
sin(z1 + z2)
cos z1 cos z2

,

and the same is true of

Arctan(z1) ± Arctan(z2) = Arctan
(
z1 ± z2
1 ∓ z1z2

)

, (4)

as meaning

Arctan(z1) + Arctan(z2) = Arctan
(
z1 + z2
1 − z1z2

)

(5)

and

Arctan(z1) − Arctan(z2) = Arctan
(
z1 − z2
1 + z1z2

)

. (6)

But what of [1, Equations 4.6.26,27]

Arcsinh z1 ± Arcsinh z2 = Arcsinh
(

z1

√
1 − z2

2 ± z2

√
1 − z2

1

)

(7)

Arccosh z1 ± Arccosh z2 = Arccosh
(

z1z2 ±
√

(z2
1 − 1)(z2

2 − 1)
)

? (8)

As explained in [6], these have no such meaning, but are rather glosses on more
complicated inclusions of the form A = B ∪C or A ⊂ B ∪C where A, B and C
are multivalued expressions. In particular the ± on the left-hand side of (8) is
redundant, since Arccosh(z) = −Arccosh(z). (7) really means

Arcsinh z1 + Arcsinh z2 ⊂ Arcsinh
(

z1

√
1 − z2

2 + z2

√
1 − z2

1

)

∪

Arcsinh
(

z1

√
1 − z2

2 − z2

√
1 − z2

1

)

,
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and the fact that the same equation holds for Arcsinh z1 − Arcsinh z2.
We are forced to conclude that ± has no definite meaning,

5 Pq

Chapter 16 of [1] is devoted to the elliptic functions such as sn, an area which
has probably engendered more notational disputes and confusion as any other.
[1, equation 16.25.1] defines

Pq(u) =
∫ u

0

pq2(t)dt (9)

(where pq2(t) means pq(t)2, and most certainly not p·q2 — see the next section).
This is, of course, in defiance of (either of) the conventions of Arctan, but we
are dealing with elliptic functions, not elementary ones. However, the joker here
is that equation (9) applies whenever p and q are any of the letters s,c,n,d (note
the order, which is traditional in the subject, and the implied assumption that
p �= q). Hence this equation is in fact shorthand for twelve equations of the form

Sn(u) =
∫ u

0

sn2(t)dt, (10)

except that, when q is s, equation (9) should be read as

Pq(u) =
∫ u

0

(

pq2(t) − 1
t2

)

dt− 1
u
, (11)

where the changes are to remove the removable singularity at t = 0.
A similar equation, but this time with explanation, can be seen as

pq(u) =
pr(u)
qr(u)

([1,Equation 16.3.4])

(except that here there is no distinctness assumption, but pp is to be taken as
the constant function 1).

To quote [1, coda to section 16.27]

There is a bewildering variety of notations . . . so that in consulting books
caution should be used.

As an example of this, or showing that not all apparent misprints are such, we
can see [1, Equation 17.2.8–10]

E(u|m) =
∫ x

0

(1 − t2)−1/2(1 −mt2)1/2dt =
∫ u

0

dn2(w)dw. (12)

Does this tell us what Dn(u) is — indeed [1, Equation 16.26.3] has Dn(u) = E(u).
However, the ‘x’ in equation (12) is not a misprint, and in fact [1, Equation 17.2.2]
x = snu. So in Maple-speak
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EllipticE(u,m)=int(sqrt((1-m*t^2)/(1-t^2)),t=0..JacobiSN(u,m))
=int(JacobiDN(t,m)^2,t=0..u).

Quite how this is to be reconciled with [10, Equation 5.138(3)] —
∫

dn2(u) = E(amu, k)

— is not clear (dn(u) is really dn(u,m) of course, and m = k2 here, and indeed
throughout the theory, to the point where it appears to be improper to use any
other letter).

6 The Meaning of Juxtaposition

Juxtaposition is a well-known trick notation in mathematics. It is normally be-
lieved to have two meanings (the first two listed below), but in fact has more.
MathML-Presentation writes [4, 3.2.5.5] as follows.

Certain operators that are “invisible” in traditional mathematical no-
tation should be represented using specific entity references within mo
elements, rather than simply by nothing.

Multiplication. A typical example would be ab, which could otherwise be ren-
dered as a · b. This is correctly encoded as &InvisibleTimes; in MathML.
We should note that this only applies to italic letters, juxtaposed roman
letters are deemed to constitute a single lexeme, as in sin or pq (see (9)).

(Function) Application. A typical example would be sinx, which could oth-
erwise be rendered as sin(x), though even in this case there is ambiguity,
since sin(x + y) is different from 2(x+ y), and f(x+ y) is harder to under-
stand. This is correctly encoded as &ApplyFunction; in MathML.

Concatenation. A typical example would bem12, which could otherwise be ren-
dered as m1,2. This is correctly encoded as &InvisibleComma; in MathML.
Even without this, MathML is less ambiguous than ordinary notation: m12

might equally be the twelth item of a vector, but MathML would distinguish
between

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mn> 2 </mn>

</mrow>
</msub>

and

<msub>
<mi> m </mi>
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<mrow>
<mn> 12 </mn>

</mrow>
</msub>

(of course, the <mrow> is redundant in the latter case.
Addition. A typical example would be 4 1

2 , which could otherwise be rendered
as 4 + 1

2 . This is correctly encoded as &InvisiblePlus; in MathML-36.
Summation. A typical example would be aibi, which could otherwise be ren-

dered as
∑

i a
ibi. This is the summation convention, also called Einstein

notation after its introducer [9, p. 781]. It has no MathML counterpart, nor
would it be easy to see how to add one. This is, of course, not so much
juxtaposition in the strict sense as ‘proximity’.

7 Letters and Fonts

We have already seen that font can make a difference in what a compiler-writer
would think of as the lexing of mathematics: thus ‘pq’ is a single token, whereas
‘pq’ is “p juxtaposed with q”, which might become p &InvisibleTimes; q.
Such lexing is already present in MathML(-Presentation) and (properly written)
LATEX: it only becomes an issue in areas such as the OCR of existing mathemat-
ics.

It is common to use fonts for semantic purposes, e.g. x might be the length
of the vector x etc. Such conventions tend to be explained (in natural language)
at the start of papers, but present a real problem to a parser, which would
essentially have to convert x into |x| for internal purposes. Some authors also
use change of case this way, as with a = det(A) etc. Fortunately for us, few
authors go as far as [15]:

Throughout this course, upper-case roman letters denote fields, and
lower-case roman letters elements of the corresponding fields. Upper case
fraktur letters denote the corresponding Galois groups, and lower case
fraktur letters denote elements of the corresponding Galois groups.

8 Conclusion

We conclude that trying to make formal sense of natural typography can be
helped by knowledge of both linguistic and discipline context, but that in many
cases there is no obvious road to understanding questions such as whether 0 ∈ N
(the author probably knows), which branch cuts are intended (one hopes the
author knows), or what is intended by ±.

In the case of section 5 we clearly have a case of meta-notation. It is the
author’s contention that, in many cases (possibly even all), ± is really also

6 Apparently added after several comments by this author.
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metanotation, meaning “as appropriate with different choices of the signs”. If
the reader has a better theory, let it be explained!

Less this seems too pessimistic, we should state that, within a given corpus,
it seems to be possible to do far better: authors generally do not change their
minds wilfully during a paper ([11] is an unfortunate counter-example, dipping
in and out of the summation convention several times in the course of one paper).

Acknowledgements. The author is grateful to many colleagues for their com-
ments and suggestions. One of the referees pointed out the metric tensor, and
the referees made many useful suggestions.
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Abstract. We describe the use of symbolic algebraic computation allied
with AI search techniques, applied to the problem of the identification,
enumeration and storage of all monoids of order 9 or less. Our approach
is novel, using computer algebra to break symmetry and constraint sat-
isfaction search to find candidate solutions. We present new results in
algebraic combinatorics: up to isomorphism and anti-isomorphism, there
are 858,977 monoids of order 8 and 1,844,075,697 monoids of order 9.

1 Introduction

The aim of this paper is to find all solutions to a class of problems in algebraic
combinatorics. This is a well-known research area: it is natural when discussing,
for example, various types of latin squares to try to resolve the question of how
many of each type exist. As well as obtaining the correct answer in terms of
number of solutions, we aim to store each solution so that they can be analysed
in terms of their structure by algebraists. This second aim means that we are
not searching for a purely constructive solution to the enumeration problem; we
generate and store a canonical example from each equivalence class of solutions.

The On-Line Encyclopedia of Integer Sequences [1] contains numerous exam-
ples of known initial sequences of enumerations of algebraic and combinatoric
structures. The sequence that this paper extends is A058133: the numbers of
monoids of order n, considered to be equivalent when they are isomorphic or
anti-isomorphic. Currently values for n ≤ 7 have been published.

Definition 1. A monoid is an algebraic structure equipped with a closed and
associative binary operator, and an identity element. More formally, a monoid
is a tuple 〈S, ∗, e〉 where S is a set; ∗ : S × S → S satisfies x ∗ (y ∗ z) =
(x ∗ y) ∗ z ∀x, y, z ∈ S; and e ∈ S satisfies x ∗ e = x = e ∗ x ∀x ∈ S.

If 〈S, ∗, e〉 is a monoid, and |S| = n, then 〈S, ∗, e〉 has order n.

Monoids can be thought of as semigroups having a multiplicative identity. Groups
are special cases of monoids; each group element has a multiplicative inverse.
Throughout this paper we consider only finite monoids, where S is a finite set.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 61–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Definition 2. Let 〈M1, ∗1, e1〉 and 〈M2, ∗2, e2〉 be two monoids of the same or-
der. A bijection g : M1 → M2 is an isomorphism if it respects the multiplication
– i. e. (a ∗1 b)g = ag ∗2 b

g – and an anti-isomorphism if it inverts the multi-
plication – i. e. (a ∗1 b)g = bg ∗2 a

g. If such a bijection exists the monoids are
isomorphic, respectively anti-isomorphic, and are equivalent if either.

In this paper we are interested in monoids up to equivalence. Thus we can
choose the underlying set to be {1, 2, . . . , n}. We then represent monoids by
their multiplication tables, with rows and columns indexed from 1 up to n.

Table 1. Example multiplication table, and its image under (1, 4)

* 1 2 3 4

1 1 2 3 4
2 2 1 3 4
3 3 3 3 3
4 4 4 3 3

* 1 2 3 4

1 3 1 3 1
2 1 4 3 2
3 3 3 3 3
4 1 2 3 4

Isomorphism of monoids induces an action on tables. Given a permutation g
of the members of S, we modify the table by permuting each row according
to g, then each column, and finally permuting the values. An anti-isomorphism
is the result of an isomorphism action followed by transposing the table. The
effect of applying permutation (1, 4) is shown in Table 1. Since permutations of a
finite set, permutations of rows and columns of a multiplication table, and table
transposition are all invertible, (anti-)isomorphism is a reflexive, symmetric and
transitive relation on monoids, and is hence an equivalence relation.

In common with many algebraic enumeration problems, there is a combinato-
rial explosion as n increases. There are n choices for each of the n2 positions in
a multiplication table. For n = 9 and 10, the number of choices is approximately
1.5 × 1017 and 1020 respectively. This increase in problem size effectively rules
out the obvious exhaustive search approach of generating each table, checking
if the monoid axioms hold, then checking whether or not an (anti-)isomorphic
version of the table has already been found.

Our approach is to develop algebraic results that allow us to devise algorithms
for search-space reduction. We implement these algorithms in symbolic compu-
tational algebra; formulate the remaining problems in terms of constraints on
solution tables; use advanced AI backtrack search techniques to find solutions;
then (in some cases) use computational algebra to decide which canonical rep-
resentive of (anti-)isomorphic equivalence class to accept as our unique solution.

In the remainder of this introduction we describe the computational algebra
tools and techniques used, the basic principles of Constraint Satisfaction and the
solver we use, and formalise notions regarding symmetry-breaking in Constraint
Satisfaction Problems. In Section 2 we give a detailed derivation of the algebraic
and AI search methods used, together with proofs of soundness and – where
appropriate – completeness of the algorithms used. We summarise our results in
Section 3, and provide concluding remarks and an indication of future avenues
of research in Section 4.
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1.1 GAP and Computational Algebra

Since our problem domain involves binary operators on finite sets, permuta-
tions, identity elements, action homomorphisms and symmetry groups, we use
specialist software that provides robust, efficient and extensive implementations
of algorithms in abstract algebra. GAP [2] (Groups, Algorithms and Program-
ming) is a system for computational discrete algebra with particular emphasis
on, but not restricted to, computational group theory. GAP provides a large
library of functions which implement algebraic algorithms.

For our purposes, any advanced computational algebra system could be used.
However, we rely heavily on efficient GAP code [3] that tests canonicity of an
image of a set of points under the action of a permutation group. This allows
isomorphic results to be eliminated efficiently.

1.2 Minion and Constraint Satisfaction

Definition 3. A Constraint Satisfaction Problem (CSP) L is a set of con-
straints C acting on a finite set of variables Δ := {A1, A2, . . . , An}, each of
which has a finite domain of possible values Di := D(Ai) ⊆ Λ. A solution to L
is an instantiation of all of the variables in Δ such that no constraint in C is
violated.

The class of CSPs is a generalisation of propositional satisfiability (SAT), and
is therefore NP-complete. Solvers typically proceed by building a search tree,
in which the nodes are assignments of values to variables and the edges lead to
assignment choices for the next variable. If at any node a constraint is violated,
then search backtracks. If a leaf is reached, then no constraints are violated, and
the assignments provide a solution. Clearly these search trees are exponential,
and for pathological cases each node may have to constructed. Heuristics exist
for choices of variable and value for the next node, and again these need not lead
to any reduction in search. The search tree can be pruned by enforcing levels of
consistency: it is possible to check the effect of a variable-value instantiation on
the domains of other variables. If such a check shows that a domain has become
empty, it is safe to backtrack without exploring nodes that would otherwise be
created. These checks have a computational cost, and the trade-off is between
the effort of making checks – hopefully resulting in a pruned search tree – and
the effort of searching a presumably larger tree with less expensive checks. The
Handbook of Constraint Programming [4] provides details of CSP techniques.

A recent advance in Constraints is the “model and run” methodology, of
users building constraint models and then executing them on a solver with few
options. This methodology inspired the development of the constraint solver
Minion [5]. A major feature of modern SAT solvers is their optimised use of
modern computer architecture. Using this approach, Minion has been designed
to minimise memory usage. The result of this is that Minion claims to offer fast,
scalable constraint solving. Scalability as problem size increases is an important
(and also neglected) factor in constraint solver construction. A key aim of our
research is to test the claimed scalability of Minion.
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1.3 Symmetry Breaking in CSPs

Constraint satisfaction problems (CSPs) are often highly symmetric. Given any
solution, there can be others which are equivalent in terms of the underlying
problem. Symmetries may be inherent in the problem, or be created in the pro-
cess of representing the problem as a CSP. Without symmetry breaking (hence-
forth SB), many symmetrically equivalent solutions may be found and, in some
ways more importantly, many symmetric equivalent parts of the search will be
explored. An SB method aims to avoid both of these problems.

Permutation groups are the mathematical structures that best encapsulate
symmetry. We describe the symmetries of a CSP as a permutation group of
the literals (variable-value pairs) of the CSP, and obtain information regarding
symmetric equivalence of search states from using GAP. Assignment of the form
(V ar = val) are called literals, so a partial assignment is a conjunction of literals.
We denote the set of all literals by χ, and adopt the convention of denoting
variables by Roman capitals and values by lower case Greek letters.

Definition 4. Given a CSP L, with a set of constraints C, and a set of literals
χ, a symmetry of L is a bijection f : χ → χ such that a full assignment A of L
satisfies all constraints in C if, and only if, f(A) does.

We denote the image of a literal (X = α) under a symmetry g by (X = α)g .
The set of all symmetries of a CSP form a group: that is, they are a collection
of bijections from the set of all literals to itself that is closed under composition
of mappings and under inversion.

Definition 5. Let G be a group acting on the set Ω. The stabiliser of an element
ω ∈ Ω is the set g ∈ G such that ωg = ω. This set is a subgroup of G. The orbit
of an element ω ∈ Ω is the set {ωg|g ∈ G}.

The stabiliser of a literal (X = α) is the set of all symmetries in G that map
(X = α) to itself. The orbit of a literal (X = α), denoted (X = α)G, is the set
of all literals that can be mapped to (X = α) by a symmetry in G. That is

(X = α)G := {(Y = β) : ∃g ∈ G s.t. (Y = β)g = (X = α)}.

Given a collection S of literals, the pointwise stabiliser of S is the subgroup of
G which stabilises each element of S individually. The setwise stabiliser of S is
the subgroup of G that consists of symmetries mapping the set S to itself.

There is a general technique, called “lex-leader”, for generating constraints for
any variable symmetry [6]. The idea is essentially simple: For each equivalence
class of assignments under our symmetry group, we choose one to be canonical.
We then add constraints before search starts which are satisfied only by canonical
assignments. We generate canonical assignments by choosing an ordering of the
variables and representing assignments as tuples under this variable ordering.
Any permutation of variables g maps tuples to tuples, and the lexicographically
least of these is our canonical assignment. This gives the set of constraints

∀g ∈ G, V"lexV
g
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where V is the vector of the variables of the CSP, "lex is the standard lexico-
graphic ordering relation, defined by AD"lexBC iff either A < B or A = B and
D ≤ C, and V g denotes the permutation of the variables by application of the
group element.

Other SB techniques exist, but for this paper we will break symmetries either
by lex-leader constraints, or by analysis of properties of monoids.

Definition 6. Let S be a symmetry breaking technique for CSPs. S is sound
if it does not rule out any valid solutions to a CSP. S is complete if it returns
exactly one member of each equivalence class of solutions with respect to G.

Obviously an unsound SB technique is worthless, but there is often a tradeoff
in the computational costs involved with incomplete and complete techniques.
In the event that no efficient SB method is available for certain symmetries,
It may be desirable to break only a subset of the full group of symmetries of
a problem. This leaves (partial) SB as a post process to be performed on the
solutions obtained.

Remark 1. The above discussion applies to the situation where all solutions are
required for a given CSP. If only the first solution (if any) is sought, then SB is
not always an important consideration. In this paper we are always concerned
with finding each symmetrically distinct solution to every CSP posed.

2 Methodology

Our underlying methodology is to use GAP to answer algebraic questions related
to monoids. These answers allow us to generate suitable constraints for Minion
programs, and eliminate (anti-)isomorphic solutions. In operational terms, GAP
is the master process with Minion acting as a black box to provide solutions to
carefully formulated CSPs. Our first task is to use the underlying algebra and
symmetry of monoids to reduce the search space for the Minion programs.

There are two ways to achieve this. We can give restrictive constraints which
will return an unchanged number of solution tables up to (anti-)isomorphism.
Here we have to prove that for every monoid there is an equivalent one still in
the search space. Secondly we can rule out a certain type of solution for which
the number of equivalence classes is known. Here we have to show that the
constraints remove all solutions of the specific type. We also have to provide
the number of equivalence classes that we rule out, together with a proof where
appropriate.

2.1 Reducing the Search Space 1: Identity Elements

The first simplification is to require that the first row and column of each table
is the tuple [1, 2, . . . , n]. This reduces the number of search variables from n2 to
(n− 1)2.

Proposition 1. The above restriction is sound.
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Proof. Let M be a monoid on {1, 2, . . . , n} with identity e �= 1. Then M (1,e) is a
monoid isomorphic to M with 1 as identity. Thus it is sound to choose 1 to be the
identity element in any solution. As 1∗x = x∗1 = x for all x ∈ {1, 2, . . . , n}, the
first row and column agree with our restriction, and hence a monoid equivalent
to M is in the search space. #�

The second simplification is that we can use existing results for semigroups of
order n − 1 to obtain monoids of order n. The advantage of this approach is
that the number of nonequivalent semigroups is known for n = 1 . . . 8, as Integer
Sequence A001423 in [1].

Proposition 2. Let H be a semigroup with underlying set {2, . . . , n} and mul-
tiplication ∗H . Define a multiplication ∗ on {1, . . . , n} by 1∗x = x∗1 = x ∀x ∈
{1, . . . , n}, and x ∗H y otherwise. Then 〈{1, . . . , n}, ∗, 1〉 is a monoid.

Proof. Element 1 is the required identity by definition of ∗. Consider the products
(a∗b)∗c and a∗(b∗c). If any of a, b and c is 1, then (a∗b)∗c = a∗(b∗c) immediately.
Any product not involving 1 is associative, since semigroup multiplication is.
Hence 〈{1, . . . , n}, ∗, 1〉 is a monoid. #�

By construction, the table for any such monoid contains exactly one 1. Also, two
non-equivalent semigroups will give two non-equivalent monoids.

Proposition 3. Let M = 〈{1, . . . , n}, ∗, 1〉be a monoid with fewer than two 1s
in its table. Then {2, . . . , n} with multiplication ∗ forms a semigroup.

Proof. Since 1 ∗ 1 = 1, the remaining values in the table for M are in {2, . . . , n}.
Therefore multiplication ∗ on {2, . . . , n} is closed and associative. #�

Taken together, Propositions 2 and 3 show that the number of non-equivalent
semigroups of order n − 1 is equal to the number of non-equivalent monoids
having exactly one 1 in their table. It remains to search for tables of monoids
that contain two or more 1s.

Remark 2. We have computed and stored all non-equivalent semigroups for order
n up to 8 [7] , using a similar combination of GAP and Minion. We do not report
these calculations in detail, since the correct values have already been published.

2.2 Reducing the Search Space 2: Diagonals

To break more symmetries before the search we use an approach which was first
introduced in computer search for semigroups [8] of order 6 (and subsequently
used in the respective problem of order 8 [9]). The idea is to fix the diagonal en-
tries first and consider no two equivalent diagonals. Observe that every diagonal
entry is mapped to a diagonal entry under the action on the table described in
Section 1. This yields an induced action on the diagonals and therefore induced
equivalence classes of diagonals. As we made the restriction that 1 is to be the
identity element of the monoid, the equivalence classes of diagonals will differ
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Algorithm 1. Construct the connected digraphs with N vertices and a K cycle
Require: K ≤ N { cycle has not more than all vertices}
1: C ← ∅
2: for all p in Partitions(N , K) do {the partition specifies the sizes of rooted trees

at the vertices of the cycle}
3: F ← Forests(p)
4: for f ∈ F do
5: f̂ ← set of all tuples of the elements of f
6: for orbit in Orbits(CK , f̂) do {the set of images forms orbits under the cyclic

group 〈(1, 2, . . . , K)〉}
7: rep ← representative of orbit {arbitrary element in the orbit}
8: D ← directed cycle of length K
9: for i ∈ {1, 2, . . . , K} do

10: D ← D merged with repti joined at vertex i
11: end for
12: C ← C ∩ {D}
13: end for
14: end for
15: end for
16: return C

from the ones in [8,9]. Our aim is to find or construct exactly one diagonal from
each equivalence class.

As we describe in Section 3, this does not split the problem into more or less
equivalent subproblems. It turns out that many diagonals give no solutions, and
others very many. The aim of this approach, therefore, is not to parallelise the
computation, but rather to safely reduce the number of diagonals to be tested
from nn−1 to a more manageable number. Moreover, by fixing a diagonal we
reduce the symmetry of the problem.

Proposition 4. Let C be the family of directed, unlabelled graphs having n− 1
vertices, such that the outward degree of any vertex is less than or equal to 1
(and loops are allowed). Then C corresponds to the set of equivalence classes of
diagonals with 1 in first position under the full symmetry group on {2, . . . , n}.

Proof. For any c ∈ C, every labelling of vertices from {2, . . . , n} leads to a
diagonal in the following way: the first entry is 1, the entry in position 2 ≤ k ≤ n
is the endpoint of the edge from vertex k, and 1 if no such edge exists. Two
distinct labellings of c give two diagonals in the same equivalence class, since a
re-labelling of c is simply a permutation of elements from {2, . . . , n}, and hence
is an element of the group acting on the diagonals. For any diagonal we can
construct a labelled graph with vertices {2, . . . , n}, and a directed edge from
vertex 2 ≤ k ≤ n to the vertex given by the kth entry of the diagonal, unless
the entry is 1. The unlabelled graph is in C. #�

Detailed information regarding the connected components of the members of
C is given in [10, 3.4]. They can either be rooted trees with the direction of
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edges towards the root, or they can be a directed cycle (of length one or more)
where every vertex in the cycle is the root of a tree. Algorithm 1 constructs
and returns the latter. The former is constructed recursively using the one-one
correspondence between rooted trees on n vertices, and forests of rooted trees
on n− 1 vertices. All sets of forests whose tree sizes are specified by a partition
p of n− 1 are returned by our function Forests(p).

2.3 Constraint Satisfaction Problems in Minion

We can now construct a CSP L for each diagonal D. The set of variables Δ :=
{A1,1, A1,2, . . . , A1,n, A2,1, . . . , A2,n, . . . , An,1, . . . , An,n}, consists of each entry in
an n× n table, with each variable having domain {1, 2, . . . , n}. The constraints
are:

1. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all combinations of a, b and c;
2. the diagonal is fixed as D;
3. the first row and first column consist of [1, 2, . . . , n];
4. the table contains two or more 1 entries.

The first constraint is associativity, which in Minion is enforced using element
constraints. The constraint element(vector, i, val) specifies that, in any solution,
vector[i] = val. We add a new variable Aa,b,c for each triple (a, b, c). The pair of
constraints

element(row(a), b ∗ c, Aa,b,c) and element(column(c), a ∗ b, Aa,b,c

then enforce associativity. Constraints 2 and 3 turn n + 2(n − 1) of the n2

variables into ground variables, having domain size exactly one. These implement
the reduction in search space described in Sections 2.1 and 2.2, and reduce
the symmetries remaining in each problem instance. Constraint 4 is a simple
occurrence requirement.

Definition 7. Define YD to be set of solutions to the CSP L defined by diagonal
D, and Yn to be the union of the YD for all D of length n. Let ŶD denote a set
of representatives of non-equivalent solutions from Y ; the union of these is Ŷn.

2.4 Refinements and Optimisation

The CSPs described in Section 2.3 are sufficient to solve our identification and
enumeration problem, up to any remaining symmetries. There are, however, a
number of improvements that we can make. These involve further restricting
the set of diagonals used, and imposing additional constraints for some of the
remaining diagonals. We identify diagonals that cannot form part of a table with
more than one 1 using the following proposition:

Proposition 5. A monoid with table in Yn either has an element x �= 1 with
x2 = 1 or it contains a sequence of distinct elements x1, x2, . . . , xk with xi+1 =
x2

i for i = 1, 2, ..., k − 1, and x2
k = x1.
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Proof. Let 〈M, ∗, 1〉be a monoid with table in Yn . If M contains an element
x = 1 with x2 = 1 we are done. Otherwise there must be at least one pair of
distinct elements x1 ,y1 ∈ M \ {1} with x1 ∗ y1 = 1. Define the two sequences of
elements (xi)i=1,2,...,(yi)i=1,2,... by

xi+1 = x2
i and yi+1 = y2

i , i = 1, 2, . . .

Clearly xi ∗ yi = x2
1
i−1 ∗ y2

1
i−1 = (x1 ∗ y1)2

i−1 = 1. As M contains only n −
1 elements not equal 1 there must be repetition in the sequence (xi)i=1,2,... .
Assume xi+1 = xi for some i. Then

1 = xi ∗ yi = xi+1 ∗ yi = (xi ∗ xi) ∗ yi = xi ∗ (xi ∗ yi) = xi ∗ 1 = xi

a contradiction. This shows that the period of the repetition is greater than 1
and completes the proof. #�

The conditions in Proposition 5 consider the squares of elements, i. e. the diago-
nal entries of the multiplication table. If diagonal D satisfies neither of the two
conditions then YD will be empty, so we can exclude D.

For certain diagonals we can post implied constraints, which, although not
strictly required, are likely to improve the performance of the solver. These are
all different constraints which forbid equal values appearing in certain rows and
columns. These constraints propagate very efficiently in CSP solvers, and often
lead to early backtrack and hence pruning of the search tree.

Proposition 6. Let a be an element of a monoid 〈M, ∗, 1〉. If ak = 1 for any
k, then the values in row and column a of the table for M will be all different.

Proof. Let aM = {a ∗m | m ∈ M}. The following inequalities hold in general

|akM | ≤ |aM | ≤ |M |.

By hypothesis, akM = M , so we have equality, and the values in row a of the
table for M will be distinct. The case for right multiplication – hence column
values – is similar. #�

From the diagonal we can compute a2n−1 for any element a. If this power equals
1, we add all different constraints on the row and column of a. In the event that
diagonal D gives all different constraints on every row and column, then the
solution set YD will consist entirely of groups. Since groups of small order are
well known, we can safely reject D from our set of diagonals, provided that we
add the number of groups not searched for to our final total. This number is
obtained by inspection of the diagonals for groups.

2.5 (Anti-)Isomporph Rejection

We now address the problem of ruling out (anti-)isomporphs. There are two
approaches available to us. We can either solve the Minion CSP instance, then



70 A. Distler and T. Kelsey

Algorithm 2. Enumerate and store Monoids of order n
Require: n ← order of monoids
Require: D ← set of inequivalent n-diagonals
Require: SN × C2 ← the symmetric group acting on n objects
1: for d ∈ D do
2: stab← the stabilizer of d in Sn ×C2

3: P ← the Minion program for d
4: if stab is small then
5: compute lex-leader constraints for d in GAP
6: add these constraints to P
7: obtain Ŷd ← solutions of P from Minion
8: else
9: compute signature constraints for d in GAP

10: add these constraints to P
11: obtain Yd ← solutions of P from Minion
12: Ŷd ← (anti-)isomporph rejection of Yd in GAP
13: end if
14: end for
15: return Ŷ = ∪dŶd

reject (anti-)isomorphs as a post process, or apply constraints which ensure that
Minion only returns canonical solutions. Both methods involve GAP computa-
tion: the first requires an efficient minimal image test, the second requires the
images of each literal (X = α) under the symmetry group of the CSP instance.
Another key GAP calculation is the stabiliser of each diagonal in Sn ×C2. This
is the subgroup of Sn×C2 which fixes the diagonal entries of a table with respect
to the isomorphism operation and transposition, and it represents the remaining
symmetry to be broken. The minimum size of such a stabiliser is 2 (occurring
whenever the diagonal permits no isomorphic solutions, but table transposition
is still allowed), and the maximum size is 2(n−2)! (occurring when the diagonal
consists of [1, 1, 3, 4, . . . , n−1, n], so that the only symmetry broken is the fixing
of 1 at positions (1, 1) and (2, 2)). We can apply lex-leader SB constraints for
any diagonal, but each such constraint consists of a lexicographic requirement
on two vectors – the first our canonical solution, the second its image under
a group element – each containing n3 Boolean variables (one for each literal).
Posting a factorial number of such constraints is likely to slow Minion down;
each constraint may be checked at each node in the search tree. However, most
diagonal stabilisers are small, and posting lex-leader constraints is likely to be
highly efficient.

Proposition 7. Adding lex-leader SB constraints to a Minion CSP instance is
both sound and complete.

Proof. This is proved in [6].

The other approach, post-hoc isomorph rejection, is a simple concept. We store
all solutions obtained by Minion, then check each solution to see if it is minimal
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in the stabiliser of the diagonal. If it is, we keep it; if not, we reject it. There are
however some refinements and options to consider.

We define the signature of a solution table to be the n-tuple containing the
number of occurrences of value k, in position k, for k = 1, . . . , n. We use sig-
natures to break more symmetries by posting constraints prior to search. We
analyse the directed graph associated with each diagonal, as detailed in Section
2.2. There are two cases to consider. The first is to identify completely inter-
changeable vertices in rooted trees. We first look for roots of isomorphic trees,
and then recurse down each tree. If we identify symmetric vertices, we post a
linear ordering on the signature list of the labels of the vertices: we restrict the
numbers of occurrences of these values in any solution. Each level in the rooted
tree structure can provide zero or more such constraints. The second is to break
any cyclic symmetry by fixing a minimal vertex in a cycle. Again, we recurse
through the structure of the graph to identify any symmetry at a given level,
posting linear ordering constraints whenever symmetries are found. We use the
built in methods for Orbits and Stabilizers in GAP to find sets of equivalent
values. At each level of the recursion we stabilise the vertices of the levels above.

Proposition 8. Posting these ordering constraints on signatures is sound.

Proof. If YD is empty there are no solutions to lose. Let S ∈ YD be a solution
of the original problem. If S violates a constraint on the first level then there is
a symmetry g ∈ Stab(D) – the stabiliser of the diagonal – such that Sg satisfies
the constraint. Assume inductively that S satisfies all constraints up to level
l− 1. If S violates a constraint on level l then there is a symmetry g ∈ Stab(D)
which fixes all the constraints of the levels above l such that Sg satisfies the
constraint on level l. #�

As examples, we first consider the diagonal [1, 1, 3, 4, . . . , n − 1, n]. Its graph
consists of 8 vertices labelled 2, ..., n, with each vertex labelled 3 or higher form-
ing a cycle of length one, with the empty rooted subtree. Since these vertices
are indistinguishable when the labels are removed, it is safe to impose a linear
order on the occurrences of values 3 through n in any solution table. We can
then (anti-)isomorph reject in the stabilisers of the signatures of solutions: if g
is a permutation with kg = l which maps solution S to solution T , then the
signature of k has to equal the signature of l because of the linear ordering
constraint posted. For an example that illustrates our extension of this sim-
ple linear ordering, consider diagonal [1, 1, 3, 3, 4, 4, 3, 7, 7] which has graph with
edges 4 → 3, 7 → 3, 5 → 4, 6 → 4, 8 → 7, 9 → 7. We impose on the signatures
the constraints [4, 5, 6]"lex[7, 8, 9], 5 ≤ 6 and 8 ≤ 9. The first breaks the sym-
metry of the two equivalent sub-trees connected to vertex 3; the others break
the symmetry in the equivalent leaves.

Posting signature constraints therefore has two advantages: we reduce the
number of solutions returned by Minion, and we (anti-)isomorph reject in a
smaller group. There is still the cost of computing the signature stabiliser, and
this is non-trivial.
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Table 2. Solutions & Timings

Method
n: 5 6 7 8 9

Diagonals 27 81 242 699 2,026

Complete SB

Solutions 30 213 1,757 22,951 �
GAP cpu (s) 3 17 119 856 �

Minion cpu (s) 0 1 24 6,225 �
Total cpu (s) 3 18 143 7,081 �

Isomorph rejection

Solutions 30 213 1,757 22,951 955,569
GAP cpu (s) 2 13 96 989 197,587

Minion cpu (s) 0 1 5 63 4,106
Total cpu (s) 2 14 101 1,052 201,693

Combined 48

Solutions 30 213 1,757 22,951 955,569
GAP cpu (s) 2 13 96 916 70,381

Minion cpu (s) 0 1 5 68 3,150
Total cpu (s) 2 14 101 984 73,531

Combined 240

Solutions 30 213 1,757 22,951 955,569
GAP cpu (s) 2 13 96 720 24,386

Minion cpu (s) 0 1 5 139 12,746
Total cpu (s) 2 14 101 859 37,132

Legend: � denotes timeout; Combined 48 denotes complete SB only if the
stabiliser of the diagonal in Sn × C2 has size ≤ 48 for n = 9, and ≤ 12 for
n = 5 . . . 8. Combined 240 denotes complete SB only if the stabiliser of the
diagonal in Sn × C2 has size ≤ 240 for n > 8, and ≤ 12 for n = 5 . . . 7.

Our algorithm for (anti-)isomorph rejection is to order the returned Minion
solutions lexicographically by signature, then only compute the stabiliser when
the signature changes. This minimises the number of stabiliser calculations, but
requires a potentially expensive sorting preprocess.

2.6 Enumeration and Storage of Monoids

Algorithm 2 describes our computational method. For each diagonal we generate
a Minion instance that models associative multiplication tables having fixed first
row, first column and diagonal values, and having at least two occurrences of
value 1. The SB method used to break the remaining symmetries depends on
the size of the stabiliser of the diagonal. A small stabiliser requires few complete
SB constraints, whereas a large stabilizer indicates that signature constraints fol-
lowed by (anti-)isomorph rejection may perform better. The definition of “small”
is unclear a priori – we discuss suitable values obtained after experimentation
in Section 3.

3 Results

Table 2 contains the timings for computations. We tested three approaches: only
using SB constraints, only using post-solution (anti-)isomorph rejection, and the
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Table 3. Pathological diagonals for n = 9

No. Diagonal Stabiliser |YD| |ŶD|
1 113456789 10,080 60,169 9,824
2 113333333 1,440 1,508,566 13,731
3 113344444 240 1,182,180 6,517
4 113335555 48 1,675,952 39,984
5 113333338 48 1,678,602 76,213
6 113333377 24 1,647,092 123,025
7 113333666 24 1,648,105 98,536
8 113344377 16 306,497 35,291
9 113343666 12 542,892 47,123

10 113335377 4 546,794 139,119

Legend: Stabiliser is the size of the stabiliser of the diagonal in Sn × C2;
|YD| is the number of Minion solutions returned using signature constraints;
|ŶD| is the number of solutions after (anti-)isomporph rejection.

combined approach set out in Algorithm 2. The first approach suffers badly in
terms of Minion effort with increasing n. This is due to the large numbers of
SB constraints posted for diagonals with large stabiliser. We were unable to
obtain solutions for n = 9 in under two weeks, since Minion slowed markedly for
certain diagonals. The number of diagonals shown is the number after applying
the techniques described in Section 4; for n = 9 this reduced the number of
diagonals from 2,598 to 2,026.

(Anti-)isomorph rejection is sufficiently efficient for n = 9. The combined ap-
proach works best, as expected. Smaller stabiliser diagonals mean faster Minion
instances, with (anti-)isomorph rejection used when the stabiliser is too large.
Both GAP and Minion times improve in the combined approach for n = 9.
This is due to Minion returning fewer solutions for small stabiliser diagonals:
the Minion search tree is pruned heavily by the SB constraints, and GAP has no
(anti-)isomorph rejection to perform. We tested the combined approach with dif-
ferent cut-offs for the size of diagonal stabilizer, beyond which (anti-)isomporph
rejection would be used.

The best trade-off between GAP and Minion computation was achieved when
SB constraints were applied for diagonals having stabilisers with 240 or fewer
elements. This roughly halved the total time of performing SB on stabilisers with
48 or fewer elements for n = 9. The optimal trade-off – with GAP performing
roughly as much (anti-)isomporph rejection as Minion is performing complete
symmetry-breaking – is not apparent before search starts.

Remark 3. Since GAP is the master process, the GAP times include all book-
keeping work such as generating Minion files, storing solutions, reporting statis-
tics etc. This pads out the GAP times, but emphasises the speed of Minion.

The value for “small” used in practice was determined by analysis of results from
(anti-)isomorph rejection. Table 3 lists several diagonals of order 9. Diagonal 1
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is an obvious candidate for (anti-)isomorph rejection, since the stabiliser is large
but only 60,169 solutions need to be tested for minimality. Diagonals 2 and 3
are a problem for both methods: the stabilisers are large and so are the numbers
of solutions returned without SB constraints. This type of diagonal will make
calculation for n = 10 much more difficult. However, diagonals such as 4 & 5
are better suited to SB constraints: we need only post 48 constraints to rule out
over 1.5 million solutions. The remaining pathological diagonals require even
fewer constraints. Hence, for n = 9 we first used SB constraints for stabilisers
of size 48 and below. It transpires that – for this class of problems – using SB
constraints for stabilisers of size 240 and below is a computational win, improving
the balance between complete and incomplete symmetry-breaking. However, this
does not appear to give an insight for the optimal choice of stabiliser size cutoff
for higher order problems, since we need to know the size of YD and the size of
the stabiliser before deciding upon an optimal strategy for obtaining the non-
equivalent solutions ŶD.

The numbers of monoids unique up to (anti-)isomorphism is given in Table 3.
The values for n = 8 and n = 9 are new.

Table 4. Numbers of monoids up to (anti-)isomorphism

n |Hn−1| |Ŷn| |Mn|
2 1 1 2
3 4 2 6
4 18 9 27
5 126 30 156
6 1,160 213 1,373
7 15,973 1,757 17,730
8 836,021 22,956 858,977
9 1,843,120,128 955,569 1,844,075,697

Legend: |Hn−1| is the number of non-equivalent semigroups of order n−1; |Ŷn|
is the number of non-equivalent monoids with more than one 1 in their table;
|Mn| is the number of non-equivalent monoids, and is the sum of |Ŷn| and |Ŷn|.

4 Discussion

We have analysed properties of monoids to obtain algorithms that permit the
efficient enumeration and storage of monoids. Our implementation involves sym-
bolic algebraic computation both as a pre-process and as a post-process. Our
AI backtrack search tool, Minion, is fast – as claimed by its developers – but
does not scale well on problems that grow with the factorial of the instance di-
mension. This is not surprising: there are no known solutions to the problem of
combinatorial explosion.

As well as demonstrating the efficacy of combining symbolic computation with
AI search, our results provide new numbers in algebraic combinatorics. We have



The Monoids of Order Eight and Nine 75

stored each solution, and provide a library of monoids (and semigroups) [7] that
can be accessed and analysed by the research community. We are confident in
the accuracy of our results: we have used two different approaches to the same
problem, and obtained identical answers in each case. In addition we have used
similar algorithms to verify the enumeration of non-equivalent semigroups of
order up to 8.

Future avenues of research involve solving similar problems having, as yet,
unknown answers but being small enough to be tractable by our methods. In
order to solve the monoid problem for n = 10, it is clear that our methods
will work well for many diagonals. However, we have shown that pathological
diagonals exist, for which neither complete symmetry breaking nor post hoc
(anti-)isomorph rejection will be efficient. Moreover, the number of semigroups
of order 9 is as yet unknown.

5 Revised Results and Conclusions

Since submitting this paper, we have re-run our calculations with a modified
version of complete SB. When posting lex-leader constraints one has to choose a
fixed order for the literals. It is known that this ordering plays a crucial role for
the performance of the computation – although it is of no theoretical importance.
Generally speaking, the ordering of the literals should agree with the search order
of the constraint solver. This is to ensure that the violation of a SB constraint is
discovered as early as possible during search. The implementation that provided
the timings shown in Table 2 neglected this important fact. The timings for
complete SB after correction of this mistake are given in Table 5. For these results
we added a further optimisation, removing those literals from lex-ordering tests
that cannot differ in a solution.

Table 5. Solutions & Revised Timings

Method
n: 5 6 7 8 9

Diagonals 27 81 242 699 2,026

Revised Complete SB

Solutions 30 213 1,757 22,951 955,569
GAP cpu (s) 2 13 91 686 10,557

Minion cpu (s) 0 1 7 72 3,667
Total cpu (s) 2 148 98 758 14,224

We can now revise our conclusions, based on these improved results. Minion
can handle more symmetries than we envisaged without incurring a large com-
putational penalty. The number of non-equivalent monoids of order less than
10 can be obtained using complete SB in a reasonable time. Our isomorph re-
jection method, as described in Section 2.5, is no longer crucial even for order
9. However, it remains an improvement for pathological diagonal no. 1, i. e.
[1, 1, 3, 4, 5, 6, 7, 8, 9], which has a stabiliser of size 10,080 in S9 × C2.
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Moreover, we are certain that the GAP times can be improved by implement-
ing specialised stabiliser calculations for the action on tables and diagonals. This
being the case, the problem of enumerating the monoids of order 10 is likely to
be tractable using our methods.

Acknowledgements

Our work is supported by EPSRC grant EP/CS23229/1. We thank Ian Gent,
Steve Linton, Victor Maltcev, James Mitchell and Nik Ruškuc for their help and
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Abstract. Graph-based formalisms of quantum computation provide an
abstract and symbolic way to represent and simulate computations. How-
ever, manual manipulation of such graphs is slow and error prone. We
present a formalism, based on compact closed categories, that supports
mechanised reasoning about such graphs. This gives a compositional ac-
count of graph rewriting that preserves the underlying categorical seman-
tics. Using this representation, we describe a generic system with a fixed
logical kernel that supports reasoning about models of compact closed
category. A salient feature of the system is that it provides a formal and
declarative account of derived results that can include ‘ellipses’-style no-
tation. We illustrate the framework by instantiating it for a graphical
language of quantum computation and show how this can be used to
perform symbolic computation.

Keywords: graph rewriting, quantum computing, categorical logic, in-
teractive theorem proving, graphical calculi.

1 Introduction

Recent work in quantum computation has emphasised the use of graphical
languages motivated by the underlying logical structure of quantum mechan-
ics itself [1,15,3,5,6]. These techniques have a number of advantages over the
conventional matrix-based approach to quantum mechanics:

– The visual representation abstracts over the values in the matrices. This
removes detail that requires a lot of work for a human to interpret.

– Many properties have a natural graphical representation. For example, sep-
arability of quantum states can be inferred from disjoint subgraphs.

– The algebra of graphs generalises to domains other than vector spaces. In
particular, it provides a representation for compact closed categories.

A major problem with these graphical representations is the lack of machinery
for automating their manipulation. Unlike existing approaches to graph trans-
formation, the graphs described here provide a representation of compact closed
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categories; hence we require a new approach to rewriting, which is sound with
respect to the underlying semantics.

The main contribution of this paper is a graph-based formalism that is suitable
for representing and evaluating quantum computations. We start by reviewing
a formalism for graphical representations of compact closed categories. We also
revisit a model of quantum computation based on this calculus. We then extend
the graphical calculus in two significant ways driven by the need to express
rules that could not be accounted for in the initial formalism. By combining
these extensions, we provide a representation that captures an interesting and
useful set of graph patterns. Notably, it can express the Spider Theorem which
is normally written using informal ellipses notation (see Figure 4). We provide
a semantics for our graph-based formalism in terms of the initial representation
of compact closed categories.

Using our graph-based formalism as the representational foundation, we de-
velop a simple logical framework for manipulating models of compact closed
categories. This has a suitable rewriting mechanism where the axioms of the un-
derlying object-formalism are expressed as equations between graphs. We then
present a short case study that illustrates the framework by instantiating it for
the introduced model of quantum computation. This shows how the framework
can be used to symbolically perform simplifications of quantum programs as well
as simulate computations.

2 Graphs and Compact Closed Categories

Graphs. A directed graph1 consists of a 4-tuple (V,E, s, t) where V and E are
sets, respectively of vertices2 and edges, and s and t are maps

E
s �

t
� V

which we call source and target. Let in(v) := t−1(v) and out(v) := s−1(v) denote
the incoming and outgoing edges at a vertex v. The degree of a vertex v is
|in(v)| + |out(v)|. To distinguish between elements of different graphs, we will
use the subscript notation G = (VG, EG, sG, tG).

Given graphs G and H , a graph morphism f : G → H consists of functions
fE : EG → EH and fV : VG → VH such that:

sH ◦ fE = fV ◦ sG, (1)
tH ◦ fE = fV ◦ tG. (2)

These ensure that the structure of the graph is preserved by the morphism: an
edge connected to a node gets mapped to a new edge that must be connected,
in the same way, to the mapped node.
1 Equivalently: a directed graph is a functor G from • �� • to Set; a graph mor-

phism is then a natural transformation f : G ⇒ H .
2 We will use the words “vertex” and “node” interchangeably.
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Definition 1. Let f : G → H be a graph morphism and let V ′ ⊆ VG. We say
that f is strict for V ′ if ∀e ∈ EH , if sH(e) ∈ fV (V ′) or tH(e) ∈ fV (V ′) then
∃e′ ∈ EG such that fE(e′) = e.

Strictness ensures that there are no additional edges connected to vertices in the
image of V ′.

Definition 2. We call a graph morphism f an open embedding which is strict
for V ′ if:

1. fE is injective;
2. fV restricted to V ′ is injective; and,
3. f is strict for V ′.

The intuition behind this definition is that the subgraph of G determined by V ′

should be preserved exactly by f ; whereas other vertices may be identified and
may contain additional incident edges.

Augmented by some additional structure, graphs form a compact closed cate-
gory. In section 2.1 we will describe this structure, but first we review the basic
properties of compact closed categories.

Compact Closed Categories

Definition 3. A strict symmetric monoidal category [2] is called compact closed
[10] when each object A has a chosen dual object A∗, and morphisms

dA : I → A∗ ⊗ A eA : A⊗A∗ → I

where I is the tensor identity of the compact closed category, such that

A ∼= A⊗ I
idA⊗dA� A⊗A∗ ⊗A

eA⊗idA� I ⊗A ∼= A = idA (3)

A∗ ∼= I ⊗A∗ dA⊗idA∗� A∗ ⊗A⊗A∗ idA∗⊗eA� A∗ ⊗ I ∼= A∗ = idA∗ (4)

Every arrow f : A → B in a compact closed category C has a name and
coname:

�f� : I → A∗ ⊗B, �f� : A⊗B∗ → I,

which are constructed as �f� = (idA∗ ⊗f)◦dA and �f� = eB ◦ (f⊗ idB∗). Hence
there are natural isomorphisms C(A,B) ∼= C(I, A∗ ⊗B) ∼= C(A⊗B∗, I) making
C monoidally closed3. Furthermore, f has a dual, f∗ : B∗ → A∗, defined by

f∗ = (idA∗ ⊗ eB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (dA ⊗ idB∗)

By virtue of equations (3) and (4), f∗∗ = f . Thus (·)∗ lifts to an involutive
functor Cop → C, making C equivalent to its opposite.

3 In general compact closed categories are models of multiplicative linear logic where
A � B is defined as A⊥ ⊗B.
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idA⊗B∗ = dA = eB =

f = �f� = f∗ =

Fig. 1. Compact Closed Structure as Graphs

2.1 Graph Representations for Compact Closed Categories

Graphs with certain additional structure give a representation for compact closed
categories; we now give an overview of this construction. The details omitted
here can be found in [8]. Pictorial representations are in Fig. 1. We make the
convention that the domain of an arrow is at the top of the picture, and its
codomain is at the bottom.

A concrete graph Γ is 5-tuple (G, domΓ, codΓ,<in(·), <out(·)) where:

– G = (V,E, s, t) is a graph;
– domΓ and codΓ are totally ordered disjoint sets of degree one vertices of
G. The union of these sets is the boundary of Γ .

– <in(·) is a family of maps, indexed by V such that <in(v): in(v)
∼=� Nk

where k = |in(v)|.
– <out(·) is a family of maps, indexed by V such that <out(v): out(v)

∼=� Nk′

where k′ = |out(v)|.

Since the sets domΓ and codΓ consist of vertices of degree one, we can assign
a polarity to each one: v �→ + if the edge incident at v is an incoming edge; v �→ −
otherwise. Hence codΓ and domΓ are ordered signed sets. Given any ordered
signed set S we write S∗ for the same ordered set with the opposite signing.
Given two such sets we can define their disjoint union R + S as the disjoint
union of the underlying sets, inheriting the signing and the order from R and S,
with the convention that r < s for all r ∈ R, s ∈ S.

Proposition 1. Concrete graphs form a compact closed category whose objects
are ordered signed sets and whose arrows f : A → B are concrete graphs with
cod f = B and dom f = A∗.

For each ordered signed set A, the identity map idA has dom idA = A∗ and
cod idA = A; its underlying graph has E = A and V = A∗ + A with t(a) = a
and s(a) = a∗. Given a pair of concrete graphs f : A → B and g : B → C their
composition g ◦f : A → C is constructed by merging the two graphs, erasing the
vertices of cod f and dom g (called the boundary vertices), and identifying the
edges previously incident at the deleted vertices. (Due to the opposite polarity
of the domain and codomain the edges have compatible direction.) The tensor
product on objects A,B is simply A+B; given f : A → B, g : C → D, the graph
of f ⊗ g is the disjoint union of the graphs of f and g. The unit for the tensor
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is the empty set. The morphisms dA : I → A∗ ⊗ A, eA : A ⊗ A∗ → I have the
same underlying graph as idA, but domd = ∅, codd = A∗ +A, dom e = A+A∗

and cod e = ∅.

Remark 1. Given concrete graphs f : A → B and g : B → C there exists exactly
one graph morphism τ : f → (g ◦ f) such that τ is an open embedding which
is strict for the non-boundary nodes of f . Indeed the intuition behind an open
embedding, is that any such map picks out a subgraph which forms a well defined
arrow in its own right.

This category captures exactly the axioms for compact closed structure, in the
sense that any freely generated compact closed category can be represented by
concrete graphs. We will consider a collection of basic terms4 F whose types are
vectors of some set of basic types T . Then:

Definition 4. A T, F -labelling θ for a concrete graph Γ is a pair of maps θT :
E → T and θF : (V − codΓ − domΓ ) → F such that for each vertex v, if
in(v) = 〈a1, . . . , an〉 and out(v) = 〈b1, . . . , bm〉 then

θv : 〈θa1, . . . , θan〉 → 〈θb1, . . . , θbm〉

We say a concrete graph Γ is T, F -labellable if there exists an T, F -labelling
for it; and if θ is a labelling for Γ , then the pair (Γ, θ) is called a T, F -labelled
graph.

The T, F -labelled graphs form a compact closed category in the same way as the
concrete graphs, subject to the further restriction that arrows are composable
only when their labellings agree.

Theorem 1. Let C be a compact closed category, freely generated by some set of
arrows F and ground types T ; then C is equivalent to the category of T, F -labelled
graphs.

Given a compact closed category C generated by some basic set of operations, the
arrows of C have a canonical representation as labelled graphs. A consequence of
the theorem is then that two arrows are equal by the equations of the compact
closed structure if and only if their graph representations are equal.

As a final remark before moving on, note that the external structure of a
vertex in a concrete graph is essentially the same as that of a complete graph;
hence one can consistently view subgraphs as vertices, and abstract over the
their internal structure.

3 Quantum Computations as Graphs

A substantial strand of work in quantum computation has involved the develop-
ment of high-level models of quantum processes based on compact closed cate-
gories. In these formalisms, initiated in [1], quantum processes—such as quantum
4 See [8] for a more thorough description of the nature of the terms.
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logic gates, or the measurement of a qubit—correspond to arrows in a category,
while the different quantum data types, usually just arrays of qubits, are the
objects. The graphical representation described in the preceding section thus
provides a very expressive notation for quantum processes.

While compact closed categories provide a suitable setting for reasoning about
quantum computation, freely generated structure will not suffice: we need addi-
tional equations. These equations will be expressed as rewrites rules for graphs.
In this section we will describe a set of generators and equations used to reason
about quantum computation, and show how some of its formal properties lead
to particular issues for the rewriting machinery.

Coecke and Duncan [4] propose a formal algebraic system for quantum com-
putation built from the following collection of generators:

Objects: a single object, written Q.
Arrows: there are families of arrows X and Z:

εZ : Q → I, εX : Q → I,

δZ : Q → Q⊗Q, δX : Q → Q⊗Q,

αZ : Q → Q αX : Q → Q

where α ∈ [0, 2π), and in addition H : Q → Q.

To each each arrow f : A → B we assign a formal adjoint f † : B → A. Each
arrow is represented as a small graph; its adjoint is the same graph written
upside down by reflection in the x-axis. We use colours (light green and a darker
red) to denote the two families:

Z = δZ = †
Z = δ†Z = αZ =

X = δX = †
X = δ†X = αX =

The H arrow is denoted by and represents a Hadamard gate. The adjoints for
H , αX and αZ will be defined equationally. The free compact closed category is
then given by all graphs formed by composing and tensoring these basic graphs.

In terms of quantum processes, each edge in a graph represents a qubit, al-
though several edges may represent the same physical qubit at different times.
An edge may even represent a “virtual” qubit which stands for a correlation
between different parts of the system. The maps δZ and εZ represent quantum
operations which respectively copy and delete the eigenstates of the Pauli Z op-
erator.5 Notice that δZ has one edge in its domain representing the qubit to be
copied, and two edges in its codomain for the two copies it produces. Similarly,
εZ has one qubit as input and no outputs. The adjoints δ†Z and ε†Z correspond

5 Uniform copying operations are forbidden by the no-cloning theorem [18], but such
operations are possible if we demand only the eigenstates of some self-adjoint oper-
ator to be copied. Other states will not not copied. The same remarks hold true for
erasing [11].
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to an operation known as fusion, and to the operation of preparing a fresh qubit
in a certain state. The αZ corresponds to phase shift of angle α in the Z di-
rection. The family of maps indexed by X are defined in exactly the same way,
but relative to the Pauli X operator rather than the Z. All quantum operations
may be defined by combining these simple operations—which are essentially
classical—on two complementary observables.

We emphasise that this is a notation for representing quantum processes,
rather than quantum states. In this setting a state is simply a process with
no inputs; that is, a concrete graph with empty domain. Since our formalism
is based on the underlying mathematical structure rather than any particular
model of quantum computation, it is capable of representing quantum circuits,
and measurement-based quantum computations, among other models. Indeed,
an important application of this work is to show that states or computations
implemented differently are equivalent.

To model the behaviour of quantum systems certain additional equations must
be satisfied. At the level of objects, we ask that Q is self dual, i.e. that is Q = Q∗.
Hence we use undirected graphs. The equations between arrows are discussed in
detail in [4]; we present them in graphical form in Figure 2.

Consider the equations from Figure 2 which involve only one colour: these
allow the remarkable spider theorem, first noted in [6], to be proved:

Theorem 2 (Spider Theorem). LetG be a connected graph generated from δZ ,
εZ , αZ and their adjoints; then G is totally determined by the number of inputs,
the number of outputs, and the sum modulo 2π of the αs which occur in it.

Hence any connected subgraph involving nodes of only one colour may be col-
lapsed to a single vertex, with a single value α, giving a “spider”. Informally, this
can be depicted graphically as the equation in Figure 4-left. Conversely, a spider
may be arbitrarily divided into sub-spiders, provided the total in- and out-degree
is preserved, along with the sum of the αs. Furthermore, one can derive, from
the Spider Theorem, n-fold versions of many of the other equations.

Spiders offer a very intuitive way to manipulate graphs, and are far more
compact and convenient in calculations than the graphs built up naively from
the generators. However, formalising spiders requires moving from finite graphs,
where each vertex has bounded degree, and which are subject to a finite number
of rewrite rules, to a system where nodes may have arbitrarily many edges, and
there are infinitely many concrete rewrite rules. The desire to retain intuitive
reasoning methods for these infinite families of rewrites motivates the extension
from concrete graphs to graph patterns, the main subject of this paper.

4 Graphs with Variable Nodes

In the concrete representation, the following graphs represent different compu-
tations:
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Comonoid Laws

= = = =

Isometry, Frobenius, and Compact Structure

= = =

Abelian Unitary Group

:= =

( )†
= = =

Bilinearity

= =

Bialgebra Laws Let := ; then:

= = =

Group Actions

= = = =

H Properties
( )†

= =

Colour Duality

= = =

Fig. 2. Graphical Equations for Quantum Systems. The (·)† functor gives a vertical
symmetry to the category, hence for every equation we have a second equation obtained
by flipping the diagram upside down. In addition, we have a “colour duality”: each
equation shown here gives rise to second, which is obtained by exchanging the two
colours. The colour duality is derivable from the equations involving H .
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= =

Fig. 3. [Left] An informal equation on graphs that expresses the Spider Theorem.
[Right] The Spider Theorem expressed formally using graph patterns. The !-boxes are
named i and j. The variable nodes are white and named a and b. The non-variable
node data (the angle) is written inside the node when non-zero.

= = =

However, composition with semi-circles (dQ and eQ from Definition 3), on the
co-domain or domain, allows an equation involving one of the above to easily
lead to a derivation corresponding to either of the other two: given any one of
the allows a trivial derivation of the others.

To address this, we formalise a representation that abstracts over the bound-
ary nodes membership in the domain or co-domain. This gives rise to a variable-
node graphs, in which boundary nodes have been generalised to variable nodes.
The intuition of variable nodes is that they can replaced by concrete nodes in
some graph in a process analogous to composition.

To formalise the semantics of variable-node graphs, we define matching, which
captures the intuitive idea of a graph with variable nodes occurring within an-
other graph:

Definition 5. A variable-node (resp., concrete) graph G matches another graph
H if there exists an open embedding G → H which is strict on the non-variable
(resp., non-boundary) nodes. This open embedding is called a matching. The
notation G ≤v H is used for G matches H.

A graph with variable nodes, G, can be given a formal semantics by being inter-
preted as a set of concrete graphs, denoted by �G�v . The interpretation is simply
the set of concrete graphs which the variable node graph matches.

Proposition 2. G ≤v H ⇔ �G�v ⊇ �H�v .

Proof. The proof of the implication from left to right is a consequence of the fact
that a composition of open embeddings is an open embedding. In particular, the
embedding of G ≤v H composed with �H�v is thus an open embedding of G into
�H�v. Hence �G�v ⊇ �H�v. From right to left, we compose the open embedding
�G�v, restricted to its subset �H�v, with the inverse of �H�v to get G ≤v H .
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≤
copy

≤
merge

≤

drop

Fig. 4. An illustration of !-box graph matching using the !-box operations. This involves
first copying !-box i0 twice, then merging i0 and i1 and finally dropping i3.

5 !-Boxes

If we wish formalise reasoning via spiders then an arbitrary number of repetitions
of a subgraph need to be matched. To support this we introduce an operation,
!-boxing (pronounced bang-boxing), on graph representations. Given a graph
representation, this introduces a new notation by outlining a set of nodes. These
nodes are said to be in a !-box. Intuitively, the resulting !-boxed graph can be
thought of as representing a set of graphs with an arbitrary number of copies
of the !-boxed nodes, where every copy connects, in the same way, to the nodes
outside the !-box. The !-boxes can also be instantiated with zero copies. This
erases all edges to and from the !-box.

More formally, a !-box graph is a pair (G,B) where G is a graph and B is a set
of disjoint subsets of V i.e. b1, b2 ∈ B then b1∩b2 = ∅.6 To formalise the intuitive
notion that a !-box represents arbitrary number of copies of the subgraph made
from its nodes, we introduce !-box matching. This binary relation, written infix
as ≤!, is defined such that (G,B) ≤! (H, C) whenever (H, C) can be obtained
from (G,B) by a sequence the following operations:

copy: copies a !-box, b in a graph to produce a new graph with two copies of the
!-boxed subgraph, b is the old one and b′ is the new one. The set of !-boxes
in the copied graph now also contains the new !-box b′. Any edges between
a node, n, inside the !-box b, and a node, m, outside it, get copied so that
there is a new edge from m to the new copy of n in b′.

drop: simply removes the !-box, but leaves its contents in the graph.
kill: removes from the graph all nodes in the !-box as well as any incident edges.
merge: combines two !-boxes, B1 and B2 into a single larger !-box B1 ∪B2. To

ensure that copying after merging commutes with copying before, merging
is restricted to !-boxes which do not have an edge between their nodes.

An example of matching with these operations is illustrated in Figure 5.
We give a formal semantics to !-box graphs by defining them in terms of

a set of graphs in the underlying representation. In particular, we denote the
interpretation of a !-box graph (G,B) by �(G,B)�! and say that its members are
instances.

6 One could consider more expressive notions of nested, or overlapping, node sets in
the !-boxes. While such expressivity is interesting, it is not required for the system
we formalise here.
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Definition 6. The interpretation �(G,B)�! is a set of concrete graphs defined
by

�(G,B)�! = {H | (G,B) ≤! (H, ∅)}

i.e. the those graphs matched by the !-box graph that have no !-boxes.

Observe that every concrete instance of a !-box graph can be defined by pairing
each !-box with the natural number that defines how many copies are made of
it. Thus �G�! is isomorphic to the set of k-tuples of natural numbers, where k is
the number of !-boxes. The need for the !-box matching operation, rather than
using a direct k-tuple interpretation, is to allow matching between !-box graphs,
and thus to provide a mechanism for derived rules.

Proposition 3. !-Matching respects !-box semantics: G ≤! H ⇔ �G�! ⊇ �H�!.
The proof is a simple consequence from the definition of �G�! being a subset of
the graphs that match G.

For the purposes of this paper, the underlying graph representation of !-boxed
graphs is variable-node graphs. This gives rise to graph patterns which we now
discuss in more detail.

6 Graph Patterns

The representation of Compact Closed Categories as graphs, discussed in §2.1, is
too restrictive for reasoning about quantum computation. In particular, graph-
ical rules such the Spider Theorem, from Figure 4-left, are frequently needed,
but not expressible. In this section we combine the !-boxes and variable-node
extensions to graphs. We call this representation graph patterns. This forms a
representation that allows us to express, in a finite way, certain infinite fam-
ilies of equations between concrete graphs. In particular, the Spider Theorem
can now be represented as shown in Figure 4-right. We also extend the notion
of matching for graph pattens. This provides the foundations for the rewriting
machinery in §7 which can then be used to reason about quantum computation.

The semantics for a graph pattern G is a set of concrete graphs denoted by
�G� and define it as:

�G� = {�G′�v . G
′ ∈ �G�!}

this simply considers every interpretation of the !-boxes to give variable-node
graphs for which we then appeal to their own semantics.

The specification for one pattern, G, to match another one, H is that it
is more general with respect to the interpretation: �G� ⊇ �H�. However, graph
patterns can correspond to a countably infinite number of concrete graphs. Thus
matching between graph patterns cannot be implemented by simply unfolding
all interpretations as concrete graphs and checking the membership relation.

Fortunately, it is quite easy to provide decidable matching: the size of the
unfolding that needs to be considered can be bounded. The key observation
is that a graph G1 will never match a graph with fewer non-variable nodes.



88 L. Dixon and R. Duncan

Thus unfolding of G1 can be bounded by the number of non-variable nodes in
G2. While this gives a generate and test style algorithm, it is not efficient. The
intuition for an efficient algorithm is to search through one graph incrementally
increasing the matched part.

7 Reasoning with Graph Patterns

In this section we describe how the graph pattern formalism can provide a meta-
level framework for reasoning about models of compact closed categories. Fol-
lowing the terminology of logical frameworks such as Isabelle [12], we call the
specification provided by the underlying model an object-level graph formalism.
An object-level formalisation defines a set of rules which are treated as the ax-
ioms for the system; for instance, the equations from Figure 2. It also defines the
data at the nodes and edges as well as corresponding data-matching behaviour.
For its part, the meta-level provides generic machinery to manipulate graphs and
derive new rules. We now describe the meta-level framework, noting the condi-
tions for a rule to be valid, and prove the systems adequacy for rewriting. The
resulting system forms the basis for an interactive proof assistant that supports
reasoning about compact closed categories.

7.1 Equational Rules

In our framework, the axioms defined by an object-level model, as well as derived
rules, are pairs of graph patterns. Such a pair represents the left and right hand
sides of an equation. Rules are declarative in that they denote a set of concrete
equational rules.

The intuitive idea of substitution with a rule is to replace a subgraph that
matches the left hand side with the right hand side. However, not all pairs of
rules make sense with respect to the underlying semantics. For an equation to
be well defined with respect to the compact closed structure it must not be
possible to change the type (the boundary nodes in the domain and co-domain)
of a concrete graph by rewriting. Mapping this restriction back to pairs of graph
patterns results in the following conditions on rules:

– There has to be a isomorphism between variable nodes in the left and right
hand subgraphs. Given a matching against the left hand side of a rule, the
target subgraph is replaced with the right hand side while keeping the same
instantiations for the isomorphic variable nodes of the right hand side.

– Rules must also define a partial injective mapping between !-boxes on the
left and right hand sides. The intuition for this mapping is that the unfolding
used when matching a !-box on the left, is applied to the mapped !-box on
the right before replacement.

– The interplay between !-boxes and variable nodes means that when a variable
node appears within a !-box on one side of a rule, it must also appear under
a mapped !-box on the other side.
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Notationally, and implementationally, we annotate !-boxes and variable nodes
in a graph with unique names. For example, Figure 4 shows the Spider Theorem.
In this figure, the mapping between !-boxes is represented by !-boxes having the
same name on the left and right of a rule. Similarly, the isomorphism between
variable nodes is captured by the set of variable node names on the left and right
hand side being equal.

7.2 Lifting Axioms and Adequacy

The axioms of an object formalism come from the semantics of the underlying
system. For instance, the equations given in Figure 2 can be proved by matrix
calculations in the underlying model. When such rules are expressed as graph
patterns, we replace the concrete representation’s boundary nodes with variable
nodes. This operation is called lifting. An equation on graph patterns corresponds
to an infinite (when their are variable nodes) set of equations between concrete
graphs. Thus we might worry that the lifted equations express too much: they
may allow rewrites which are not true.

We call the property that the lifted representation is a conservative extension
of the initial theory adequacy. For models of compact closed categories, the
proof of adequacy is quite simple: given an equation between concrete graphs,
G = H , we observe that every instance of the lifted equation corresponds to
the original equations composed with some graph. The graph is given by the
unmapped subgraph using the open embedding from the lifted equations onto
the considered instance. Thus if G = H is true, then so is every instance of its
lifting, and thus lifting produces an adequate representation.

7.3 Meta-level Logic and Derived Rules

Having defined what makes a valid rule, we now present the meta-logic of the
framework. This is quite simple as it only involves dealing with object-level
equations:

refl
Γ � A = A

Γ � A = B
sym

Γ � B = A

Γ � A = B Γ � C = D
subst

Γ � C = (D[A/B])

where Γ is the set of object-level axioms.
We assume that the axioms in Γ meet the validity conditions described earlier.

These rules all preserve the validity conditions on equations and thus the system
as a whole ensures only valid rules are derived. For the reflexivity rule (refl), we
assumes that A is a well-formed pattern graph. This rule allows a new graph to
be introduced. By then applying the subst rule, intermediate results are derived
which can themselves be used to rewrite other rules and conjectures. In this way,
the system allows derived rules to provide an abbreviation for a combination of
steps.

A sets of rules can be applied automatically to simplify a graph or simulate
computation in the object domain. For such rewriting to terminate, a suitable
left-to-right ordering on rules needs to be observed, such as a decrease in the
size of the subgraph. In §8 we illustrate simulating a quantum computation.
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=

= =

Fig. 5. An example computation of the Quantum Fourier Transform with inputs 1 and
0, performed symbolically by rewriting

8 A Case Study in Quantum Computation

The model of quantum computation introduced in §3 provides an object formal-
ism for our meta-level framework. In particular, the object level axioms come
from lifting the equations in Figure 2 and from the encoding of the Spider The-
orem as shown in Figure 4.

Our model of quantum computation requires no data for the edges. The nodes
on the other hand are either H (a Hadamard gate), with no additional data, or
have an angle and a colour, expressing that they are defined in the X or Z basis.
For their part, angles are expressed as rational numbers which correspond to the
coefficient of π in the underlying matrix.

To allow composition of rules to compute the resulting angles we give the X
and Z nodes an angle expression. When a node is within a !-box, the expres-
sion is a single angle-variable which gets instantiated to a new angle-variable
in each of the unfoldings of the !-box. When a node is not within a !-box, the
angle-expression is a mapping from a set of angle-variables to the corresponding
rational coefficient. When an angle-expression contains an angle-variable within
a !-box, this is interpreted as a sum of the variables that result from its un-
folding. This rather simple expression language has a normal form by ordering
the angle-variable by name. Matching then results in angle-variables being in-
stantiated and the expressions in all affected nodes are then (re)normalised. An
additional implementation detail must also be observed for the substitution rule:
it must ensure that angle-variables in the rule being applied are distinct from
those in the expression being rewritten.

The quantum Fourier transform is among the most important quantum algo-
rithms, forming an essential part of Shor’s algorithm [16], famous for providing
polynomial factoring. In our graph pattern calculus this circuit becomes the top-
left graph in Figure 8. This figure shows how computation can be symbolically
performed by rewriting with the lifted equations from Figure 2 and the graph
pattern version of the Spider Theorem.
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9 Related Work

There are several foundational approaches to graph transformation, including
algebraic approaches [7], node-label controlled [9], matrix based [17], and pro-
grammed graph replacement [14]. These provide general ways of understanding
graph transformations which can then be implemented to provide machinery for
a specific application. However, systems based on these theories do not provide
machinery for the semantics of compact closed categories. Thus their notion of
matching and replacement do not guarantee well-typed results. Furthermore,
they do not provide machinery for rewriting of graphs with ellipses notation
which is needed to represent the Spider Theorem.

The distinctive feature of our form of graph rewriting is that the graphs
capture the structural properties of compact closed categories and rewriting is
compositional: it preserves the type of the rewritten subgraph. However, our
system can also be seen as an instantiation of a general graph rewriting sys-
tem: matching provides the embedding information and the object-level node
matching defines the application conditions and the attribute transfer function.

We note that our graphical notation has little connection to graph states as
used in various approaches to measurement-based quantum computation [13]. In
that approach the graph structure is used to provide a description of the entan-
glement in a state: it does not provide a complete description of a computation.

10 Conclusions and Further Work

We have introduced a representation for graphs which can formally characterise
the ellipses notation used informally to represent certain infinite families of graph
rewrites, such as the Spider Theorem. This representation provides the founda-
tion for a simple meta-logic for reasoning about models of compact closed cat-
egories. We illustrated this by providing an account of quantum computation
and showing how computation can be performed. Having developed the basic
representational machinery and shown matching to be decidable, we are left with
several exciting avenues for further research. The most immediate direction we
are pursuing is to provide a full implementation - only a partial one is currently
available7. Other areas of further work include considering confluence results
for sets of rewrite rules, increasing the expressiveness of the representation for
graph-patterns, and finding a complete set of rewrite rules for the considered
model of quantum computation.
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Abstract. Over the last decade, first-order constraints have been ef-
ficiently used in the artificial intelligence world to model many kinds
of complex problems such as: scheduling, resource allocation, computer
graphics and bio-informatics. Recently, a new property called decompo-
sability has been introduced and many first-order theories have been
proved to be decomposable: finite or infinite trees, rational and real
numbers, linear dense order,...etc. A decision procedure in the form of
5 rewriting rules has also been developed. This latter can decide if a
first-order formula without free variables is true or not in any decompos-
able theory. Unfortunately, this decision procedure is not enough when
we want to express the solutions of a first-order constraint having free
variables. These kind of problems are generally known as first-order con-
straint satisfaction problems. We present in this paper, not only a deci-
sion procedure but a full first-order constraint solver for decomposable
theories. Our solver is given in the form of nine rewriting rules which
transform any first-order constraint ϕ (which can possibly contain free
variables) into an equivalent formula φ which is either the formula true,
or the formula false or a simple solved formula having at least one free
variable and being equivalent neither to true nor to false. We show the
efficiency of our solver by solving complex first-order constraints over fi-
nite or infinite trees containing a huge number of imbricated quantifiers
and negations and compare the performances with those obtained using
the most recent and efficient dedicated solver for finite or infinite trees.
This is the first full first-order constraint solver for any decomposable
theory.

1 Introduction

First-order constraints are first-order formulas built on a set of function and re-
lation symbols using the following logical symbols: =, true, false,¬,∧,∨,→,↔,
∀, ∃, (, ). Over the last decade, first-order constraints have been efficiently used
in the the artificial intelligence world to model many kinds of complex problems
such as: scheduling, resource allocation, configuration, temporal and spatial rea-
soning, computer graphics, bio-informatics [1,8]. However, in most of the cases,
the quantifiers are not used due to the inherent huge complexity in time and
space when solving first-order constraints with imbricated quantifiers, such as:

∃x∀y
[
x = f(y, x) ∧ f(x, f(w, y)) = f(f(y, x), w)∧
¬(∀v∃z (x = f(v, x) → w = f(z, w)))

]

,

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 93–108, 2008.
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and if we use Maher’s theory of finite or infinite trees [9,4] then solving such a
constraint cannot be done with an algorithm of better complexity in time and
space than a huge tower of powers of two, i.e. 222...

whose depth is proportional
to the number of imbricated quantifiers [3,12]. Due to this high complexity, only
a few general first-order constraint solvers have been developed in the past and
no one of them could solve complex first-order constraints with many imbricated
quantifiers.

Recently, we showed that a lot of first-order theories such as: finite or infinite
trees, real numbers, rational numbers, linear dense order without endpoints,...etc
share a new property that we call decomposability [5]. We have then presented
a decision procedure in the form of five rewriting rules which for any decompos-
able theory T can decide the satisfiability or unsatisfiability of any first-order
proposition, i.e. any first-order constraint whose all variables are quantified, such
as:

∃u2∀u1∃u3 ¬

⎡

⎣
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬(∃w1 v1 = g(w1))∧
¬(∃w2 u2 = g(w2) ∧w2 = g(u3))

⎤

⎦ .

However, even if this decision procedure [5] can be used for any complex propo-
sition with any logical symbols, it suffers from three main problems:

(1) It can only decide if a proposition is true or not but cannot solve first-order
constraints having at least one free variable (i.e a none quantified variable). In
fact, if we model a given problem P by the following first-order constraint ϕ
having u as free variable:

¬

⎡

⎣∃v1 u = f(v1) ∧

⎡

⎣
¬(∃w1 u = f(w1) ∧ w1 = v1)∧
¬(∃w2 y = f(v1) ∧ w2 = f(v1))∧
¬(∃w3 u = f(v1) ∧ v1 = f(w3))

⎤

⎦

⎤

⎦ ,

then solving the problem P means to transform ϕ into an equivalent simple
formula - generally known as solved formula - from which we can easily extract
the values of the free variable u such that the formula ϕ is true. Our decision
procedure for decomposable theories [5] is not able to do produce such a solved
formula and can only test if there exists at least one solution to our problem by
solving the following proposition:

∃u¬

⎡

⎣∃v1 u = f(v1) ∧

⎡

⎣
¬(∃w1 u = f(w1) ∧w1 = v1)∧
¬(∃w2 y = f(v1) ∧w2 = f(v1))∧
¬(∃w3 u = f(v1) ∧ v1 = f(w3))

⎤

⎦

⎤

⎦ ,

and the answer is either the formula true (i.e. the problem P has at least one
solution) or the formula false (i.e. the problem P has no solutions). This is why
the algorithm given in [5] is called decision procedure and not full first-order
constraint solver.

(2) If we use our decision procedure on a formulaϕwhich contains free variables
then we can get an equivalent solved formula φ having free variables but being
always false or always true. The appropriate solved formula ofϕ in this case should
be the formula false or the formula true instead of φ. Let us take for instance the
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theory Tr of finite or infinite trees (which was proved to be decomposable in [5])
and let us use our decision procedure on the following formula ϕ

¬(∃y x = f(y) ∧ ¬(∃zw x = f(z) ∧ w = f(w))). (1)

We get the following final formula φ

¬(∃y x = f(y) ∧ ¬(∃z x = f(z))). (2)

The problem is that this formula contains free variables but is always true in the
theory Tr. In fact, it is equivalent to ¬(∃y x = f(y)∧¬(∃z x = f(y)∧x = f(z))),
i.e. to ¬(∃y x = f(y)∧¬(x = f(y)∧ (∃z z = y))), thus to ¬(∃y x = f(y)∧¬(x =
f(y))), which is finally equivalent to true. As a consequence, the solved formula
of our initial formula (1) should be the formula true instead of (2). This is a
good example which shows the limits of the decision procedures on first-order
constraints having at least one free variable.

(3) The third problem is that the complexity of this decision procedure is ex-
ponential in time and space for most of the decomposable theories. As a conse-
quence, the implementation of this decision procedure does not allow one to solve
huge first-order constraints with many imbricated quantifiers. In fact, we suc-
ceeded in [5] to decide the validity of some very particular propositions (mainly
formulas representing the solutions of a two player game) but never succeeded
to decide the validity of randomly generated first-order constraints.

Much more elaborated algorithms are then needed when we want to induce
solved formulas expressing solutions of complex first-order constraint satisfaction
problems in decomposable theories. Of course, our goal in these kinds of problems
is not only to know if there exist solutions or not, but to express these solutions
in the form of a first-order formula ϕ which is either the formula true (i.e. the
problem is satisfiable for all the values of the free variables) or the formula false
(i.e. the problem is unsatisfiable for all the values of the free variables) or a simple
solved formula having at least one free variable and being equivalent neither to
true nor to false. Algorithms which are able to produce such a formula ϕ are
called first-order constraint solvers.

Overview of the paper: we present in this paper not only a decision procedure,
but the first full first-order constraint solver for any decomposable theory. This
paper is organized in six sections followed by a conclusion. This introduction is
the first section. Section 2 is dedicated to a brief review of first-order logic and
decomposable theories. We present in section 3 the working formulas which are
structured formulas having an important notion of depth. We also introduce the
box-checkers. They are kind of black boxes that enable us to efficiently simplify
some working formulas to true or false even if these latter contain free variables.
In section 4, we present 9 rewriting rules which handle working formulas and
transform a working formula of any depth d into an equivalent conjunction of
final working formulas of depth 2 from which we can easily extract a solved
formula written in a very simple form. The main idea behind these rules consists
in: (1) a top-down propagation of constraints. In each level, conjunction of atomic
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formulas are propagated to the embedded sub-formulas. This step enables us
to remove all inconsistent formulas which contradict their top-formulas using
the box-checkers. (2) a bottom-up elimination of quantifiers using the property
of decomposability followed by a very particular distribution. We present in
section 5 our full first-order constraint solver in any decomposable theory T .
This solver uses, among other things, the 9 rules of section 4. It transforms any
first-order formula ϕ into a simple solved formula. Finally, we show in section
6 the efficiency of our algorithm and compare its performances with those of
our decision procedure for decomposable theories [5], even if this latter can only
answer by true or false. Among other things, our algorithm can solve formulas
of a two player game involving more than 80 nested alternated quantifiers while
the decision procedure overflows the memory starting from 40 nested alternated
quantifiers. We also compare our performances with those of the most recent
and efficient first-order constraint solver over finite or infinite trees which we
have presented in [4] and show that even if our solver is general and can be used
for any decomposable theory T , he gives very competitive results comparing
with those of [4] which is specially optimized for the theory of finite or infinite
trees and cannot be used for other decomposable theories such as rational or real
numbers. The box-checkers, the 9 rewriting rules, the solver and the benchmarks
are our new contributions in this paper.

2 Preliminaries

2.1 First-Order Formulas

Let V be an infinite set of variables. Let S be a set of symbols, called a signature
and partitioned into two disjoint sub-sets: the set F of function symbols and
the set R of relation symbols. To each function symbol and relation is linked
a non-negative integer n called its arity. An n-ary symbol is a symbol of arity
n. A first-order constraint or formula is an expression of the one of the eleven
following forms:

s = t, r(t1, . . . , tn), true, false ,
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ),

(∀xϕ), (∃xϕ),
(3)

with x ∈ V , r an n-ary relation symbol taken from F, ϕ and ψ shorter formulas,
s, t and the tis terms, that are expressions of the one of the two following forms
x, f(t1, ..., tn), with x taken from V , f an n-ary function symbol taken from F
and the ti’s shorter terms. The formulas of the first line of (3) are known as
atomic, and flat if they are of one of the following forms:

true, false, x0 = x1, x0 = f(x1, ..., xn), r(x1, ..., xn),

with the xi’s (possibly non-distinct) variables taken from V , f ∈ F and r ∈
R. We denote by AT the set of the conjunctions of flat atomic formulas. A
proposition is a formula without free variables.
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A model is a couple M = (D,F ), where D is a non-empty set of individuals
of M and F a set of functions and relations in D. We call instantiation of a
formula ϕ by individuals of M , the formula obtained from ϕ by replacing each
free occurrence of a free variable x in ϕ by the same individual i of D and by
considering each element of D as 0-ary function symbol.

A theory T is a (possibly infinite) set of propositions. We say that the model
M is a model of T , if for each element ϕ of T , M |= ϕ. If ϕ is a formula, we
write T |= ϕ if for each model M of T , M |= ϕ. A theory T is complete if for
every proposition ϕ, one and only one of the following properties holds: T |= ϕ,
T |= ¬ϕ.

Let M be a model and T a theory. Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two
words on V of the same length. Let ϕ, and ϕ(x̄) be formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note
that semantically the new quantifiers ∃? and ∃! simply means “at most one” and
”one and only one”.

2.2 Decomposable Theories

We now recall the definition of decomposable theories [5]. Informally, this defi-
nition simply states that in every decomposable theory T each formula of the
form ∃x̄ α, with α ∈ AT , is equivalent in T to a decomposed formula of the form
∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) where the formulas ∃x̄′ α′, ∃x̄′′ α′′, and ∃x̄′′′ α′′′

have elegant properties which can be expressed using the following quantifiers:
∃?, ∃! and ∃Ψ(u)

∞ .
In all what follows, we will use the abbreviation wnfv for “without new free

variables ”. A formula ϕ is equivalent to a wnfv formula ψ in T means that
T |= ϕ ↔ ψ and ψ does not contain other free variables than those of ϕ.

Definition 2.2.1. A theory T is called decomposable if there exists a set Ψ(u)
of formulas having at most u as free variable and three sets A′, A′′ and A′′′ of
formulas of the form ∃x̄ α with α ∈ AT such that:

1. Every formula of the form ∃x̄ α ∧ ψ, with α ∈ AT and ψ any formula, is
equivalent in T to a wnfv decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.
2. If ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least

one of the following properties holds:
– T |= ∃?yx̄′ α′,
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– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y).
3. If ∃x̄′′α′′ ∈ A′′ then for each x′′i of x̄′′ we have T |= ∃Ψ(u)

∞ x′′i α
′′.

4. If ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′.
5. If the formula ∃x̄′α′ belongs to A′ and has no free variables then this formula

is either the formula ∃εtrue or ∃εfalse.

In [5] many first-order theories have been proved to be decomposable such as:
theory of finite or infinite trees [9,4], Clark equational theories [2], rational and
real numbers with addition and subtraction [7] and many combinations based
on these theories [6]. From the proof of the decomposability of these theories
we can deduce their completeness using a decision procedure which for every
proposition produces either true or false [5]. However, this latter is not able to
solve first-order constraints having free variables. To this end, we present in the
next section some tools that will enable us to build a full first-order constraint
solver for any decomposable theory T .

3 Working Formulas and Box-Checkers

Let T be a decomposable theory. The sets Ψ(u), A, A′, A′′ and A′′′ are now
known and fixed for all the following sections of this paper.

3.1 Normalized Formulas

Definition 3.1.1. A normalized formula ϕ of depth d ≥ 1 is a formula of the
form

¬(∃x̄ α ∧
∧

i∈I

ϕi), (4)

with I a finite (possibly empty) set, α ∈ AT and the ϕ′
is normalized formulas

of depth di with d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ
have distinct names and different from the names of the free variables.

Property 3.1.2. Every formula ϕ is equivalent in T to a wnfv normalized for-
mula of depth d ≥ 1.

We have shown this property in detail in [5] where we gave a very simple al-
gorithm which transforms any first-order formula into a normalized formula of
depth d ≥ 1.

3.2 Box-Checkers

We now introduce a property which uses two tools denoted by BC1 and BC2
(BC stands for box-checker) which will enable us to detect if a given normalized
formula (which can possibly contain free variables) is equivalent to true or false
in T . These checkers will be used in our solver to simplify some normalized
formulas into true or false even if these latter have free variables.
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Property 3.2.1. Let ϕ be normalized formula of depth 2 of the form

¬(∃x̄ α ∧
n∧

i=1

¬(∃ ȳi βi)),

with α ∈ AT and βi ∈ AT . Let us denote by z̄ the vector of the free variables of
ϕ. It is easy to check if ϕ is equivalent to true or to false even if it contains free
variables. For that we proceed as follows:

– Find the truth value of the proposition ∀z̄ ϕ. If the answer is true then ϕ is
true in T . This step is made using a Box-checker that we denote by BC1(ϕ).

– Find the truth value of the proposition ∀z̄ ¬ϕ. If the answer is true then ϕ is
false in T . This step is made using a Box-checker that we denote by BC2(ϕ).
If BC1(ϕ) = false and BC2(ϕ) = false then ϕ is neither true nor false in T .

We show that the complexity of such a checking is n ∗ Cpx if n �= 0, and Cpx
if n = 0, where Cpx is the complexity of the decomposability algorithm, i.e.
the algorithm which can decompose each quantified conjunction of flat atomic
formulas according to Definition 2.2.1.

The two checkers BC1 and BC2 are considered as two black-boxes: they
are composed of two algorithms which are very technical and which use very
complex properties of decomposable theories. As a consequence, we did not find
it interesting to detail them in this paper. We prefer instead to detail the whole
solver with many intuitive explanations and examples (see sections 4 and 5).

Example 1. Let Tr be the theory of finite or infinite trees [9,4] and let us check
if the following normalized formula ϕ can be simplified in Tr into true or false
even if it has x as free variable:

¬(∃y x = f(y) ∧ ¬(∃z x = f(z)))

Let us compute BC1(ϕ). According to Property 3.2.1, BC1(ϕ) is true if the
following formula is true in Tr

∀x¬(∃y x = f(y) ∧ ¬(∃z x = f(z))).

This latter is equivalent to

∀x¬(∃y x = f(y) ∧ ¬(∃z x = f(y) ∧ x = f(z))), i.e. to

∀x¬(∃y x = f(y) ∧ ¬(x = f(y) ∧ (∃z z = y))) i.e. to

∀x¬(∃y x = f(y) ∧ ¬(x = f(y))), i.e. to

∀x¬false ,

which is finally equivalent to true. Thus, BC1(ϕ) = true and thus according to
Property 3.2.1, the formula ϕ is equivalent to true even if it contains one free
variable. This example is the one given in the introduction of this paper (see the
formula (1) page 3) and for which we have noted that the decision procedure
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of [5] cannot detect that ϕ is always true and cannot simplify the formula ϕ
anymore. Our solver can completely solve ϕ and produce the solved formula
true thanks to our box-checkers. We will also see in section 6 why these box-
checkers greatly improve the efficiency of our solver comparing with the decision
procedure of [5].

3.3 Working Formulas

We will now introduce the working formulas: they are normalized formulas hav-
ing an integer over each negation which enables us to:

(1) link a semantic meaning to each sub-normalized formula of the form
¬k(∃x̄ α ∧ ...) according to the value of the integer k

(2) have a full control on the execution of the rewriting rules of our solver on
the normalized formulas (cf. Section 4).

Definition 3.3.1. A working formula is a normalized formula in which all the
occurrences of ¬ are replaced by ¬k with k ∈ {0, ..., 4} and such that each occur-
rence of a sub-formula of the form

p = ¬k(∃x̄ α ∧ q), with k > 0, (5)

satisfies the k first conditions of the condition list below. In (5) α ∈ AT , q is
a conjunction of working formulas of the form

∧n
i=1 ¬ki(∃ȳi βi ∧ qi), with n ≥ 0,

βi ∈, AT , qi a conjunction of working formulas, and in the below condition list
∃x̄′ α′ is the quantified conjunction of the flat atomic formulas of the immediate
top-working formula1 p′ of p if it exists.

1. If p′ exists then T |= α → α′.
2. BC1(¬(∃x̄ α)) = false.
3. If p′ exists then BC1(¬(∃x̄′ α′ ∧ ¬(∃x̄ α))) = false.
4. The formula ∃x̄ α belongs to A′.

We strongly insist in the fact that ¬k does not mean that the normalized formula
satisfies only the kth condition but all the conditions i with 1 ≤ i ≤ k.

Example 2. The formula ¬3(∃x y = f(x) ∧ ¬2(∃z z = f(y) ∧ y = f(x)) is a
working formula of depth 2 in the theory Tr of finite or infinite trees. In fact:

– For ¬3 we have BC1(¬(∃x y = f(x))) = false because the formula
∀y ¬(∃x y = f(x)) is false in Tr.

– For ¬2 we have Tr |= (z = f(y) ∧ y = f(x)) → y = f(x) and BC1(¬(∃z z =
f(y)∧y = f(x))) = false because the formula ∀xy ¬(∃z z = f(y)∧y = f(x))
is false in Tr.

Definition 3.3.2. An initial working formula is a working formula which begins
with ¬3 and such that k = 0 for all the other occurrences of ¬k. A final working
formula is a working formula of depth less or equal to 2 with k = 4 for all the
occurrences of ¬k.
1 In other words, p′ is of the form ¬k′

(∃x̄′ α′ ∧ p∗ ∧ p) where p∗ is a conjunction of
working formulas and p is the formula (5).
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4 Transformation of an Initial Working Formula into a
Final Working Formula

In the following, we present nine rewriting rules which transform an initial work-
ing formula of any depth d into an equivalent conjunction of final working for-
mulas. To apply the rule p1 =⇒ p2 to the working formula p means to replace
in p a sub-formula p1 by the formula p2, by considering that the connector ∧
is associative and commutative. In the following, α, β, λ represent conjunctions
of flat atomic formulas, x̄, ȳ and z̄ represent vectors of variables, q represents a
conjunction of working formulas, r represents a conjunction of flat atomic for-
mulas and working formulas. All these letters can be subscripted or have
primes.

(1) ¬3(∃x̄ α ∧ q ∧ ¬0(∃ȳ r)) =⇒ ¬3(∃x̄ α ∧ q ∧ ¬1(∃y α ∧ r))

(2) ¬1(∃x̄ α ∧ q) =⇒ true

(3) ¬1(∃x̄ α ∧ q) =⇒ ¬2(∃x̄ α ∧ q)

(4) ¬3(∃x̄ α ∧ q ∧ ¬2(∃ȳ β)) =⇒ true

(5) ¬3(∃x̄ α ∧ q ∧ ¬2(∃ȳ β ∧ q′)) =⇒ ¬3(∃x̄ α ∧ q ∧ ¬3(∃ȳ β ∧ q′))

(6) ¬3(∃x̄ α ∧
∧

i∈I ¬
4(∃ȳi βi)) =⇒ ¬4(∃x̄′ α′ ∧

∧
i∈I′ ¬4(∃z̄′ λ′

i))

(7) ¬4(∃x̄ α ∧
∧

i∈I ¬
4(∃ȳi βi)) =⇒ true

(8) ¬4(∃x̄ α ∧
∧

i∈I ¬
4(∃ȳi βi)) =⇒ false

(9) ¬3

⎡

⎢
⎢
⎣

∃x̄ α ∧ q∧

¬4

[
∃ȳ β∧
∧

i∈I ¬
4(∃z̄i λi)

]

⎤

⎥
⎥
⎦ =⇒

[
¬3(∃x̄ α ∧ q ∧ ¬4(∃ȳ β))∧
∧

i∈I ¬
3(∃x̄ȳz̄i λi ∧ q0)

∗

]

with I a finite possibly empty set. In rule (2), BC1(¬(∃x̄ α)) = true. In rule
(3), BC1(¬(∃x̄ α)) = false. In rule (4), BC1(¬(∃x̄ α ∧ ¬(∃ȳ β))) = true. In rule
(5), if q′ = true then BC1(¬(∃x̄ α ∧ ¬(∃ȳ β))) = false . In rule (6):

– The formula ∃x̄ α is equivalent in T to a decomposed formula of the form
(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′))),

– The formula ∃ z̄′ λ′ is the first part of the decomposition of the formula
∃x̄′′′ȳi α

′′′ ∧ βi. In other words, the formula ∃x̄′′′ȳi α
′′′ ∧ βi is equivalent in T

to a decomposed formula of the form (∃z̄′ λ′∧(∃z̄′′ λ′′∧(∃z̄′′′ λ′′′)). Moreover,
the quantified variables of each formula ∃ z̄′i λ′i are renamed by distinct names
so that they respect the definition of the normalized formulas.

– I ′ is the set of the i ∈ I such that ∃ȳ′iβ′
i does not have free occurrences of

any variable of x̄′′.

In rule (7), BC1(¬(∃x̄ α ∧
∧

i∈I ¬(∃ȳi βi))) = true. In rule (8), BC2(¬(∃x̄ α ∧∧
i∈I ¬(∃ȳi βi))) = true. In rule (9), BC1(¬(∃ȳ β ∧

∧
i∈I ¬(∃z̄i λi))) = false ,

BC2(¬(∃ȳ β ∧
∧

i∈I ¬(∃z̄i λi))) = false , the set I is a none empty set and q0 is
the formula q in which all the occurrences of ¬k have been replaced by ¬0. The
formula (∃x̄ȳz̄i λi ∧ q0)∗ is the formula (∃x̄ȳz̄i λi ∧ q0) in which we have renamed
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the variables of x̄ and ȳ′ by distinct names and different from the names of the
free variables.
How Does it work? The use of indices on the negations of the working formulas
enables us to force the application of the rules to follow a clear strategy until
reaching a conjunction of final working formulas. In fact, the algorithm follows
two main steps:

(i) A top-down propagation of atomic formulas following the tree structure of
the working formulas and using the rules (1),...,(5). In this step, atomic formulas
are copied in all sub-working formulas by rule (1). Inconsistent sub-formulas as
well as those which contradict their sub-formules are removed by the rules (2)
and (4).

(ii) A bottom-up elimination of quantifiers and depth reducing of the working
formulas using the rules (6),...(9).

More precisely, starting from an initial working formula ϕ of the form
¬3(∃x̄ α ∧

∧
i∈I qi), where all the qi are working formulas whose negations are

of the form ¬0, rule (1) propagates the atomic formulas of α into a sub-formula
qi, with i ∈ I, and changes the first negation of qi into ¬1. The rules (2),...,(5)
can now be applied. Inconsistent conjunction of flat atomic formulas that was
created after propagation are removed by rule (2). Rule (3) is then applied and
changes the first negation of qi into ¬2. The algorithm starts now a new phase
which consists in removing the formulas which contradict their sub-formulas us-
ing Rule (4). Note that in rule (4), q is a conjunction of working formula of any
depth d. This step is done using the box-checker BC1 and enables us to reduce
directly the whole working formula to true without solving the sub-working for-
mula q which can have a huge depth. The decision procedure given in [5] does
not use this step and loses time and space by solving the formula q using a very
costly rule which increases exponentially the size of the formula. This is why our
new solver is much more efficient than this decision procedure. Once this step
done, rule (5) is applied and changes the second negation into ¬3. Rule (1) can
now be applied again since all the nested negations are of the form ¬0 and so on.
This is the first step of our algorithm. Once the sub-working formulas of depth 1
are of the form ¬3(∃ȳi βi), the second step starts using rule (6) with I = ∅ on all
these sub-working-formulas of depth 1 and transforms their negations into ¬4.
Rule (6) with I �= ∅ is applied again on the sub-working-formulas of depth 2 of
the form ¬3(∃x̄ α ∧

∧
i∈I ¬4(∃ȳi βi)) and produces working formulas of the form

¬4(∃x̄ α ∧
∧

i∈I ¬4(∃ȳi βi)). Inconsistent working formulas of depth 2 as well as
those which are equivalent to true are then simplified to false or true by the
rules (7) and (8). These rules are different from the rules (2) and (4). In fact, we
can build many examples in which the rules (2) and (4) cannot be applied on
a working formula ϕ but rule (7) can be applied. Once all these simplifications
done, rule (9) can now be applied on the working formulas of depth d > 2 of the
form ¬3(∃x̄ α∧q∧¬4(∃ȳ β∧

∧
i∈I ¬4(∃z̄i λi))). After each application of this rule,

new working formulas containing negations of the form ¬0 are created which im-
plies the execution of the rules of the first step of our algorithm, starting by rule
(1) and so on. After several applications of our rules, we get a conjunction of
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working formulas whose depth is less or equal to 2. The rules are then applied
again until all the negations of these working formulas are of the form ¬4. It is
a conjunction of final working formulas.

Property 4.0.3. Every repeated application of the preceding rewriting rules on
an initial working formula p is terminating and producing a wnfv conjunction of
final working formulas equivalent to p in T .

Example 3. Let f and g be two distinct function symbols taken from F of re-
spective arities 2, 1. Let w1, w2, v1, u1, u2, u3 be variables. Let us run our rules
in the theory of finite or infinite trees on the following initial working formula

¬3

⎡

⎣
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬0(∃w1 v1 = g(w1))∧
¬0(∃w2 u2 = g(w2) ∧w2 = g(u3))

⎤

⎦ . (6)

According to rule (1), the preceding formula is equivalent in T to

¬3

⎡

⎣
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬1(∃w1 v1 = g(w1) ∧ v1 = f(u1, u2) ∧ u2 = g(u1))∧
¬0(∃w2 u2 = g(w2) ∧ w2 = g(u3))

⎤

⎦ .

Rule (2) can be applied on the sub formula ¬1(∃w1 v1 = g(w1)∧v1 = f(u1, u2)∧
u2 = g(u1)). Thus, the preceding formula is equivalent in T to

¬3

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬0(∃w2 u2 = g(w2) ∧w2 = g(u3))

]

,

which according to rule (1) is equivalent in T to

¬3

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬1(∃w2 v1 = f(u1, u2) ∧ u2 = g(u1) ∧ u2 = g(w2) ∧ w2 = g(u3))

]

.

Rule (3) followed by rule (5) is applied. Thus, the preceding formula is equivalent
in T to

¬3

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬3(∃w2 v1 = f(u1, u2) ∧ u2 = g(u1) ∧ u2 = g(w2) ∧ w2 = g(u3))

]

.

Rule (6) with I = ∅ is applied and we get

¬3

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬4(∃ε v1 = f(u1, u2) ∧ u2 = g(u1) ∧ u1 = g(u3))

]

.

Once again rule (6) can be applied, with I �= ∅ and we get the following final
working formula

¬4

[
∃ε u2 = g(u1)∧
¬4(∃ε u2 = g(u1) ∧ u1 = g(u3))

]

.
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We have seen in the preceding example how the rules (1),...,(8) can be applied.
Let us now see how rule (9) is applied.

Example 4. Let s and 0 be two function symbols taken from F of respective
arities 1, 0. Let w1, w2, u, v be variables. Let us run our rules in the theory of
finite or infinite trees on the following working formula:

¬3

⎡

⎣∃ε true ∧

⎡

⎣
¬4(∃ε u = s(v))∧
¬4(∃w1 u = s(w1) ∧ w1 = s(v))∧
¬4(∃ε v=u ∧ ¬4(∃ε v=u ∧ u=0) ∧¬4(∃w2 v=u ∧ u = s(w2)))

⎤

⎦

⎤

⎦ .

By considering that

– (∃x̄ α) = (∃εtrue)

– q =
[
¬4(∃ε u = s(v))∧
¬4(∃w1 u = s(w1) ∧w1 = s(v))

]

– (∃ȳ β) = (∃ε v = u)

–
∧

i∈I ¬4(∃z̄i λi) =
[
¬4(∃ε v = u ∧ u = 0)∧
¬4(∃w2 v = u ∧ u = s(w2))

]

rule (9) can be applied and produces the following formula
⎡

⎣
¬3(∃εtrue ∧¬4(∃ εu=s(v)) ∧ ¬4(∃w1 u=s(w1) ∧ w1 =s(v)) ∧ ¬4(∃ε v=u))∧
¬3(∃ε v=u ∧ u=0 ∧ ¬0(∃ε u=s(v)) ∧ ¬0(∃w11 u=s(w11) ∧ w11 =s(v)))∧
¬3(∃w2 v=u ∧ u=s(w2) ∧ ¬0(∃εu=s(v)) ∧ ¬0(∃w12 u=s(w12) ∧ w12=s(v)))

⎤

⎦ .

Now, only the rules (1),...,(8) will be applied until all the negations are of the
form ¬4. Rule (9) will not be applied anymore since there exists no working
formulas of depth greater or equal to 3 and the rules (1),...,(8) never increase
the depth of the working formulas.

5 A Full First-Order Constraint Solver for Decomposable
Theories

Let p be a formula. Solving p in T proceeds as follows:
(1) Transform the formula ¬p (the negation of p) into a wnfv normalized

formula p1 equivalent to ¬p in T . For that we can refer to [5] where a simple
algorithm was given.

(2) Transform p1 into the following initial working formula p2

p2 = ¬3(∃ε true ∧ ¬0(∃ε true ∧ p1)),

where all the occurrences of ¬ in p1 are replaced by ¬0.
(3) Apply our 9 rewriting rules on p2 as many time as possible. According

to Property 4.0.3 we obtain at the end a wnfv conjunction p3 of final working
formulas of the form

n∧

i=1

¬4(∃x̄i αi ∧
ni∧

j=1

¬4(∃ȳij βij)).
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Since p3 is equivalent to ¬p in T , then p is equivalent in T to

¬
n∧

i=1

¬(∃x̄i αi ∧
ni∧

j=1

¬(∃ȳij βij)),

which is equivalent to the following disjunction p4

n∨

i=1

(∃x̄i αi ∧
ni∧

j=1

¬(∃ȳij βij)).

This is the final answer of our solver to the initial constraint p. Note that the
negations which were at the beginning of each formula of p3 have been removed
and the top conjunction of p3 has been replaced by a disjunction. As a conse-
quence, the set of the solutions of the free variables of p4 is nothing other than the
union of the solutions of each simple formula of the form ∃x̄i αi∧

∧ni

j=1 ¬(∃ȳij βij).
Thanks to using BC1, BC2 in our rules, we show easily that if p4 contains at
least one free variable then neither T |= p4 nor T |= ¬p4. The decision procedure
given in [5] produces a final formula which is not in a so simple form than p4

(it contains two levels of nested negations) and can even be simplified (in many
cases) to true or to false (cf. the formula (2) in page 3).

6 Benchmarks

6.1 Two Partner Game

Let us consider the following two partner game: An ordered pair (i, j) is given,
with i a non-negative (possibly null) integer and j ∈ {0, 1}. One after another,
each player changes the values of i and j according to the following rules

– If j = 0 then the actual player should replace i by i− 1 in the pair (i, j).
– If j = 1 and i is odd then the actual player can either replace i by i + 1 or

replace j by j − 1, in the pair (i, j).
– If j = 1 and i is even then the actual player can either replace i by i+1 and
j by j − 1 in the pair (i, j) or replace only i by i+ 1 in the pair let (i, j)

The first player who cannot keep i non negative has lost. This game can be
represented by the following directed infinite graph:

It is clear that the player which is at the position (0, 0) and should play has
lost. Suppose that it is the turn of player A to play. A position (n,m) is called
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k-winning if, no matter the way the other player B plays, it is always possible for
A to win, after having made at most k moves. We have shown in [4] that for any
integer k we can compute all the k-winning positions by solving a normalized
formula of depth 2k in the theory of finite or infinite trees. For that, we have
presented an efficient first-order constraint solver over finite or infinite trees. This
latter uses very particular properties that hold only in finite or infinite trees and
cannot be generalized to any decomposable theory T .

The times of execution (CPU time in milliseconds) of the formulas
winningk(x) are given in the following table as well as a comparison with those
obtained using our efficient first-order constraint solver over finite or infinite trees
[4]. We also compare the performances of our 9 rules with those obtained using
the decision procedure for decomposable theories [5] (even though the latter does
not produce comprehensible results, i.e. explicit solved forms). The benchmarks
are performed on a 2 Ghz Pentium IV processor, with 1024Mb of RAM. The
symbol ”-” below means exhausting memory.

k (winningk(x)) 1 2 4 5 7 10 20 40
C++ [5] (5 rules) 28 50 115 150 245 430 2115 −
C++ [4] (16 rules) 25 40 90 115 175 315 1490 15910
C++ (our 9 rules) 27 44 98 133 199 353 1688 17124

The decision procedure takes more time (until 25%), comparing with our 9
rules to solve the winningk(x) formulas of our game and overflows the memory
for k > 20, i.e. 40 nested alternated quantifiers while our solver can solve formulas
having more than 80 nested alternated quantifiers. On the other hand, we reach
almost the same performances (in time and space) as those obtained using the
most recent and efficient first-order constraint solver dedicated to finite or infinite
trees [4].

We now discuss why our solver is much more efficient in time and space than
the decision procedure of [5]. The latter uses many times a particular distribu-
tion (rule (5) in [5]) which decreases the depth of the normalized formulas but
increases exponentially the number of conjunctions of the normalized formulas
until overflowing the memory. Our solving algorithm uses a similar distribution
(rule (9)) but only after a necessary propagation step which copies the flat atomic
formulas into the sub-formulas and checks (using the box-checkers in the rules
(2), (4), (7) and (8)) if there exists no normalized formulas which contradict their
top-formula. Solving a winningk(x) formula in our game generates many huge
formulas which contradict their top-formulas. Our algorithm removes directly
these huge formulas after the first propagation step. The decision procedure [5]
cannot detect this inconsistency and is obliged to apply a costly rule to decrease
the size of these inconsistent formulas. At each application of this rule, the depth
of the normalized formulas decreases but the number of conjunctions increase
exponentially until overflowing the memory. This explains why for this game the
decision procedure overflows the memory for k > 20 while our solver reaches
k = 40.
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Note also that the solved formulas obtained using our solver are neither equiv-
alent to true nor to false (thanks to the use of BC1 and BC2 in our rules). The
decision procedure of [5] does not warrant that any final formula with free vari-
ables cannot be simplified anymore to true or false . In fact, we have got a lot of
final formulas with free variables on which we succeeded to use our new solver
to simplify them into true or false.

6.2 Random Normalized Formulas

We have also tested our rules on randomly generated normalized formulas such
that in each sub-normalized formula of the form ¬(∃x̄ α∧

∧n
i=1 ϕi), with the ϕi’s

normalized formulas and n ≥ 0, we have:

– n is a positive integer randomly chosen between 0 and 4.
– The number of the atomic formulas in α is randomly chosen between 1 and

8. Moreover, the atomic formula true occurs at most once in α.
– The vector of variables and the atomic formulas of ∃x̄ α are randomly gen-

erated starting from a set containing 10 variables and 6 function symbols:
f0, f1, f2, g0, g1, g2. Each function symbol fj or gj is of arity j with 0 ≥ j ≥ 2.

The benchmarks were realized on a 2.5Ghz Pentium IV processor with 1024Mb
of RAM as follows: For each integer 1 ≥ d ≥ 41 we generated 10 random normal-
ized formulas of depth d, we solved them and computed the average execution
time (CPU time in milliseconds). Once again, the performances (time and space)
of our 9 rules are impressive comparing with those of the decision procedure for
decomposable theories and are very competitive comparing with our recent and
efficient solver over finite or infinite trees [4]. The symbol ”-” below means ex-
hausting memory.

d 4 8 12 22 26 41
C++ [5] (5 rules) 108 375 1486 18973 − −
C++ [4](16 rules) 88 202 504 3550 11662 2142824
C++ (our 9 rules) 94 221 612 4522 13654 2172632

7 Conclusion

We have presented in this paper the first full first-order constraint solver for any
decomposable theory T . The decision procedure given in [5] is not able to reason
on first-order constraints with free variables and can only answer by true or false
to any proposition (formula without free variables). The solver was given in the
form of nine rewriting rules which transform any first-order constraint ϕ into a
solved formula φ so that φ is either the formula true or the formula false or a
simple formula having at least one free variable and being equivalent neither to
true nor to false.

The main idea behind our solver consists in (i) A top-down propagation of
atomic formulas following the tree structure of the working formulas. (ii) A
bottom-up elimination of quantifiers and depth reducing of the working formulas.
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We have shown the efficiency of our algorithm by comparing its performances
with those of our decision procedure for decomposable theories [5]. Among other
things, our algorithm can solve formulas of a two player game involving more
than 80 nested alternated quantifiers while the decision procedure overflows the
memory starting from 40 nested alternated quantifiers. We have also compared
our performance with those of the most recent and efficient first-order constraint
solver over finite or infinite trees [4] and showed that even if our algorithm can be
used for any decomposable theory T , it gives very competitive results comparing
with a dedicated solver for one particular decomposable theory [4].

Currently, we are trying to find a more abstract characterization and/or a
model theoretical characterization of the decomposable theories. The current def-
inition gives only an algorithmic insight into what it means for a theory to be com-
plete. We are also trying to test the performances of our solver on other kind of
problems which can be modeled using other first-order theories such as: theory of
lists [11], theory of queues [10] and the combination of real numbers with addition,
subtraction, multiplication and a linear dense order relation without endpoints.

Acknowledgements. We thank Alain Colmerauer for our many discussions
and his help in this work. We dedicate to him this paper.
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Abstract. Polynomial interpretations are a standard technique used in
almost all tools for proving termination of term rewrite systems (TRSs)
automatically. Traditionally, one applies interpretations with polynomi-
als over the naturals. But recently, it was shown that interpretations
with polynomials over the rationals can be significantly more powerful.
However, searching for such interpretations is considerably more diffi-
cult than for natural polynomials. Moreover, while there exist highly
efficient SAT-based techniques for finding natural polynomials, no such
techniques had been developed for rational polynomials yet. In this pa-
per, we tackle the two main problems when applying rational polynomial
interpretations in practice: (1) We develop new criteria to decide when
to use rational instead of natural polynomial interpretations. (2) After-
wards, we present SAT-based methods for finding rational polynomial
interpretations and evaluate them empirically.
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1 Introduction

Orders based on polynomial interpretations are essential for termination proofs.
Recently, [16,17,18] showed that polynomial interpretations over the rationals
are strictly more powerful for proving termination than those over the naturals.1

One of the most popular termination techniques that is implemented in vir-
tually all current tools for termination analysis of TRSs is the dependency pair
(DP) method, cf. e.g. [1,9,11,12,13]. In principle, rational polynomial interpre-
tations can immediately be used in this method. In other words, the polynomial
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constraints (over the rationals) which have to be generated are the same as
those for polynomials with natural coefficients [16,18]. But as discussed in [18],
the main problem when attempting to use rational polynomials in practice is
that one needs efficient and suitable methods to find polynomial interpretations
over the rationals automatically. Here, there are two main challenges:

Since searching for rational polynomial interpretations is much more time-
consuming than for natural interpretations, one needs criteria to decide when
to use rational interpretations. After recapitulating the necessary prerequisites
on termination proving in Sect. 2, the first contribution of this paper are such
criteria, presented in Sect. 3. Here, we first introduce sufficient criteria (i.e.,
criteria which state that the termination proof will fail when just using natural
polynomials). Afterwards, we introduce heuristics to characterize the remaining
termination problems where rational polynomials are “likely” to be needed.

The other challenge are efficient methods to search for rational interpretations.
For interpretations over the naturals, until recently the best known techniques
were dedicated constraint-based algorithms like [3]. However, recently a new
approach was developed in [7] which proposes the use of SAT solvers for gen-
erating natural polynomial interpretations. This approach was implemented in
the termination tool AProVE [10] and it leads to speed-ups in orders of magni-
tude over constraint-based algorithms. While there already exists a constraint-
based algorithm for finding rational polynomial interpretations [18]2 (imple-
mented in the tool mu-term [15]), a SAT-based approach similar to [7] could
bring similar improvements when polynomials over the rationals are considered.
The second contribution of this paper (in Sect. 4) is the development of two
such SAT-based approaches. Finally, Sect. 5 contains an extensive experimental
evaluation.

2 Termination Proving with Rational Polynomials

Definition 1 (Dependency Pairs). For a TRS R, the defined symbols D are
the root symbols of left-hand sides of rules. All other function symbols are called
constructors. For every defined symbol f ∈ D, we introduce a fresh tuple symbol
f � with the same arity. To ease readability, we often write F instead of f �, etc.
If t = f(t1, . . . , tn) with f ∈ D, we write t� for f �(t1, . . . , tn). If � → r ∈ R and t
is a subterm of r with defined root symbol, then the rule �� → t� is a dependency
pair of R. The set of all dependency pairs of R is denoted by DP(R).

Example 2. Consider the following TRS R from [20], where random(x) computes
a random number between 0 and x.

nonZero(0) → false (1)
nonZero(s(x)) → true (2)

random(x) → rand(x, 0) (3)
rand(x, y) → if(nonZero(x), x, y) (4)

2 [18] also presents an algorithm for real polynomial interpretations. Extending the
results of the current paper to real interpretations is a topic for future work.
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p(0) → 0 (5)
p(s(x)) → x (6)

id inc(x) → x (7)

if(false, x, y) → y (8)
if(true, x, y) → rand(p(x), id inc(y)) (9)

id inc(x) → s(x) (10)

The defined symbols are nonZero, p, id inc, random, rand, if, and the DPs are

RANDOM(x) → RAND(x, 0) (11)

RAND(x, y) → IF(nonZero(x), x, y) (12)

RAND(x, y) → NONZERO(x) (13)

IF(true, x, y) → RAND(p(x), id inc(y)) (14)

IF(true, x, y) → P(x) (15)

IF(true, x, y) → ID INC(y) (16)

The newset formulation of the DP method is the so-called DP framework
[9,11]. In this framework, termination techniques operate on sets of dependency
pairs instead of TRSs. We refer to such techniques as DP processors. Formally,
a DP processor is a function Proc which takes a set of DPs as input and returns
several new sets of DPs which then have to be solved instead. These DP proces-
sors are sound : if d is a set of DPs, Proc(d) = {d1, . . . , dn}, and all d1, . . . , dn

represent terminating problems, then the original problem d is also terminating.3

Termination proofs in the DP framework start with the initial set of DPs
DP (R). Then DP processors are applied repeatedly. If the final processors return
empty sets, then termination is proved. In Thm. 5 and 6 we recapitulate the two
most important DP processors. The first uses an estimated dependency graph to
estimate which DPs (i.e., which “function calls”) follow each other in evaluations.

Definition 3 (Estimated Dependency Graph). Let P be a set of DPs. The
nodes of the estimated P-dependency graph are the pairs of P and there is an
arc from s → t to u → v iff ren(cap(t)) and u unify. Here, cap(t) replaces all
subterms of t with defined root symbol by fresh variables and ren(t) linearizes t
by renaming all occurrences of variables into pairwise different fresh variables.

Example 4. For the TRS in Ex. 2, we obtain the following estimated DP (R)-
dependency graph.

(13) (11)� �

��

(15)

(14)

��

��
(12)�� ��

����������
(16)

For example, the reason for the arc from (12) to (14) is that if t is the right-
hand side of (12) and u is the left-hand side of (14), then ren(cap(t)) =
ren(IF(z, x, y)) = IF(z′, x′, y′) and u = IF(true, x, y) clearly unify.

One can prove termination separately for each strongly connected component
(SCC) of the estimated dependency graph. Therefore, the following processor
modularizes termination proofs by decomposing the set of DPs.

3 To ease readability we consider just sets of dependency pairs instead of DP problems
[9,11]. This suffices for the presentation of the results of this paper. We also refer to
[9,11] for a precise definition of “terminating” problems.



112 C. Fuhs et al.

Theorem 5 (Dependency Graph Processor). Let P be a set of DPs whose
estimated dependency graph has n SCCs. For every i ∈ {1, . . . , n}, let Pi be the
set of DPs in the i-th SCC. Then the following DP processor is sound:

Proc(P) = {P1, . . . ,Pn}

So in our example, the original set of DPs DP (R) = {(11), . . . , (16)} is trans-
formed to the subset P1 = {(12), (14)}, i.e., Proc(DP (R)) = {P1}.

The next processor is based on reduction pairs (�,*). Here, � is reflexive,
transitive, monotonic (i.e., s � t implies f(. . . s . . .) � f(. . . t . . .) for all function
symbols f), and stable (i.e., s � t implies sσ � tσ for all substitutions σ) and *
is a stable well-founded order compatible with � (i.e., � ◦ * ⊆ * or * ◦ � ⊆ *).

The following processor generates inequality constraints which have to be
satisfied by a reduction pair (�,*). The constraints require that all DPs in P
are strictly or weakly decreasing (i.e., w.r.t. * or �) and all usable rules U(P)
are weakly decreasing. Then one can delete all strictly decreasing DPs from P .

The usable rules include all rules that can reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms. To ensure
that it suffices to regard only the usable rules instead of all rules in the following
processor, one has to demand that � is Cε-compatible, i.e., that c(x, y) � x
and c(x, y) � y hold for a fresh function symbol c [11,13]. This requirement is
satisfied by almost all quasi-orders used in practice.

Theorem 6 (Reduction Pair Processor). Let (�,*) be a reduction pair
where � is Cε-compatible. Then the following DP processor Proc is sound.

Proc(P) =

{
P \ * if P ⊆ * ∪ � and U(P) ⊆ �
P otherwise

For any function symbol f , let Rls(f) = {� → r ∈ R | root(�) = f}. For any
term t, the usable rules U(t) are the smallest set such that

U(f(t1, . . . , tn)) = Rls(f) ∪
⋃


→r∈Rls(f)
U(r) ∪

⋃n

i=1
U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P U(t).

There are many techniques to search for reduction pairs automatically (recur-
sive path orders, polynomial interpretations, etc. [4]). In this paper, we consi-
der polynomial interpretations Pol which map every n-ary function symbol f to
a polynomial fPol ∈ Q0[x1, . . . , xn]. So the coefficients of fPol are from Q0 = { p

q |
p ∈ N, q ∈ N\{0}} and the variables x1, . . . , xn also range over Q0. This is in con-
trast to traditional polynomial interpretations where one uses N = {0, 1, 2, . . .}
instead of Q0. The mapping Pol is extended to terms by defining [x]Pol = x for
variables x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). An interpretation
Pol induces an order *Pol and a quasi-order �Pol where s �Pol t iff [s]Pol −
[t]Pol ≥ 0 holds for all instantiations of the variables with numbers from Q0. To
define *Pol one needs a number δ > 0 and then s *Pol t iff [s]Pol − [t]Pol ≥ δ
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holds for all instantiations of the variables with numbers from Q0. Then, *Pol

is also well founded for rational polynomial interpretations [16,18].

Example 7. For the TRS of Ex. 2, the dependency graph processor reduced the
set of DPs to P1 = {(12), (14)}. The rules for the defined symbols nonZero,
p, and id inc in the right-hand sides of (12) and (14) are usable, i.e., U(P1) =
{(1), (2), (5), (6), (7), (10)}. We have to find a reduction pair which makes the
rules in U(P1) weakly decreasing and the DPs in P1 weakly or strictly decreasing.
Then the strictly decreasing DPs are removed. We use (�Pol,*Pol) with

0Pol = 0 pPol = 1
2 x1

sPol = 2 x1 + 1 id incPol = 2 x1 + 1
truePol = 1 RANDPol = 2 x1

falsePol = 0 IFPol = x1 + x2

nonZeroPol = x1 δ = 1

Now all usable rules from U(P1) and all DPs from P1 are weakly decreas-
ing. Moreover, the DP (14) is strictly decreasing since [IF(true, x, y)]Pol −
[RAND(p(x), id inc(y))]Pol = 1 + x− 2 ∗ 1

2 x ≥ 1. Thus, it is removed by Thm. 6
and the resulting set of DPs is {(12)}. Afterwards, another application of the
dependency graph processor results in the empty set of DPs, since now the graph
has no arcs anymore. Hence, termination of this example is proved.

To measure the performance of termination tools, there is an annual Interna-
tional Termination Competition [19] where the tools are applied to a large collec-
tion of TRSs (the so-called Termination Problem Data Base (TPDB)). The TRS
of Ex. 2 comes from the TPDB (SchneiderKamp-trs-thiemann40), but none
of the tools in the Termination Competition 2007 could show its termination.4

Indeed, almost all termination tools use polynomial interpretations, but most of
them are restricted to interpretations with natural or integer coefficients. If they
were extended to rational coefficients, TRSs like Ex. 2 could easily be handled
by virtually all existing tools. Thus, this TRS shows that rational polynomial
interpretations indeed increase the power of termination proving substantially.

3 Criteria for Rational Polynomial Interpretations

In this section, we introduce criteria to decide when to use rational polynomial
interpretations. In Sect. 3.1 we present sufficient criteria5 which state that the
4 [20] presents a (manual) termination proof for this TRS using an improved variant

of predictive labeling, but their technique has not been implemented yet. In con-
trast, our proof is much easier and (apart from rational interpretations) it only uses
standard methods that are already implemented in most termination provers.

5 The criteria in Sect. 3.1 are restricted to linear polynomial interpretations which
are used in the vast majority of automated termination proofs for TRSs, cf. [19]. All
other results of the paper (i.e., the heuristics of Sect. 3.2 as well as the automation
of Sect. 4) can be used for interpretations with polynomials of arbitrary degree.
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termination proof will fail if one uses natural instead of rational interpretations.
In particular, this proves that rational polynomials really increase power, i.e.,
that there are examples where termination can be proved with rational, but not
with natural interpretations. Afterwards, Sect. 3.2 introduces heuristics to detect
remaining cases where rational interpretations are also likely to be needed.

3.1 Sufficient Criteria for Rational Polynomial Interpretations

Our sufficient criteria are based on the following notions of monotonicity.

Definition 8 (Monotonicity). Let Pol be a linear polynomial interpretation,
let f be a function symbol with arity n, let 1 ≤ i ≤ n, and let fPol = f0 + f1 x1 +
. . . + fn xn with f0, . . . , fn ∈ Q0. Then6 f is monotonically increasing (MI) on
i iff fi > 0 and f is strongly monotonically increasing (SMI) on i iff fi ≥ 1. So
if f is MI, but not SMI on i, then we have 0 < fi < 1, i.e., fi /∈ N.

Now we present sufficient criteria to detect when a function symbol must be
MI but not SMI. This indicates that one has to use rational interpretations for
the termination proof. We start with a criterion to detect that certain argument
positions cannot be SMI. To this end, we check whether there are terms s and t
where s *Pol t must hold although s is embedded in t. To formalize the notion of
embedding, we use the TRS Emb which consists of the rules f(x1, . . . , xn) → xi

for all function symbols f and all 1 ≤ i ≤ n where n is the arity of f .

Theorem 9 (Sufficient Criterion for Non-SMI). Let Pol be a linear poly-
nomial interpretation. If s *Pol t and t →∗

E s for a set7 of embedding rules E ⊆
Emb, then there is a rule f(x1, . . . , xn) → xi in E such that f is not SMI on i.

Proof. Assume that for all f(x1, . . . , xn) → xi in E , f is SMI on i. We show that
t →m

E s implies t �Pol s by induction on m. This is a contradiction to s *Pol t.
Clearly, t →m

E s implies t �Pol s for m = 0. Now let m > 0, i.e., t →E t′ →∗
E s.

So t′ �Pol s by the induction hypothesis. Thus, it suffices to show t �Pol t
′.

As t →E t′, we obtain t = t[f(t1, . . . , ti, . . . , tn)]π and t′ = t[ti]π for some
position π and some rule f(x1, . . . , xn) → xi in E . Since Pol is linear, we have
fPol = f0 + f1 x1 + . . . + fn xn for f0, . . . , fn ∈ Q0 and as f is SMI on i, we
have fi ≥ 1. Thus, f(x1, . . . , xn) �Pol xi. As �Pol is monotonic and stable, this
implies t[f(t1, . . . , ti, . . . , tn)]π �Pol t[ti]π and hence, t �Pol t

′ as desired. #�

6 In general, a function fPol is monotonically increasing if xi − yi > 0 implies
fPol(x1, ..., xi, ..., xn) − fPol(x1, ..., yi, ..., xn) > 0 for all numbers x1, ..., xn, yi and
fPol is strongly monotonically increasing if xi−yi ≥ δ implies fPol(x1, ..., xi, ..., xn)−
fPol(x1, ..., yi, ..., xn) ≥ δ for all numbers x1, ..., xn, yi and all δ > 0. So obviously,
∂fPol
∂xi

> 0 implies that fPol is monotonically increasing and ∂fPol
∂xi

≥ 1 implies that
fPol is strongly monotonically increasing.

7 Explicitly considering the rules E which are needed to come from t to s (instead of
considering Emb) gives a better approximation of the “non-SMI” arguments.
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Example 10. To illustrate the criterion of Thm. 9, we consider the following TRS
from the TPDB (secret05-tpa2).

minus(x, 0)→x (17)

minus(s(x), s(y))→minus(x, y) (18)

p(s(x))→x (19)

f(s(x), y)→ f(p(minus(s(x), y)), p(minus(y, s(x)))) (20)

f(x, s(y))→ f(p(minus(x, s(y))), p(minus(s(y), x))) (21)

This TRS has 11 DPs, but an application of the dependency graph processor
yields the two subsets {(22)} and {(23), (24)}, where

MINUS(s(x), s(y)) → MINUS(x, y) (22)
F(s(x), y) → F(p(minus(s(x), y)), p(minus(y, s(x)))) (23)
F(x, s(y)) → F(p(minus(x, s(y))), p(minus(s(y), x))) (24)

The DP (22) can immediately be removed by the reduction pair processor.
It remains to find a polynomial interpretation such that one of the DPs
(23) and (24) is strictly decreasing and the other DP and the usable rules
{(17), (18), (19)} are weakly decreasing. For both DPs (23) and (24), the
left-hand side is embedded in the right-hand side. For instance for (23), we
have F(p(minus(s(x), y)), p(minus(y, s(x)))) →∗

E F(s(x), y) with E = {p(x1) →
x1, minus(x1, x2) → x1}. So by Thm. 9, p or minus cannot be SMI on 1.

Now we present criteria for MI. Clearly, if one has to satisfy a collapsing in-
equality s �Pol x for a variable x ∈ V , then the polynomial [s]Pol must contain x.
Hence, x is at a monotonically increasing position in s. For any position π in a
term s, let trace(s, π) contain all pairs (f, i) such that π is below the i-th argu-
ment of the function symbol f . So trace(s, ε) = ∅ and trace(f(s1, . . . , sn), i π′) =
{(f, i)} ∪ trace(si, π

′). We omit the proof of Thm. 11, since it is obvious.

Theorem 11 (First Sufficient Criterion for MI). Let Pol be a linear poly-
nomial interpretation. If s �Pol x for x ∈ V, then there exists a position π in s
with s|π = x where f is MI on i for all (f, i) ∈ trace(s, π).

Example 12. To illustrate the criterion from Thm. 11, we continue the example
from Ex. 10. Since the rule (19) is usable, our polynomial interpretation has
to satisfy p(s(x)) �Pol x. We have p(s(x))|1 1 = x and trace(p(s(x)), 1 1) =
{(p, 1), (s, 1)}. Hence, both p and s have to be MI on 1. Similarly, the rule (17)
is also usable and therefore, we have to satisfy minus(x, 0) �Pol x. By Thm. 11
this implies that minus also has to be MI on 1.

As both p and minus are MI on 1 but at least one of them is not SMI on 1
(cf. Ex. 10), the constraints of the reduction pair processor are not satisfied by
a linear polynomial interpretation over the naturals. More precisely, if pPol =
p0 + p1 x1 and minusPol = m0 +m1 x1 +m2 x2 then 0 < p1 < 1 or 0 < m1 < 1.

Indeed, the following rational polynomial interpretation makes all usable rules
weakly decreasing and both DPs (23) and (24) strictly decreasing. Hence, they
can both be removed, which proves termination of this example.



116 C. Fuhs et al.

0Pol = 0 minusPol = x1

sPol = 2 x1 + 1 FPol = x1 + x2

pPol = 1
2 x1 δ = 1

2

Example 13. The criteria presented so far can also detect the need for rational
coefficients in the TRS of Ex. 2. As explained in Ex. 7, one has to find an
interpretation such that one of the DPs (12) and (14) is strictly decreasing
and the other DP and the usable rules {(1), (2), (5), (6), (7), (10)} are weakly
decreasing. So

RAND(s(x), y) �Pol IF(nonZero(s(x)), s(x), y) by weak decrease of (12)
�Pol IF(true, s(x), y) by weak decrease of (2)
�Pol RAND(p(s(x)), id inc(y)) by weak decrease of (14)

and as at least one of the DPs is strictly decreasing, we also have8

RAND(s(x), y) *Pol RAND(p(s(x)), id inc(y)).

Note that the term in the left-hand side is embedded in the right-hand side, i.e.,
RAND(p(s(x)), id inc(y)) →∗

E RAND(s(x), y) with E = {p(x1) → x1, id inc(x1) →
x1}. So by Thm. 9, one of the symbols p and id inc is not SMI on 1. But due to
the usable rules (6) and (7), by Thm. 11 both p and id inc have to be MI on 1.
Thus here we again need a rational polynomial interpretation. More precisely, if
pPol = p0 +p1 x1 and id incPol = i0 + i1 x1 + i2 x2, then 0 < p1 < 1 or 0 < i1 < 1.

Thm. 14 is a second criterion for MI which can be used instead of Thm. 11.

Theorem 14 (Second Sufficient Criterion for MI). Let Pol be a linear
polynomial interpretation. Let C[f(s1, . . . , sn)] *Pol C[f(t1, . . . , tn)] and let
there be an 1 ≤ i ≤ n such that sj ∈ V for all j �= i. Then f is MI on i.
If moreover ti is a variable that does not occur in si, then there must be an i′ �= i
with si′ = ti and f is also MI on i′.

Proof. Clearly, C[f(s1, . . . , sn)] *Pol C[f(t1, . . . , tn)] for a context C implies
f(s1, . . . , sn) *Pol f(t1, . . . , tn). If fPol = f0 + f1 x1 + . . . + fn xn, then pl =
[f(s1, . . . , sn)]Pol − [f(t1, . . . , tn)]Pol = f1 ([s1]Pol − [t1]Pol) + . . .+ fn ([sn]Pol −
[tn]Pol) ≥ δ. Thus we must have fi > 0 (i.e., f is MI on i), because otherwise
the polynomial pl is 0 or negative when instantiating all variables with 0.

Now let ti be a variable that does not occur in si. If the variable ti did not
occur in s, then the coefficient for the variable ti in the polynomial pl would be
−fi, i.e., pl would be negative if one instantiates ti by a large enough number.
Hence, there must be an i′ �= i with si′ = ti and fi′ > 0. #�

Example 15. To illustrate the criterion of Thm. 14, we consider the following
TRS from the TPDB (Zantema-jw05).

f(f(a, x), a) → f(f(x, f(a, a)), a) (25)
8 To automate Thm. 9, one has to search for inequalities s �Pol t where s is embedded

in t. To this end, one could use narrowing on right-hand sides of DPs.
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This TRS has 3 DPs:

F(f(a, x), a) → F(f(x, f(a, a)), a) (26)
F(f(a, x), a) → F(x, f(a, a)) (27)

F(f(a, x), a) → F(a, a) (28)

The dependency graph processor removes the DP (28). We first try to find
a polynomial interpretation where the DP (27) is strictly decreasing and where
the DP (26) and the usable rule (25) are weakly decreasing. This is easy by using
FPol = x2, aPol = 1, fPol = 0, and δ = 1. Hence, (27) can be removed.

Finally, we have to find a polynomial interpretation where (26) is strictly
decreasing and where the usable rule (25) is weakly decreasing. Now we can
apply Thm. 14 by choosing “C”, “f(s1, s2)”, “i”, and “f(t1, t2)” as follows: C
is F(�, a), f(s1, s2) is f(a, x), i is 1, and f(t1, t2) is f(x, f(a, a)). So by Thm. 14,
f is MI on 1 and as the variable t1 does not occur in s1, f is also MI on 2.

Moreover, strict decrease of (26) implies F(f(a, a), a) *Pol F(f(a, f(a, a)), a)
where the left-hand side is embedded in the right-hand side, i.e., F(f(a, f(a, a)), a)
→∗

E F(f(a, a), a) with E = {f(x1, x2) → x1} or E = {f(x1, x2) → x2}. So by
Thm. 9, f is neither SMI on 1 nor on 2. Hence if fPol = f0 + f1 x1 + f2 x2, then
both 0 < f1 < 1 and 0 < f2 < 1. Indeed, (26) is strictly decreasing and (25) is
weakly decreasing if we use the following interpretation:

fPol = 1
4 x1 + 1

4 x2 FPol = 4 x1 aPol = 4 δ = 2

3.2 Heuristics for Rational Polynomial Interpretations

The criteria from Sect. 3.1 are only sufficient, i.e., there are TRSs where rational
interpretations are needed although the criteria are not fulfilled. Therefore, we
now develop heuristics which indicate that rational polynomials are likely to be
useful. So one should apply rational interpretations whenever one of the sufficient
criteria of Sect. 3.1 or one of the following heuristical criteria is fulfilled.

The first heuristic suggests to apply rational interpretations whenever a de-
structor symbol occurs in the right-hand side of a DP. A destructor is a symbol
which is the inverse function to a constructor. So if s is a constructor and we
have a rule p(s(x)) → x, then the symbol p is a destructor.

Heuristic 16 (Destructor Heuristic). Let P be a set of DPs. If the TRS R
contains f(c(x1, . . . , xn)) → xi, c is a constructor, and f occurs in the right-hand
side of a DP from P, then apply rational polynomials in the processor of Thm. 6.

For instance, in the TRS of Ex. 2, we indeed have the rule (6) for the destructor
p and p occurs in the right-hand side of the DP (14). Hence, the above heuristic
suggests to apply rational polynomial interpretations.

However, one can of course also formulate destructor rules in a different way.
The next heuristic serves to detect such alternative formulations.

Heuristic 17 (Permutation Heuristic). Let R be a TRS and P be a set of
DPs. If R ∪ P contains a rule C1[t1] → C2[t2] where t1 = f(. . . , D1[g(. . .)], . . .)
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and t2 = g(. . . , D2[f(. . .)], . . .) and where at least one of the terms t1 or t2 con-
tains two nested f-symbols or two nested g-symbols, then apply rational polyno-
mials in the processor of Thm. 6. Here, C1, C2, D1, D2 are contexts and f and g
may also be the same function symbol.

As an example, we replace the rules p(0) → 0 and p(s(x)) → x in the TRS of
Ex. 2 by p(s(0)) → 0 and p(s(s(x))) → s(p(s(x))). Now p still acts as a destructor
and termination of the TRS can be proved almost9 as before, but the destructor
heuristic (Heuristic 16) fails. Instead, the permutation heuristic is applicable
now.

Example 18. Another class of examples recognized by this heuristic are permu-
tative TRSs like the following example Endrullis-pair3swap from the TPDB.

p(a(a(x0)), p(x1, p(a(x2), x3))) → p(x2, p(a(a(b(x1))), p(a(a(x0)), x3)))

By two repeated applications of the dependency graph and the reduction pair
processor, this example can easily be solved. However, in the reduction pair
processor, one should use rational polynomial interpretations. This would be
detected by the permutation heuristic above.10

Finally, the last heuristic detects rules where the same variable occurs twice in
different arguments of a constructor on the right-hand side.

Heuristic 19 (Non-Linearity Heuristic). Let R be a TRS and P be a set of
DPs. If R∪P contains a rule � → C[c(. . . , t1, . . . , t2, . . .)] where V(t1)∩V(t2) �=
∅, then apply rational polynomials in the processor of Thm. 6.

Example 20. To illustrate this heuristic, consider the following example. Its be-
havior is similar to Ex. 2, i.e., f(sn(0)) rewrites to f(sm(0)) for any 0 ≤ m < n.

f(s(x)) → f(id inc(c(x, x)))
f(c(s(x), y)) → g(c(x, y))
g(c(s(x), y)) → g(c(y, x))
g(c(x, s(y))) → g(c(y, x))

g(c(x, x)) → f(x)

id inc(s(x)) → s(id inc(x))
id inc(c(x, y)) → c(id inc(x), id inc(y))

id inc(0) → 0

id inc(0) → s(0)

When applying the dependency graph processor, the set of DPs can be split
into the set of ID INC-DPs (here the termination proof is trivial) and into the
set with the F- and G-DPs. Due to the DP

F(s(x)) → F(id inc(c(x, x))), (29)

the non-linearity heuristic applies. One can use the rational polynomial in-
terpretation with FPol = GPol = x1, 0Pol = 0, sPol = id incPol = x1 + 1,
9 The only difference is that the polynomial interpretation of s must be modified.

Instead of sPol = 2 x1 + 1 we now use sPol = 2 x2
1 + 1.

10 For this example, a termination proof is also possible with matrix orders [6], but no
tool found a proof with natural polynomial interpretations in the competitions.
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cPol = 1
2x1 + 1

2x2, and δ = 1
2 to remove all DPs with G on the right-hand side.

Another application of the dependency graph processor removes the remaining
DP with G on the left-hand side. To handle the last DP (29), we can use the
interpretation FPol = id incPol = x1, 0Pol = sPol = 1, cPol = 0, δ = 1. In
contrast, it is not clear how to prove termination of this system with natural
polynomial interpretations.11 For example, the tool AProVE [10] was the winner
of the Termination Competition 2007 for TRSs, but the version of AProVE used
at the competition fails on this example.

4 Generating Rational Interpretations by SAT Solving

In this section, we present two approaches to extend the SAT-based method
of [7] in order to search for polynomial interpretations over the rationals. The
approach of Sect. 4.1 transforms constraints over the rationals into constraints
over the naturals which are then solved with the SAT-based technique of [7].
In contrast to that, Sect. 4.2 introduces a novel direct reduction of the search
problem for rational polynomial interpretations into a SAT problem.

4.1 Transformation from Rationals to Naturals

To solve constraints over rational unknowns, one can reduce the problem to so-
called Diophantine constraints where the unknowns are natural numbers. Subse-
quently, one can apply a Diophantine solver to solve the resulting constraints, cf.
[16]. Such an approach was already implemented in the tool mu-term [15], but
there the resulting Diophantine constraints were solved with the constraint-based
solver CiME [2] instead of a more efficient approach using SAT solving. As shown
in [18], this transformational approach in mu-term [15] is not competitive.12

We now illustrate our transformation in more detail. One starts with an ab-
stract polynomial interpretation. It maps each function symbol to a polynomial
with abstract coefficients. Thus, one has to determine the degree and the shape
of the polynomial, but the actual coefficients are left open. For instance, for
the TRS of Ex. 2 we could use an abstract polynomial interpretation Pol where
pPol = p0+p1x1, sPol = s0+s1x1, etc. Here, p0, p1, s0, s1 are abstract coefficients.

To apply the reduction pair processor of Thm. 6, we obtain inequalities of the
form s *Pol t or s �Pol t that we would like to hold. These inequalities then
lead to constraints on the abstract coefficients. To ensure s �Pol t, it suffices to
require that [s]Pol−[t]Pol has only non-negative coefficients, cf. [14]. For s *Pol t,
in addition we require that the constant coefficient of [s]Pol − [t]Pol is > 0.13 So
11 However, one can prove termination using other techniques. For example, the tool

Jambox [5] finds a proof using dependency pairs and matrix interpretations [6].
12 It is much slower than mu-term’s direct constraint-based approach [18] for finding

rational polynomials. However, in Sect. 5 we show that our new SAT-based technique
even significantly outperforms mu-term’s direct constraint-based approach.

13 This is sufficient, since we only regard finitely many inequalities of the form s �Pol t.
Hence, δ can be defined to be the smallest constant coefficient of all these polynomials
[s]Pol − [t]Pol, cf. [16,18].
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to ensure p(s(x)) *Pol x with the abstract interpretation Pol above, we have to
regard [p(s(x))]Pol − [x]Pol = (p0 + p1s0) + (p1s1 − 1)x. Hence, we require

p0 + p1s0 > 0 (30) p1s1 − 1 ≥ 0 (31)

In this way, the search for a polynomial interpretation is transformed to the
search for values of abstract coefficients satisfying certain inequalities.

In our setting, the values for the abstract coefficients may be numbers from
Q0. To make this problem decidable, we restrict the possible values to numbers
from a finite set Dom = { p

q | 0 ≤ p ≤ m ∧ 1 ≤ q ≤ n}. To transform this
problem into a problem with abstract coefficients over the naturals instead of
the rationals, we now apply the following transformation:

1. Replace all abstract variables a by fractions aN
aD

where aN and aD are new
abstract variables. Here “N ” stands for “numerator” and “D” stands for
“denominator”. The values for the abstract variables aN and aD are chosen
from the domains DomN = {0, . . . ,m} and DomD = {1, . . . , n}, respectively.
So in our example, the constraints (30) and (31) would be replaced by

p0N
p0D

+ p1N
p1D

s0N
s0D

> 0 (32) p1N
p1D

s1N
s1D

− 1 ≥ 0 (33)

2. Multiply each constraint with the product of all its denominators. So (32) is
multiplied by p0D p1D s0D and (33) is multiplied by p1D s1D . This yields

p0N p1D s0D + p1N s0N p0D > 0 (34) p1N s1N − p1D s1D ≥ 0 (35)

Now we obtained Diophantine constraints of the form pl > 0 or pl ≥ 0 where
pl is a (possibly non-linear) polynomial over abstract coefficients and where
the values for the abstract coefficients are natural numbers.

3. Apply a Diophantine solver to search for suitable values for the abstract
coefficients. In [7], it was shown how to translate Diophantine constraints
into a satisfiability problem for propositional logic which can be handled by
SAT solvers efficiently. In our example, the constraints (34) and (35) are
for instance satisfied by p0N = 0, p0D = 1, p1N = 1, p1D = 2, s0N = s0D =
1, s1N = 2, s1D = 1. This corresponds to the values p0 = 0, p1 = 1

2 , s0 =
1, s1 = 2 for the original abstract coefficients. So with these values, the
abstract interpretation with pPol = p0 + p1x1 and sPol = s0 + s1x1 is turned
into the concrete interpretation with pPol = 1

2 x1 and sPol = 1 + 2 x1.

4.2 SAT Encoding for Searching Rational Interpretations

Next we present an alternative approach which encodes the search for ra-
tional polynomial interpretations directly into a SAT problem. One again
starts with an abstract polynomial interpretation and thus, one obtains con-
straints like (30) and (31). In this approach, we follow a heuristic suggested
in [18] and let the domains for the abstract variables have the form Dom =
{2−k, 2−k+1, . . . , 2
−1, 2
} ∪ {0} for k, � ∈ N. The advantage of such domains is
that they are particularly suitable for a SAT encoding. To encode constraints
like (30) and (31) into a SAT problem, we now proceed as follows:
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1. Up to now, the abstract coefficients like p0, p1, s0, s1 may take rational values
from Dom. We now transform the constraints so that the abstract coefficients
only take natural values from Dom′ = {20, . . . , 2k+
}∪{0}. To this end, every
abstract coefficient a in the constraints is replaced by 1

2k a
′ where a′ is a fresh

abstract coefficient. In our example, let k = 1 and � = 2, i.e., the values
for the original abstract coefficients are from Dom = {2−1, 20, 21, 22, 0} =
{0, 1

2 , 1, 2, 4}. Then (30) and (31) are transformed into

1
2 p

′
0 + 1

4 p
′
1 s

′
0 > 0 (36) 1

4 p
′
1 s

′
1 − 1 ≥ 0 (37)

The values for p′0, p′1, s′0, s′1 are from Dom′ = {20, 21, 22, 23, 0}.
2. To remove the rational numbers from the constraints, one now multiplies

them with the least common multiple of all denominators occurring in the
respective constraint. So (36) and (37) are both multiplied by 4 which yields

2 p′0 + p′1 s
′
0 > 0 (38) p′1 s

′
1 − 4 ≥ 0 (39)

3. Now we have again obtained Diophantine constraints. The only difference
to the Diophantine constraints handled in existing SAT encodings like [7] is
that the domains used for the values of abstract coefficients are not inter-
vals of natural numbers, but sets of powers of 2. In [7], one used a mapping
||.|| from Diophantine constraints to propositional formulas such that a con-
straint α is satisfiable with values from a domain {0, 1, 2, 3, . . . , 2n − 1} iff
the propositional formula ||α|| is satisfiable. We now have to modify this
mapping in order to handle domains of the form {20, 21, . . . , 2n} ∪ {0}.

As usual, propositional formulas F are built from propositional vari-
ables X , the constants 0 (“false”) and 1 (“true”), and the usual Boolean
connectives. Propositional interpretations are mappings I : X → {0, 1}
which can be extended to propositional formulas as usual (i.e., then we have
I : F → {0, 1}). Moreover, one can extend I further to tuples of formulas
by defining

I(〈ϕ1, . . . , ϕn〉) = 2n−1 ∗ I(ϕ1) + 2n−2 ∗ I(ϕ2) + . . .+ 2 ∗ I(ϕn−1) + I(ϕn).

Hence, then I : Fn → N. So if b ∈ X and I(b) = 0, then I(〈1, b ∨ ¬b, b〉) =
4 ∗ I(1) + 2 ∗ I(b ∨ ¬b) + I(b) = 4 ∗ 1 + 2 ∗ 1 + 0 = 6.

To determine ||.||, one first defines the mapping of polynomials to tuples
of propositional formulas. For numbers k, ||k|| is the corresponding binary
representation (e.g., ||6|| = 〈1, 1, 0〉) and every abstract coefficient (i.e., Dio-
phantine variable) a is mapped to an n-tuple of propositional variables (e.g.,
||a|| = 〈a1, a2, a3〉). Having defined ||pl1|| and ||pl2|| for polynomials pl1 and
pl2, one can also define ||pl1 + pl2|| and ||pl1 ∗ pl2||. Finally, one defines the
mapping ||.|| from Diophantine constraints like pl > 0 or pl ≥ 0 to proposi-
tional formulas (not tuples of formulas). For details, we refer to [7].

To handle the new domains of the form {20, . . . , 2n}∪ {0} we now extend
propositional interpretations also to pairs of tuples of formulas. If Φ and Ψ
are two tuples of propositional formulas, then we define

I(� Φ, Ψ �) = I(Φ) ∗ 2I(Ψ)



122 C. Fuhs et al.

We now introduce a new mapping τ instead of ||.||. For polynomials pl, τ(pl)
is a pair of tuples of propositional formulas. For any number k, we define
τ(k) = � ||m||, ||e|| � where k = m ∗ 2e and m is an odd number (unless
k = m = 0). So since 6 = 3 ∗ 21, we obtain τ(6) = � ||3||, ||1|| �.

Every abstract coefficient (i.e., Diophantine variable) a is now mapped to
a pair τ(a) = � a0, 〈a1, . . . , a
log n�〉 �. Here, a0 is just a single propositional
variable (i.e., I(a0) ∈ {0, 1} for any interpretation I) and I(〈a1, . . . , a
log n�〉)
can be any number between 0 and n. Hence, � a0, 〈a1, . . . , a
log n�〉 � can
indeed represent the numbers from {20, . . . , 2n} ∪ {0}. Afterwards, one has
to extend the mapping τ to more complex polynomials and to Diophantine
constraints, similar to the mapping ||.|| from [7].

In our example, we could finally obtain an interpretation with I(τ(p′0)) =
0, I(τ(p′1)) = 1, I(τ(s′0)) = 2, I(τ(s′1)) = 4. This would correspond to the
solution p0 = 1

2 ∗ p′0 = 0, p1 = 1
2 ∗ p′1 = 1

2 , s0 = 1
2 ∗ s′0 = 1, and s1 = 1

2 ∗ s′1 =
2. With these values, the abstract interpretation with pPol = p0 + p1x1

and sPol = s0 + s1x1 is again turned into the concrete interpretation with
pPol = 1

2 x1 and sPol = 1 + 2 x1.

5 Experiments and Conclusion

In Sect. 3, we developed new criteria to determine when to use rational interpre-
tations in termination proofs. Moreover, in Sect. 4.1 and 4.2 we proposed two
SAT-based approaches to automate the search for rational polynomials.

We implemented our contributions in the termination prover AProVE [10] and
evaluated the performance of different variants of AProVE on all 2061 term and
string rewrite systems from the TPDB. As in the Termination Competition 2007,
we used a time limit of 120 seconds for each example.

In the following table, we only used the dependency graph and reduction pair
processor, but no other termination techniques. In the first technique “Nat”, we
only searched for natural polynomials where the coefficients take values from
{0, 1, 2, 3, 4}. In the technique “Rat + Sect. 4.1”, we used rational coefficients
from { p

4 | 0 ≤ p ≤ 16} instead14 and applied the transformational technique of
Sect. 4.1 to convert constraints over the rationals to constraints over the naturals.
Here, we always search for rational polynomials, whereas in the technique “Rat
+ Sect. 4.1 + Sect. 3” we only search for rationals if this is suggested by the cri-
teria from Sect. 3. Otherwise, we use natural polynomials with coefficients from
{0, 1, 2, 3, 4}. Finally, in the technique “Rat + Sect. 4.2” we (always) use rational
coefficients from {2−2, 2−1, 20, 21, 22, 0} and apply the direct SAT-encoding from
Sect. 4.2.15 The column “Yes” shows the number of TRSs where the termination
proof succeeds. “SucTime” gives the average runtime for successful examples and
“FulTime” gives the average runtime for all examples.
14 The idea of fixing the value of the denominator (e.g. to 4) and only to search for

suitable values of the numerator was already proposed by [8].
15 We also experimented with different ranges for the coefficients, but the above ranges

gave the best results as far as power and runtimes are concerned.
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Nat Rat + Sect. 4.1 Rat + Sect. 4.1 + Sect. 3 Rat + Sect. 4.2
Yes SucTime FulTime Yes SucTime FulTime Yes SucTime FulTime Yes SucTime FulTime
606 1.9 s 2.9 s 742 3.1 s 15.4 s 685 2.6 s 11.0 s 696 6.1 s 29.2 s

Comparing “Nat” with the other setting shows that rational polynomials can
significantly increase power, but they also increase runtimes. The comparison of
“Rat + Sect. 4.1” with “Rat + Sect. 4.1 + Sect. 3” shows the usefulness of the
criteria from Sect. 3: if one applies these criteria, then runtimes are not increased
that much anymore, but (as long as one does not use any other termination
techniques) one also loses several examples where rational interpretations were
needed. Finally, the comparison with the last setting in the table shows that the
method of Sect. 4.1 which transforms constraints over the rationals to constraints
over the naturals is preferable to the direct SAT encoding from Sect. 4.2.

The next experiment compares “Rat + Sect. 4.1” with the existing constraint-
based method [18] for generating rational interpretations, implemented in
mu-term [15]. More precisely, we compare this version (“mu-term + [18]”) with
a version of mu-term where instead of [18] one calls AProVE (with the tech-
nique of “Rat + Sect. 4.1”) externally. Since mu-term generates the polynomial
constraints and it only calls AProVE with this set of constraints, the implemen-
tation of the criteria from Sect. 3 cannot be used here. In this table, we only ran
mu-term on a collection of 79 TRSs from the TPDB. These are TRSs where
mu-term needs rational polynomials in order to succeed with the proof. It turns
out that in spite of the external calls, the new SAT-based implementation is in-
deed significantly faster than the previous non-SAT-based method of [18].

mu-term + [18] mu-term + Rat + Sect. 4.1
Yes FulTime Yes FulTime
62 10.1 s 65 4.1 s

Finally, to measure the usefulness of our contributions in full termination
provers, the next table compares the performance of full versions of AProVE
on all 2061 examples. Here, many termination techniques are used in addition
to the dependency graph and reduction pair processor. Moreover, there are also
techniques to disprove termination (cf. column “No”). The next table shows that
the results of the current paper are also useful when integrating them into such a
powerful prover. AProVE-07 is the version which participated in the Termination
Competition 2007 (and which won this competition in the category of TRSs).
“AProVE-07 + Sect. 4.1” differs from AProVE-07 by using rational polynomials
with the setting “Rat + Sect. 4.1” and “AProVE-07 + Sect. 4.1 + Sect. 3” uses
“Rat + Sect. 4.1 + Sect. 3” instead. It is interesting to note that when integrating
rational polynomials into this full version of AProVE, the criteria of Sect. 3 have
quite positive effects. In other words, they reduce the runtimes and hardly affect
the power. For details on our experiments (including details on runtimes and
timeouts) and to run “AProVE-07 + Sect. 4.1 + Sect. 3” via a web-interface, we
refer to http://aprove.informatik.rwth-aachen.de/eval/RATPOLO/.

http://aprove.informatik.rwth-aachen.de/eval/RATPOLO/
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AProVE-07 AProVE-07 + Sect. 4.1 AProVE-07 + Sect. 4.1 + Sect. 3
Yes No SucTime FulTime Yes No SucTime FulTime Yes No SucTime FulTime
1089 238 3.8 s 29.6 s 1119 238 5.2 s 30.4 s 1118 238 4.9 s 30.1 s
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Abstract. Grid computing offers a promising approach to solving challenging
computational problems in an environment consisting of a large number of eas-
ily accessible resources. In this paper we develop strategies for solving collec-
tions of hard instances of the propositional satisfiability problem (SAT) with a
randomized SAT solver run in a Grid. We study alternative strategies by using
a simulation framework which is composed of (i) a grid model capturing the
communication and management delays, and (ii) run-time distributions of a ran-
domized solver, obtained by running a state-of-the-art SAT solver on a collection
of hard instances. The results are experimentally validated in a production level
Grid. When solving a single hard SAT instance, the results show that in practice
only a relatively small amount of parallelism can be efficiently used; the speedup
obtained by increasing parallelism thereafter is negligible. This observation leads
to a novel strategy of using grid to solve collections of hard instances. Instead of
solving instances one-by-one, the strategy aims at decreasing the overall solution
time by applying an alternating distribution schedule.

1 Introduction

This paper considers techniques for solving challenging instances of the propositional
satisfiability (SAT) problem with the aid of computational Grids. Such techniques are
of particular interest firstly due to the increasing use of SAT based technologies in com-
puter aided verification and other application areas, and secondly since Grids are nowa-
days offering large quantities of affordable computing power. The first phenomenon is a
consequence of recent developments in SAT solvers which have dramatically improved
the computational power of the solvers, whereas the second seems to be a major trend
in high-performance computing.

Our goal in this paper is to develop techniques for exploiting the parallel computing
resources provided by a Grid in a way that allows us to use state-of-the-art SAT solvers
with no or only minor modifications. To do this, we use the Simple Distributed SAT
(SDSAT) framework, whose basic version consists of simply running N randomized
SAT solvers in parallel until one of them finds the solution. We consider extensions
of the basic version obtained by incorporating different restart strategies and study
their effects in a specifically built simulation environment. The simulation environment
comprises of (i) a Grid model taking into account the inherent communication and
management delays, and (ii) run time distributions of a state-of-the-art randomized SAT

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



126 A.E.J. Hyvärinen, T. Junttila, and I. Niemelä

solver when applied on several hard SAT instances. We also validate some of the results
and parameters of our Grid model by using a production level Grid called NorduGrid
(see http://www.nordugrid.org/),

The key idea we exploit is that a complete SAT solver can be turned into a ran-
domized search procedure (RSP) in a natural way by slightly modifying the heuristic
function used in the solver. For example, MiniSAT [1] 1.14 makes by default 2% of its
heuristic choices pseudo-randomly; thus a natural modification to turn MiniSAT into a
RSP is to seed its pseudo-random number generator differently for each run. Such a
randomized search procedure, when provided with an input x, is guaranteed to give a
correct result RSP(x) when the computation of the procedure finishes. However, due
to the randomization, the time required for computing RSP(x) is not known in advance
but is described by a random variable TRSP(x). The random variable TRSP(x), and thus
the run time of RSP(x), is completely characterized by its cumulative run time distri-
bution function, qRSP(x)(t), giving the probability that the computation will terminate
before or at time t. This randomization of a SAT solver may sound counter-intuitive as
one usually tries to remove all non-determinism in order to make runs reproducible to
ease benchmarking and debugging. However, in the SDSAT framework as well as when
employing restart strategies to a RSP (discussed below), the goal is to exploit the short
runs (if any) in the distribution to decrease the expected run time of the overall system.

The expected run time of a randomized search procedure can often be substan-
tially reduced by periodically restarting the procedure [2]. For example, assume that
TRSP(x) = 1s with probability 0.3 and TRSP(x) = 10s with probability 0.7. Then the
expected run time E(TRSP(x)) is 0.3 · 1s + 0.7 · 10s = 7.3s. If the RSP is modified
so that it restarts itself immediately after time t = 1s, the expected run time becomes∑∞

i=1 0.7i−1 · 0.3i · is ≈ 3.3s. Such a modification, where the procedure is forced to
start from the beginning after running t1 seconds, then after t2 seconds and so forth, is
called a restart strategy S = (t1, t2, . . .) and the time ti the i:th restart limit. When a
restart strategy is employed to an RSP, the result is a randomized algorithm that also
has a run time distribution and an expected run time. The restart strategy employed in
the previous example is a special case of a fixed restart strategy St = (t, t, . . .) and the
algorithm corresponding to the fixed restart strategy St employed on RSP is denoted by
FIXEDt,RSP (or simply FIXEDt when RSP is implicitly known). Fixed restart strategies
are important in our analysis, since if qRSP(x)(t) is known, then t can be chosen so that
the expected run time of FIXEDt(x) is the minimal among all the algorithms obtainable
from RSP(x) by employing any restart strategy [3]. However, in practice qRSP(x)(t) is
not known: obtaining information about qRSP(x)(t) in general requires solving RSP(x),
which is the overall goal in many applications. To circumvent this problem, several uni-
versal restart strategies have been suggested [3,4]: they do not depend on the instance
x and let the restart limits grow arbitrary large in order to preserve the completeness of
the algorithm.

We first study the effect of applying several restart strategies on our benchmark set of
hard SAT instances in the sequential setting. The results show that there are instances on
which the optimal fixed restart strategy provides a substantial reduction in the expected
run time. The two universal strategies considered can also reduce the expected run time
on some instances but result in a bad performance on some others. The reason is that

http://www.nordugrid.org/
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the universal strategies can spend too much time in trying to find a short run; when an
instance has none, all that time is wasted.

Based on results in the sequential case, we consider ways to parallelize restart strate-
gies in the SDSAT framework and use our simulation model to benchmark them. The
results give rise to two major observations. First, parallelism seems to be an effective
“luck enhancer”; when randomized solvers are run in parallel, the probability that one of
them finds a short run grows quite quickly. This seems to render elaborate restart strate-
gies practically useless in the parallel setting as the simple approach with no restarts
tends to provide quite good results consistently. The second observation is that only a
relatively small amount of parallelism seems to be effectively exploitable; after a certain
amount, adding more parallel solvers does not seem to give any significant performance
gain. There seems to be two reasons for this: (i) the probability that a short run is found
is already quite high with a smallish number of parallel solvers, and (ii) the delays in
the Grid environment reduce the effect of restart strategies.

The above results suggest that when solving a set of instances, a good speedup is not
obtained by solving them one-by-one in a Grid. Instead, the instances should be solved
in parallel by reserving a smallish amount of computing resources for each instance. We
validate this idea in Sect. 6 both with the simulation model and by using a production
level Grid.

Related Work. Techniques for learning or adapting restart strategies to improve the ag-
gregate performance on a given collection of instances are studied, e.g., in [5,6,7,8,9].
A closely related topic is the use of algorithm portfolios [10,11]. The idea is combined
with clause learning in [12]. Parallel restart strategies are studied in [13], without con-
sidering the practical limitations of a Grid. Guiding path [14,15] is a technique for
distributed SAT solving based on dynamic partitioning of the problem with new as-
sumptions. Such methods combine also with clause learning [16]. The techniques in
grid-like environments have been investigated, for example, in [17,18,19,20]. The guid-
ing path method is further developed in [21]. A different algorithm is presented in [22].

In this paper we extend previous work in three crucial respects: (i) We take into
account the limitations of practical Grid environments which involve strict resource
bounds and significant latencies due to communication and job management. (ii) We
require minimal changes to the SAT solvers, and the changes are almost totally inde-
pendent of the underlying solver technology. (iii) We use realistic run time distributions
of the randomized search procedure obtained experimentally by running a state-of-the-
art SAT solver on a representative collection of SAT instances from the application
domain.

2 Grid Environment

The paper develops techniques for using loosely coupled, widely distributed Grid en-
vironments for solving challenging SAT problems. From an abstract point of view a
Grid environment can be seen as consisting of a collection of computing resources
called primitive computing elements (PCEs). A PCE can execute a sequential program
given its input, hence, in practice corresponding to a CPU. A user can submit a job
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(a sequential program together with its input) to the Grid which executes it on one of its
PCEs and gives results back to the user.

Next we briefly described three key characteristics which play an important role
when developing Grid applications and the algorithms in this paper: (i) jobs in Grids
experience significant delays but (ii) the run time of a job typically affects the effect of
delays and (iii) communication between jobs is very limited when compared to tradi-
tional multi-processor environments such as clusters.

(i) The entry point of a Grid environment is a set of queues accepting jobs. Each
queue is associated with a set of computing elements (CEs) corresponding to a set of
CPUs. A job starts executing when the queue system assigns the job to a CE. Sev-
eral causes of delays can be identified. Firstly, the time required for the job to reach a
CE after submission to the corresponding queue depends on the amount and types of
previously submitted jobs still in the queue, and the remaining run times of the jobs cur-
rently executing in the CEs. Secondly, if the submission of a job involves transmitting
a large amount of data, the amount of network bandwidth may greatly affect the de-
lays [23]. Thirdly, the run time of a job in a CE depends on the load potentially placed
by other jobs on the neighboring CPUs, as well as the types of the CPUs in the CE.
Finally, it is possible that jobs disappear due to maintenance breaks or various random
faults. Efficient job management in Grids is a non-trivial task and is typically han-
dled by special tools. In those experiments of this paper that are run in NorduGrid, we
use a fault-tolerant and efficient job management system called the Grid Job Manager
(GridJM) [24].

(ii) Note that the different delays above seem to suggest that a job with limited run
time could experience shorter delays. For instance, most queue systems support a mech-
anism called reservation, where a complicated task requesting a CE of several CPUs
will force the queue system to start to reserve CPUs. In this case, no new jobs request-
ing a CE will be assigned from the queue, unless the run time of the job is short enough
to finish before the time expected for the requested CE of several CPUs to become
available. On the other hand, since the delays are experienced by each job, it would be
preferable to submit sufficiently long running jobs so that the delays do not dominate
the total run time. As a reasonable compromise, in the experiments in NorduGrid we
use jobs where the run time is limited to one hour.

(iii) Since a Grid can be formed by several independent but collaborating organi-
zations which decide to share the computing resources, it is common that two jobs
submitted to the Grid are not guaranteed to be able to communicate with each other at
all. For example, such limitations are typically posed by the networks of the organiza-
tions in NorduGrid used in the experiments and, therefore, in the algorithms developed
in the paper we assume that jobs cannot communicate directly with each other.

3 Simulation Environment

Realistic Grid systems pose certain challenges for exact algorithm benchmarking, since
both the delays and the run times vary, rendering the reproduction of results difficult. To
overcome these challenges, we construct a simple Grid model based on the following
components:
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Fig. 1. A time line of an execution in Grid representing the number N of PCEs, queue delay
dq(N), and the submit delay d(N). In the example, the first job has executed the maximum
allowed time Tc on a PCE.

(1) A unique central process M initiating new and monitoring old jobs, and a set of N
PCEs receiving jobs from and reporting the results to M .

(2) An initiation delay describing the amount of time required to submit a job to the
Grid. The delay d(N) can be modeled as a random variable depending on the num-
ber of PCEs employed. The delay is executed by M and results in a bottleneck
when initiating new computations.

(3) A queue delay is the sum of two components: the time spent queuing to the PCE,
and the time spent receiving the results after the job has finished. The delay dq(N)
can be modeled as a random variable depending on the number of PCEs employed.
The delay is experienced by the job and does not form a bottleneck for submission.

(4) A maximum resource limit Tc describing the amount of time a PCE is allowed to
execute before terminating a job and becoming ready to accept a new job.

We believe that this system provides a realistic model for distributed computing in
Grids. (1) A central process managing jobs provides a natural synchronization mecha-
nism. (2&3) Most such systems have a delay associated with the synchronization, and
specifically shared distributed environments require certain communication in selecting
the PCE to be employed. (4) Batch systems such as Grids usually limit the resources
available to a single job, for example, to provide fairness in scheduling. The model does
not directly consider the effect of various CPU models and the load on the CPUs on the
run time. Such effects can be obtained by adjusting the queue delay and the resource
limit accordingly.

We may study an application submitting jobs to the Grid through a central process
M as a time line, illustrated in Fig. 1. The time advances to the right in the figure
and the abstract PCEs can be seen as N bands placed on top of each other. The filled
rectangles represent jobs, and the dark areas inside the jobs represents the CPU time, as
opposed to the queuing delay. The time in the figure starts when the first job (the long
rectangle at the bottom of the figure) is placed into a queue of a PCE. The second job
is submitted immediately after this, and after the submission delay d(N), reaches the
queue. Meanwhile, the first job has reached the PCE, is executed in it, and finally the
result is reported back to the central process after some queue delay.

When performing the actual simulations, we make the following simplifying as-
sumptions on the model:
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– submit delay d(N) = d is constant for every PCE and does not depend on N , and
– queue delay dq(N) = dq is constant for every PCE and does not depend on N .

If the effect of the number of PCEs is taken into account, the delays will increase since
in practice the jobs will interfere with each other. This means that using the simplifying
assumptions the resulting run time is underestimated and this error increases with the
number of PCEs employed. Hence, the model with the simplifying assumptions gives
overly optimistic results on speedups for larger numbers of PCEs which needs to be
taken into consideration when evaluating the results. Nevertheless, these assumptions
allow us to study the effect of delays in a simple yet reasonably realistic environment.

Run time distributions. As a representative collection of SAT instances we use a set of
benchmarks from the SAT 2007 Competition (see http://www.satcompetition.
org/2007/). The instances, with the full name, abbreviated name, and satisfiability,
are listed below.

– mod2-rand3bip-sat-250-3.shuffled-as.sat05-2220,mod2-250, satisfiable.
– mod2-rand3bip-sat-280-1.sat05-2263.reshuffled-07, mod2-280, satisfiable.
– 999999000001nc.shuffled-as.sat05-446,99999900, unsatisfiable.
– clqcolor-10-07-09.shuffled-as.sat05-1258, clqcolor, unsatisfiable.
– cube-11-h14, cube, satisfiable.
– dated-10-13-s, dated, satisfiable.
– mizh-md5-48-5, mizh-md5, satisfiable.
– vmpc_28.shuffled-as.sat05-1957,vmpc_28, satisfiable.
– AProVE07-16, AProVE07, unsatisfiable.

The set covers both industrial and hand-crafted instances, having typical run time of
thousands of seconds for a state-of-the-art SAT solver.

The SAT solver run time distributions are approximated by using a collection of sam-
ples for each instance. The samples are obtained by 100 separate randomized runs of
a state-of-the-art SAT solver (MiniSAT version 1.14 with its pseudo-random number
generator initialized differently for each run). Based on the randomized runs, we con-
struct a distribution of run times with linear interpolation between the sample points,
assuming probability 0 for runs shorter than the minimum sample and for runs longer
than the maximum sample. We also studied the case with discrete distribution, but this
did not significantly affect our results.

Table 1documents for each instance the abbreviated names and the SAT solver run
times for minimum, fifth percentile, median, 95th percentile and maximum of the sam-
ples. We also provide the average of the samples, i.e., an approximation of the expected
run time of the solver on the instance, in the RSP column. The columns OPTIMUM,
t∗, LUBY and WALSH will be explained in Sections 4 and 5. At this point, of particu-
lar interest are the large dynamics in certain distributions, such as vmpc_28 with over
19000-fold difference between minimum and maximum run time. We also provide the
cumulative run time distributions for two of the test instances in Fig. 2. The distribution
is the increasing graph q(t). The horizontal lines in Figures 2(b) and 2(d) indicate the
maximum and minimum run times of the instance and the vertical line indicates the
maximum run time on the x-axis, i.e., the value of t where q(t) = 1. The remaining
graphs will be explained in Sections 4 and 5.

http://www.satcompetition.org/2007/
http://www.satcompetition.org/2007/
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Table 1. Characteristics of the run times for the test instances

Instance Min 5% Median 95% Max RSP OPTIMUM t∗ LUBY WALSH

mod2-250 40.16 97.16 1210 2675 3088 1181 1181 ∞ 2715 1510
mod2-280 9.184 55.71 1732 6611 7775 2382 918.4 9.184 1274 1718
99999900 1072 1204 2056 3101 3725 2065 2065 ∞ 25070 4560
clqcolor 1198 1300 1922 2955 4329 1900 1900 ∞ 23060 4158
cube 2629 2896 4708 7936 10049 4832 4832 ∞ 106200 18500
dated 10.09 46.53 803.0 12550 37930 2279 716.1 29.08 901.5 993.3
mizh-md5 49.76 128.7 861.7 5784 9489 1660 1236 899.3 3403 1471
vmpc_28 0.1370 3.905 394.7 1730 2720 623.3 12.71 0.2560 137.4 279.6
AProVE07 879.4 1071 1471 2713 2855 1564 1564 ∞ 17330 3381
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Fig. 2. Run time distributions and expected run times for the instances clqcolor and vmpc_28

It can be argued that 100 samples is not enough to give us a realistic view of the
run time distribution of an instance. In order to estimate the magnitude of the error
introduced to the finite distribution, we compare the distributions of cube with 100
samples and 1000 samples. The results are reported in the first two rows of Table 2.
Even though the minimum run time decreases and the maximum run time increases,
the distribution seems to remain relatively stable when increasing the number of sam-
ples. To have an impression on how, for example, a short run would affect the results, we
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Table 2. Comparison of the distributions for cube with 100 samples (cube100), 1000 samples
(cube1000), and a modified distribution with one artificial short run inserted (cube1001m)

Instance Min 5% Median 95% Max RSP OPTIMUM t∗ LUBY WALSH

cube100 2629 2896 4661 7617 8821 4832 4832 ∞ 106200 18500
cube1000 1441 2990 4914 7664 14051 5067 5067 ∞ 97360 31510
cube1001m 0.7352 2990 4914 7647 14051 5061 725.9 0.735 5101 30280

inserted an artificial short sample and constructed the corresponding distribution. The
resulting distribution has the same dynamics as the distribution of vmpc_28.

4 Restart Strategies in a Sequential Setting

Given a randomized search procedure RSP and a problem instance x, it is possible to
associate a run time distribution qRSP(x)(t) with the run time of RSP(x). Employing a
restart strategy S on RSP results in a new algorithm with a potentially different run time
distribution. In this section we discuss the effect of using several such algorithms on our
collection of SAT instances by comparing the run time distributions qRSP(x)(t) with the
run time distributions of the new algorithms. We use the following restart strategies and
corresponding algorithms:

– OPTIMUM. The fixed restart strategy St and the corresponding algorithm FIXEDt

mentioned in Sect. 1 have the property that there is a restart limit t∗ which is optimal
for a given RSP and instance x [3]. If the cumulative distribution function q(t) of
the instance is known, the optimal restart limit t∗ may be determined by minimizing
the expected run time E(TFIXEDt(x)) as a function of the restart limit t,

E(TFIXEDt(x)) =
t−

∫ t

t′=0 q(t
′)dt′

q(t)
, (1)

i.e., t∗ = argmin(E(TFIXED t(x))). Determining t∗ can be done in our simulation en-
vironment but not usually in practice as the distribution q(t) is typically not known.

– LUBY. Luby et al. [3] define the universal strategy SL = (l(1), l(2), . . .) where

l(i) =
{

2k−1, if i = 2k − 1, k ∈ N
l(i− 2k−1 + 1), if 2k−1 ≤ i < 2k − 1.

When the strategy SL is employed on a RSP, the corresponding algorithm is called
LUBY. In [3] it is further shown that the expected run time of LUBY(x) is within a
logarithmic factor from the expected run time of OPTIMUM(x) independently of x.

– WALSH. Another universal strategy is the strategy SW = (w(1), w(2), . . .), where
w(i) = 21.2i, presented in [4]. The strategy differs from SL, for example, in the
rate of growth. Clearly, the restart limits in SW grow exponentially, whereas SL

grows only linearly with respect to i. The corresponding algorithm will be referred
to as WALSH.
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Table 1 compares the three algorithms against the run time of RSP. Column RSP re-
ports the expected run time of RSP(x) for different instances x. Using the run time
distribution qRSP(x)(t), we computed the optimum restart limit t∗ for each instance
minimizing Eq. (1). The resulting expected run time is reported on column OPTIMUM

and the corresponding restart limit in column t∗. The value ∞ is used to mark the
cases when run times for OPTIMUM(x) and RSP(x) are equal. In this collection of in-
stances, in five cases out of nine the expected run time of OPTIMUM(x) is equal to that
of RSP(x). Some of the satisfiable instances, though not all, seem to profit from em-
ploying a fixed restart strategy with small restart limit. As an example, the expected run
time for the algorithm FIXEDt with input vmpc_28, is shown in Fig. 2(d) as a function
of the restart limit t (graph labeled E(TFIXEDt)). In other cases, the expected run times
of algorithms with larger restart limits compare favorably to those with smaller restart
limits. An example is shown in Fig. 2(b).

The results for the two universal strategies are shown in columns LUBY and WALSH

of Table 1. Based on the results, it seems that in most cases the instances having
E(TOPTIMUM(x)) �= E(TRSP(x)) also profit of more complex strategies. We also note
that LUBY performs very badly on many instances with a high minimum run time. This
is a consequence of the slow growth of the restart limit in the strategy SL. In general,
the algorithm WALSH seems to offer a relatively robust approach, resulting in good
speedup where such speedup would be obtainable with FIXEDt∗ given that t∗ is known,
and still performing usually well in cases where E(TOPTIMUM(x)) = E(TRSP(x)). This
is a slightly surprising result, since to our knowledge no optimality result exists for the
strategy SW.

5 Parallel Solving of a Single Instance

In the previous section we discussed several restart strategies and resulting sequential
algorithms when the strategies are employed to a RSP. In this section we develop a
number of parallel algorithms for Grid environments based on the restart strategies.
Here we consider a Grid environment as an efficient distributed system for running jobs.
Hence, the algorithmic design boils down to approaches to constructing a sequence of
jobs j1, j2, . . . to be submitted to the Grid for execution based on a RSP and a restart
strategy. Since each job has a resource limit Tc limiting the execution time, we employ
a finite restart strategy (discussed below) on the RSP which guarantees that the run
time of the resulting algorithm is not more than Tc. Hence, each job ji consists of the
RSP, the input x to be solved and a finite restart strategy.

A finite restart strategy S = (t1, t2, . . . , tn) is a finite sequence of restart limits
which, when employed on a RSP, will terminate the resulting algorithm unless a solu-
tion is found by the end of the restart limit tn. The length of the finite restart strategy S,
denoted by |S|, is n. Given a restart strategy S = (t1, t2, . . .) and a resource limit Tc,
we define an operator finite(S) for constructing finite restart strategies from S as

finite(S) =
{

(Tc) if t1 > Tc

(t1, t2, . . . , tm) where m maximizes
∑m

i=1 ti ≤ Tc otherwise.

For any restart strategyS, the run time of the algorithm obtained by employing finite(S)
on a RSP is less than or equal to Tc.
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The most intuitive way of constructing jobs from a restart strategy S = (t1, t2, . . .)
is to assign the job ji the restart strategy (ti) for i = 1, 2, . . .. In practice this approach
performs very badly due to the high delays in actual Grid environments. Therefore, the
parallel algorithms we propose are based on two general schemes for constructing a
sequence of jobs, given a restart strategy S.

– Straightforward scheme. Given a restart strategy S for constructing jobs we define
a sequence of restart strategies S1, S2, . . . in the following way: let S1 = S and
given a strategy Si, the restart strategy Si+1 is constructed from Si by removing
the first |finite(Si)| restart limits from Si. Given an environment with N PCEs, in
the straightforward scheme jobs are constructed from the sequence S1, S2, . . . by
assigning the restart strategy finite(S1) for the jobs j1, . . . , jN , then finite(S2) for
the jobs jN+1, . . . , j2N and so forth. This strategy is discussed in [13].

– Faithful scheme. In this scheme given a restart strategy S we construct the sequence
S1, S2, . . . as above and then assign the job j1 the restart strategy finite(S1), the
job j2 the restart strategy finite(S2), and so forth.

Parallel Algorithms. Given the randomized search procedure and the distributed envi-
ronment, the parallel algorithm is uniquely determined by the used scheme (introduced
above) and the restart strategy. Furthermore, for a fixed restart strategy, the straightfor-
ward and faithful schemes result in the same parallel restart strategy, and thus the same
algorithm. We will discuss six parallel algorithms:

– The maximum parallel algorithm FIXED
p
Tc

is formed from the fixed restart strategy
STc and either straightforward or faithful scheme.

– The optimal parallel algorithm FIXED
p
t∗ is formed by finding a value t∗ which

minimizes the parallel run time distribution

E(TFIXED
p
t (x)) =

t−
∫ t

t′=1
(1 − (1 − q(t′))N )dt′

1 − (1 − q(t))N
(2)

for RSP(x) with the run time distribution q(t). Equation (2) is obtained from
Eq. (1) by substituting q(t) with the corresponding parallel distribution 1 − (1 −
q(t))N . However, as shown in [13], there are run time distributions for which
FIXED

p
t∗ does not result in minimum expected run time over all parallel algorithms.

– The faithful parallel Luby and Walsh algorithms LUBY-Fp and WALSH-Fp are con-
structed by using the faithful scheme on the strategies SL and SW, respectively.

– The straightforward parallel Luby and Walsh algorithms LUBY-Sp and WALSH-Sp

are constructed by using the straightforward scheme on the strategies SL and SW,
respectively.

Zero-Delay Parallel Environment. In this subsection we consider an idealized Grid
environment captured by the Grid model, where we set the delays d = dq = 0 and
the resource limit Tc = 3600s. This provides us with a lower bound on the run times
achievable in more realistic Grid environments.
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Table 3. Results for different strategies and the zero-delay parallel environment

Instance N FIXED
p
t∗ FIXED

p
Tc

LUBY-Sp WALSH-Sp LUBY-Fp WALSH-Fp

mod2-250 16 105.7 116.2 334.2 177.5 171.8 114.0
64 47.25 47.25 194.6 84.86 50.23 45.32

mod2-280 16 61.82 84.52 71.44 76.65 67.65 79.32
64 19.36 21.55 22.29 25.69 21.44 24.58

99999900 16 1219 1219 14657 2910 1620 1238
64 1097 1097 14530 2784 1213 1094

clqcolor 16 1293 1293 14730 2963 1553 1301
64 1223 1223 14660 2899 1287 1224

cube 16 2891 2891 33600 6777 8105 2996
64 2682 2682 33410 6570 3086 2687

dated 16 48.44 64.12 59.30 53.29 63.46 60.15
64 15.89 16.33 15.92 16.05 14.69 19.26

mizh-md5 16 133.8 133.8 525.8 116.6 162.1 125.4
64 73.23 73.23 259.2 126.1 84.53 81.76

vmpc_28 16 0.834 7.293 4.694 6.065 4.366 11.22
64 0.251 0.539 0.6507 0.7994 0.6550 0.5003

AProVE07 16 1049 1049 11040 2285 1299 1064
64 918.8 918.8 7823 1823 1056 915.4

We report the results for the maximum parallel algorithm in column FIXED
p
Tc

of
Table 3 for 16 and 64 PCEs. For comparison, we also report on the column FIXED

p
t∗

the results when using the optimal parallel algorithm, in which case we use Tc = ∞.
The speedup is in most cases linear with respect to the added resources, and for

vmpc_28 even super-linear, for both FIXED
p
Tc

and FIXED
p
t∗ . For some instances, how-

ever, the speedup is negligible. It seems that there are certain distributions which do not
allow for speedup when parallelized in this manner after a certain amount of PCEs has
been reached. Two different examples of this phenomenon are closer studied in Figures
2(b) and 2(d) for N = 1 and N = 8. The graphs labeled E(TFIXED

p
t
) in the figures are

the expected run times of the algorithm FIXED
p
t with the respective instance as a func-

tion of the restart limit t. In Fig 2(b), the run time of the algorithm FIXED
p
t with large

values of t is almost equal to that of the shortest sampled run (the lower horizontal line)
which can also be seen from the run time distribution of the algorithm FIXED

p
t when

N = 8, q8(t), in Fig 2(a). The situation is different in Fig 2(d), where the shortest run
is much shorter than the expected run also when N = 8.

We also note that the difference between FIXED
p
Tc

and FIXED
p
t∗ becomes insignifi-

cant whenN increases. The intuitive explanation for this is that the benefit of aggressive
restarting can be obtained by running several solvers in parallel. The important conse-
quence of the phenomenon is that with a large number of PCEs, the significance of the
restart strategies decreases.

The remaining columns in Table 3 show the behavior of the strategies SL and SW.
The results are obtained by simulating 100 runs of the parallel algorithms and reporting
the mean time required to find the solution. The columns LUBY-Sp and WALSH-Sp

correspond to the straightforward parallel restart strategy for SL and SW. This scheme
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Table 4. Comparison of 64-PCE SL and SW with f = 1.0s, f = 15.0s, and f = 100.0s

LUBY-Fp WALSH-Fp

Instance f = 1.0 f = 15.0 f = 100.0 f = 1.0 f = 15.0 f = 100.0

mod2-250 68.09 50.23 47.19 46.54 48.85 48.55
mod2-280 34.71 21.44 20.16 23.82 21.69 18.55
99999900 1372 1213 1166 1093 1096 1105
clqcolor 1345 1287 1262 1220 1224 1222
cube 3950 3086 2977 2696 2688 2677
dated 28.43 14.69 18.71 18.74 15.85 18.57
mizh-md5 98.35 84.53 74.76 82.65 72.48 79.45
vmpc_28 0.5140 0.6550 0.6560 0.4717 0.5401 0.4870
AProVE07 1088 1056 992.2 930.2 936.2 914.76

has the benefit that small restart limits are attempted often. However, especially SL

suffers from the repeating of the short runs in cases where the smallest run time is
high. The results corresponding to the faithful scheme are reported in columns LUBY-Fp

and WALSH-Fp. In most cases the faithful scheme performs significantly better than
the straightforward scheme, and when this is not the case, the difference is relatively
small.

To further enhance the strategies SL and SW, we studied the effect of multiplying
the restart limits of the strategies by a constant factor f in Table 4 for 64 PCEs. Based
on these results, the factor does not seem to have a significant effect on the run times.
The runs in Table 3 (as in Table 5) are measured with f = 15.0.

We study the effect of a larger sample base similar to the case in Table 2 in the zero-
delay environment. The results are reported in Table 5. For this particular instance, the
strategy FIXED

p
t∗ is equal to the maximum strategy both when the amount of samples

is 100 and 1000. In this case, when the number of samples is increased, the expected
solving time decreases for most algorithms. There is no significant difference between
WALSH-Fp and FIXED

p
Tc

whereas LUBY-Fp suffers from a larger number of short un-
successful runs (even though not visible in Table 2, the distributions are significantly
different when t ≤ Tc; e.g. q(3600s) ≈ 0.24 in the 100 samples distribution but only
approximately 0.14 in the 1000 samples case). Since cube is a satisfiable instance,
it is possible that there is a short run time for the randomized SAT solver. Since the
1000 samples did not reveal a short run time, it might be that the run is extremely
improbable. To study the effect of such a short successful run we modify the distribu-
tion of cube to include a single short run. The resulting run times are given in the row

Table 5. Effect of additional samples on the zero-delay solving of cube with 64 PCEs

Instance FIXED
p
t∗ FIXED

p
Tc

LUBY-Fp WALSH-Fp

cube100 2682 2682 3086 2687
cube1000 2364 2364 3760 2270
cube1001m 11.86 2175 969.8 2185
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labeled cube1001m. In this case, LUBY-Fp is better than FIXED
p
Tc

because of the higher
probability of finding the short run.

Non-Zero Delay Parallel Environment. The simulation results from the parallel en-
vironment with zero submission delay and zero queuing delay provide some insight to
how the parallelization method based on randomizing algorithms can perform on the
benchmark set. However, realistic parallel environments in general, and Grid environ-
ments in particular, always include some overhead related to initializing the computa-
tions. As described in Sect. 3, we divide the delays into two categories: submit delay d
and queue delay dq . Typical values in NorduGrid are d = 12s and dq = 125s. However,
the two values seem to vary strongly. The simulated experiments are presented in Ta-
ble 6 under the title “large delay”. All results are obtained by computing the mean run
time over 100 samples using Tc = 3600s for the jobs.

The results show that almost always the maximum parallel algorithm FIXED
p
Tc

out-
performs those based on universal restart strategies on these instances. It is worth noting
that increasing the number of PCEs four-fold brings next to nothing in speedup, a con-
sequence of the long queuing delays.

It is possible that the submission and queue delays are significantly shorter in, say,
some other Grid environments. We simulate the effect of smaller delays by using sub-
mission delay d = 5s and queue delay dq = 30s. The results are reported under the
caption “small delay”. Even though the strategies SL and SW are now more compet-
itive, their effectiveness still suffers from the high delays and it can be argued that
the maximum timeout is a sufficient approximation of the optimum. The super-linear
speedup observed in zero-delay environment cannot be observed in either of the de-
layed environments. For certain instances, such as 99999900 and cube, already a
smallish number of parallel runs suffices to find a short run from the samples. As a
result, obtainable speedup is small.

We confirm these results by repeating them for two instances in the NorduGrid Grid
environment. We select two instances which according to the simulated results are il-
lustrative examples on the techniques used in parallel solving. The instance vmpc_28
shows super-linear speedup in simulations in zero-delay environments, but only a mod-
erate speedup in delayed environments using the techniques we have studied. The in-
stance AProVE07, on the other hand, has a less dynamic distribution in the simulations
and yields no significant speedup at the transition from 16 to 64 PCEs even in the zero-
delay environment. The results are presented in Table 7. The submission delays seem
to be below the average delay of 12 seconds, but the results correspond approximately
to the simulated results. No speedup seems to be achieved when the number of PCEs is
increased.

6 Parallel Solving of a Set of Instances

In this section we propose an algorithm for solving a collection of SAT problems ef-
ficiently in a Grid environment based on the results on solving a single instance. The
results indicate that (i) an increase in the number of PCEs does not result in a corre-
sponding speedup when solving a single instance and (ii) for a large number of prob-
lems to solve, a good speedup is not obtained by using all the resources for solving
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Table 6. Results for different strategies and delayed parallel environments. The two rows for each
instance correspond to N = 16 (top) and N = 64 (bottom).

small delay large delay

Instance FIXED
p
t∗ FIXED

p
Tc

LUBY-Fp WALSH-Fp FIXED
p
t∗ FIXED

p
Tc

LUBY-Fp WALSH-Fp

mod2-250 177.0 145.1 232.7 164.4 352.8 379.3 399.8 399.3
161.5 157.7 182.7 133.5 364.4 355.7 422.7 350.4

mod2-280 125.8 159.0 137.4 150.7 306.8 331.0 321.4 350.0
118.1 126.2 135.2 132.4 296.3 327.7 320.9 340.1

99999900 1242 1268 1672 1306 1431 1477 1984 1527
1208 1246 1401 1253 1432 1485 1756 1490

clqcolor 1340 1353 1455 1378 1506 1525 1846 1577
1328 1351 1448 1352 1508 1536 1777 1554

cube 2882 2960 9209 3067 3094 3117 9233 3195
2792 2840 3489 2842 3050 3121 4159 3145

dated 112.1 140.5 138.2 126.1 272.2 323.8 281.6 312.1
104.7 114.1 116.6 117.4 284.3 309.2 293.8 305.8

mizh-md5 181.4 190.4 268.7 199.4 352.6 391.2 445.0 395.3
190.4 186.3 208.5 195.0 379.8 385.2 464.8 392.0

vmpc_28 43.27 67.35 62.70 65.49 155.7 206.7 198.4 214.0
42.18 68.06 62.59 64.30 155.5 218.3 200.0 212.0

AProVE07 1073 1089 1313 1127 1262 1289 1569 1310
1073 1065 1205 1061 1292 1299 1568 1300

Table 7. Experimental results in Grid for selected instances. Reported is the average over 10 runs
using the strategy STc .

Instance PCEs Time d

vmpc_28 8 105.4 3.333
16 125.7 7.668
64 134.5 5.189

Instance PCEs Time d

AProVE07 8 1624 5.917
16 1574 9.714
64 1271 8.555

a single problem at a time, but rather by dedicating only a certain amount of PCEs
for a single problem and solving multiple problems simultaneously instead. These ob-
servations lead to the following locally-aided fair-share algorithm: Given a collection
of instances, the instances are sent for solving in a round-robin manner by using the
maximum parallel algorithm FIXED

p
Tc

. In addition, the problems are also solved lo-
cally at the same time using an algorithm similar to LUBY with the modified strategy
SL,C = (min{l(1), C},min{l(2), C}, . . .), where C is a maximum local run time con-
stant, in a round-robin manner.

We provide experimental evidence that the proposed algorithm is efficient in a real
Grid environment. For this experiment, we select 8 problems from our benchmark set
of 9 problems and run them in parallel with 64 PCEs, reserving at most eight PCEs per
problem. This enables us to compare the results of this experiment against a strategy
where 64 PCEs are dedicated for a single instance at a time. We first exclude cube
from the set of instances, since this problem is in the limit of solvable problems within
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3600 seconds in our Grid environment, having expected run time of 4708 seconds in the
simulation environment. The resulting run time for the full instance set is 1865 seconds.
The sum of the simulated run times for these instances from Table 6 is 5916 seconds.
This results in a speedup 3.17 compared to the strategy of using 64 PCEs per instance.
When these results are compared against a simple strategy of running the problems on
a single PCE with no delays, the speedup computed from the results of Table 1 is 7.32.

However, we note that the results can be significantly worse if a difficult instance,
such as cube, is included in the set of problems to solve. We repeated the above ex-
periment with 10 repetitions, now using 72 PCEs, resource limit Tc = 7200 seconds
and including cube to the set of problems to solve. This resulted in a speedup of 1.76
with average solving time of 5136 seconds in the Grid environment compared to the
expected solving time of 9037 seconds with long delays and 64 PCEs in Table 6. When
these results are compared against a simple strategy of running the problems on a single
PCE with no delays, the speedup is 3.60.

7 Conclusions

In this paper we have developed techniques for solving collections of hard SAT instance
in a Grid using a randomized SAT solver. We have compared different approaches us-
ing a simulation framework consisting of a grid model capturing the communication
and management delays, and a representative collection of run-time distributions of a
randomized solver. The results are experimentally confirmed also in NorduGrid which
is a European-wide distributed production level Grid. When solving a single hard SAT
instance, the results show that in practice often (i) a relatively small number of parallel
jobs suffices to increase the probability of finding a short run in the distribution to a sig-
nificant level and (ii) the non-negligible delays in a Grid eliminate super linear speedups
that could be obtained in an ideal environment without any delays. Hence, attempts to
decrease the overall expected run time by using clever universal restart strategies or
by finding optimal restart limits do not lead to significant improvements compared to
using the resource limit implied by the Grid environment as the restart limit. These ob-
servations lead to a novel strategy of using Grid to solve collections of hard instances.
Instead of solving instances one-by-one, the strategy aims at decreasing the overall so-
lution time by applying an alternating distribution schedule.
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Abstract. This paper discusses the pros and cons of using a functional
language for implementing a computer algebra system. The contributions
of the paper are twofold. Firstly, we discuss some language–centered
design aspects of a computer algebra system — the “language unity”
concept. Secondly, we provide an implementation of a fast polynomial
multiplication algorithm, which is one of the core elements of a com-
puter algebra system. The goal of the paper is to test the feasibility of
an implementation of (some elements of) a computer algebra system in
a modern functional language.

Keywords: computer algebra, software technology, language and system
design.

1 Introduction

With the flow of the history of computing, exact methods gained more and more
importance. It was clear since almost the beginning, that imprecise, numerical
operations may and will fail. The Wilkinson Monster

∏20
j=1(x−j) is a nice – and

old! [45,46] – example for the thesis “the way we compute it matters”. One of the
crucial points of computer algebra systems (CAS) is the implementation of fast
algorithms. One of the core algorithms is fast multiplication, be it of numbers
or of polynomials. Current approaches include methods by Karatsuba, Toom
and Cook [20, 44, 24] and Schönhage and Strassen [38, 37]. An implementation
of the latter in the functional language Haskell [33] is presented in this paper
to test the suitability of functional languages for implementing computer alge-
bra algorithms. Our vision is an open-source flexible computer algebra system,
that can easily be maintained, extended and optimised by the computer alge-
bra community. The mainstream computer algebra systems like Maple [34] or
Mathematica [47] provide highly optimised routines with interesting but hidden
implementation details. However, the closed–source nature of such systems does
not enable us to analyse their internals. On the contrary, the following mod-
ern CAS are examples for systems with freely available source code: CoCoA [8],
DoCon [27], GAP [11], and GiNaC [16,13]. Our approach follows the philosophy of
the GiNaC library, which extends a given language (C++) by a set of algebraic
capabilities, instead of inventing a separate interface language for that purpose.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 141–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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We plan to implement a computer algebra system in a modern functional lan-
guage like Haskell. Several features of such languages, like lazy evaluation, im-
prove numerical computations [5,6]. Lazy evaluation is also helpful for designing
algorithms in scientific computing [22]. Other features could as well be useful for
a CAS [28]. Incidentally, both functional programming languages [25,42,29,2,35]
and computer algebra systems [15, 14, 18, 39] are present in the field of parallel
and distributed computing.

Plan of the Paper
The second section discusses the benefits of functional languages for implement-
ing computer algebra algorithms. Section 3 pushes the language unity concept
for CAS, i.e. choosing the same language for implementing and using a CAS.
Section 4 presents a few case studies. We

a) compare different Haskell implementations of polynomial multiplication,
b) compare Haskell and imperative implementations for computing factorials,
c) consider the FFT–based implementation of polynomial multiplication by

Schönhage and Strassen.

Section 5 concludes the paper. Code samples are presented in Figures 3 and 4
in Section 4.

2 Advantages of Functional Languages

We consider Haskell [33] as a base of our thoughts. Some of the key features of
most functional programming languages, all of them found in Haskell, are:

– Lazy evaluation means that no expression is evaluated if it is not required.
This can be combined with memorisation, when no expression is evalu-
ated more than once. We should think of lazy evaluation as of a double–
edged sword. Indeed it reduces the amount of required computations and
the end user of the CAS has the freedom of writing his/her own programs
in a way more corresponding to standard mathematical nomenclature. How-
ever, worse performance will be observed, if lazy evaluation fails to out-
weigh its overhead by skipping evaluations. A detailed comparison is beyond
the scope of this paper. However nice applications of lazy evaluation in the
context of scientific computing can be found in papers by Jerzy Karczmar-
czuk [21, 22, 23]

– Functional languages provide infinite data structures, notably: lists. Such
lists can be easily implemented with lazy evaluation. Infinite data struc-
tures enable “more mathematical” definitions of e. g. sequences and series.
On the one hand, this means “more conforming to the current mathemat-
ical nomenclature” as in e.g. factorial n = product [1..n] and, on the
other hand, “nice in describing typical mathematical concepts” including in-
finite sequences. A classical example for this is fibs = 0 : 1 : zipWith
(+) fibs (tail fibs)1.

1 See http://haskell.org/haskellwiki/The_Fibonacci_sequence for a sublinear
time implementation of the same sequence.
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– Referential transparency enables a “more mathematical” semantics: for func-
tion f, f(5) has the same value, whenever it is evaluated, pretty much as
f(5) in a mathematical notation. Consider an example in C.

int i = 5;
i = ++i + i++;

This example is rather unnatural, but the result value of i depends on the
implementation – try it in any imperative language of your choice. In a pure
functional language, such dubious definitions are not possible.

– In the context if a CAS strong typing gives some benefits. For example, it
is possible to produce an error at compile time for a product of matrices
of incompatible dimensions. On the other hand, type inference is possible.
However there are some problems with Haskell type system in a computer
algebra context. For instance, if you define a factor ring over a commutative
ring, it may or may be not a field: it depends on the properties of the ideal. If
rings, domains, etc. are defined as types, the Haskell type system would not
be able to determine at compile time, whether this instance of type “factor
ring” is a field or not. Papers by S. Mechveliani, for instance [26], discuss
this problem and suggest an appropriate solution.

– Haskell’s hierarchical module system, being a rather software engineering
issue, provides the possibility to structure large programs efficiently.

– Another benefit of modern functional languages is the possibility to prove
the correctness of implementations.

3 The Two Languages of a CAS

Computer algebra systems possess two different languages, we shall call them in
this paper as follows. The internal language of a CAS is the language the system
is written in, the implementation language. Since the end user of the CAS wants
to perform some kind of programming, there is also a second language. The
external language of a CAS is the language for user interaction, the interface
language. The idea of “language unity” is to utilise the same language for both
purposes, i.e. as internal and as external language.

It is desirable to write as much as possible of the CAS itself in its external
language. This gives the user the opportunity to inspect and (if needed) to
modify some external functions of the CAS. However, for several reasons, this is
impossible in most CAS. Firstly, the external language of most CAS is “weaker”
than their internal one in the sense that some technical things may be hard
or even impossible. On the other hand, the external language is better suited
for the typical computer algebra operations: we may expect, e. g. polynomials
and matrices as native objects or an interesting handling of lists, non–existent
in the internal language of the CAS if this language is imperative. Especially
advanced features like type safety and generic programming are desired in the
external language. A recent development is to utilise a general purpose dynamic
language like Ruby [10], Groovy [3] or Python [43] for interconnecting different
programs, building a composite computer algebra system [40].
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Secondly, unfortunately, the external language of most CAS is not as fast as
the internal one. The cause may be the interpreted origin of these languages
or their very high level nature. This is often avoided by compiling the input
files to some kind of byte code. Other speedup approaches compromise the
extensibility. The implementation of the S programming language for statis-
tical computations, GNU R, utilises a Scheme dialect as its external language.
The whole R system could be implemented in Scheme. But because of perfor-
mance lack in core operations, these are replaced with function calls from the
bundled C library. These functions can still be overloaded and replaced by the
user’s own version, but one cannot simply look into the routines, which are
sped up this way. There is also a third option: to use a functional language
and to perform optimisations in the language compiler typical for a functional
language. This way our external language could be feature–rich and reasonably
fast, but it will have the price of writing a, say, LISP interpreter in an imperative
language.

An interesting approach in this field was taken by Christian Bauer, Alexan-
der Frink, Richard Kreckel et al., the developers of GiNaC [4,13]. This computer
algebra system was written in C++ and it maintains C++ as its main interface.
It is made in a very simple way: GiNaC is rather a computer algebra library,
than a complete system. So the primary use of GiNaC is to give one a pos-
sibility of writing his/her own C++ programs, while using arbitrary precision
numbers, polynomials, matrices, expression evaluation and other nice and fast
computer algebra functions, offered by the GiNaC library. As the authors of
GiNaC state:

Its design is revolutionary in a sense that contrary to other CAS it does
not try to provide extensive algebraic capabilities and a simple program-
ming language, but instead accepts a given language (C++) and extends
it by a set of algebraic capabilities.

This approach is very interesting and powerful, but the interactive front end
program of GiNaC, the ginsh, is less powerful due to a rather weak language. It
was, however, never intended to be a complete GiNaC interface. The possibility
to use all the GiNaC features at an interactive prompt requires a C++ interpreter.
While interpreting C++ is not very nice (although possible: see e.g. [9])2, it is much
easier with Haskell: aside from the glorious Glasgow Haskell Compiler [12],
we have Hugs, the Haskell interpreter. Also GHC itself offers an interactive
version, GHCi. The latter is capable of loading pre-compiled object files into the
interpreted environment. With this achievement one has the possibility to write
a computer algebra system, whose external interface language equals its internal
implementation language, and this language is a functional one.

The idea of GiNaC was not born in vain: most long CAS–supported compu-
tations are run in “batch mode”, with no user interaction. It seems plausible not
to wait in front of a command prompt for the result for hours, days or even
2 There is also a third party GiNaC interface language project,
http://swiginac.berlios.de/
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months.3 On the other hand, most of CAS–based development is done in an
interactive environment, in a “shell”. If one could use the same language both
for developing and for lengthy computations, this would be a major success in
saving developers’ work time [32] and gaining stability of computations.

Now why not just make both: a compiler and an interpreter of CAS’ external
language? The problem is, that despite many efforts, the external languages of
computer algebra systems are slow. On the other hand, we already have a fast
language in our CAS–developing project. This is the language, the CAS itself
is written in, the internal language. One may oppose, however, the whole game
with computer algebra system’s external language was started, because the in-
ternal language was not high–level enough for vectors, matrices, polynomials
and all the other expressions, which are eagerly wanted in a full–fledged CAS.
Now we come back to the beginning of this paper. Functional languages are
complicated and high–level enough to have all the aforementioned objects and
properties [33,41,27,7,17]. Functional languages have very compact code size and
rapid development times [32]. Most functional languages have very interesting
data structures and language design features, which benefit both featuring them
as an internal or as an external language, see [31] for details. And some modern
functional languages already have an efficient compiler and an interpreter im-
plemented, which leads us to the future goal of internal and external language
fusion. Haskell is an example of a such language.

Concluding: an implementation of a CAS in a functional language utilising
the above “language unity” concept will greatly reduce code size and improve
readability, at the same time it shall not reduce the performance significantly. In
order to test the feasibility of these assumptions we consider several case studies.

4 First Case Studies

Now as we have seen some theoretical reasons for a CAS to be implemented
in Haskell, let’s take a look at some examples. At first we shall examine the
univariate polynomials. One can hardly imagine a computer algebra system
without them, polynomials are used in thousands of higher–level algorithms and
the operations with the polynomials should be fast. Unfortunately as of today
neither of available Haskell software packages implementing univariate polyno-
mials uses sub–quadratic algorithms like Karatsuba4, Toom–Cook or Schönhage–
Strassen algorithms. As one of the examples we demonstrate an implementation
of Schönhage–Strassen algorithm in Haskell. But first we look at the schoolbook
case.

3 In this case one might think of porting his/her CAS–based program to some low–
level language and let, say, FORTRAN run the number–crunching mills. However this
is a highly interactive and bug–ridden process. And the FORTRAN program is to be
tested for errors again, before the real computations may begin: the thoroughly
tested CAS–routines are not enough!

4 Although an implementation of this algorithm in Haskell was presented in [19,36].
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Fig. 1. Multiplication of univariate polynomials of degree n− 1. Runtime comparison
of naive implementations.

All the testswere run on the samemachine5 with the same compiler –GHC6.8.2.
For the same n, each test was run ten times and the mean value of measured execu-
tion time has been determined. We utilise standard Haskell lists for representing
the polynomials. The complete system would use some kind of generalisation layer,
probably based on type classes, to abstract the implementation from the given rep-
resentation. It would be sufficient to redefine the few standard functions on lists to
obtain the implementation of the same algorithm for yet another data structure.
No modification of the presented code would then be required.

4.1 Naive Polynomial Multiplication

We have tested four different O(n2) implementations:

1. our own naive implementation with lists of integers
2. our naive implementation, modified à la Numeric Prelude,
5 AMD Athlon 64 X2 4000+ CPU with 1 Gb RAM, running Gentoo Linux.
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3. the implementation from Haskell for Math [1],
4. the implementation from Numeric Prelude [41].

We multiply two dense univariate (n − 1)–grade polynomials with random co-
efficients. The coefficients are random signed 32–bit integers: what we test here
are the polynomial multiplication implementations, not the hardware multiplica-
tion of small integers, nor even different libraries for arbitrary precision integers.
Nor do we test the quadratic algorithms – they all represent pretty the same
“school” multiplication – or compiler options, but the impact of the particular
implementation decisions on the performance. The naive implementation uses
a “dumb” list of Ints, the other implementations build a chain of types sim-
ilar to the algebraic objects. One can e.g. define addition and subtraction for
elements of the additive group, multiplication for elements of this group em-
bedded into a ring, and finding an inverse for invertible elements of this ring
embedded into a field. An overview of test results is provided in Figure 1. Time
is measured in seconds. The Numeric Prelude implementation is much better
than the other implementations which show similar runtimes. Note that the
simplest implementation is not the fastest one and that the type hierarchy en-
ables optimisations. Nevertheless, we conclude the strong need for sub–quadratic
implementations.

4.2 Computing Factorial

We would like to discuss briefly another example. We take a well–known and very
quickly growing function on integers: the factorial. We have tested the famous
Haskell one–liner factorial n = product [1..n], and two C++ implementa-
tions. Both C++ versions are based on the CLN [16] – the arbitrary precision
library used in GiNaC. One implementation uses the built–in factorial function
from the CLN. It makes use of table look–ups and computes some parts of the
factorial value in divide and conquer fashion. The other C++ implementation is
not optimised, but it still uses CLN built–in multiplication and large integers.
We find this implementation comparable with the naive Haskell implementa-
tion. Arbitrary long integers are provided in Haskell out of the box. We are not
willing to discuss the details of arbitrary precision arithmetic implementation
in Haskell compiler runtime, our focus is to demonstrate how competitive the
functional approach is. The graphical representation of the obtained results is
shown in Figure 2. The timings of the Haskell version lie in between both C++
versions.

This small example shows that Haskell implementations, even in their sim-
plest and primitive form are competitive with implementations in some industry–
used programming language which are more sophisticated in programming effort.
The optimised version outperforms both naive versions, thus motivating us to
create implementations of fast algorithms in Haskell.
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Fig. 2. Computing the factorial

4.3 Fast Polynomial Multiplication

The essence of Schönhage and Strassen’s method for fast polynomial multiplica-
tion6 is the way a convolution is performed. A convolution in C[x] corresponds
to multiplication, as in “each with every”. A convolution in Fourier–transformed
space is just a component–wise multiplication. So if we want to compute a prod-
uct of two polynomials, we compute their Fourier transformed (e. g. with the
routine in Figure 3), then multiply the transformed functions component wise
and then, with the inverse Fourier transformation, transform the product back
to a polynomial (Figure 4). The presented version performs twice as well as
the full version at the price of not computing the complete product. However,
the current implementation for computing the full product can be easily ob-
tained from this code. The functions zipWith, splitAt, length, concat and
transpose are provided by Haskell standard libraries. zipWith “zips” two lists
with a supplied binary function, e.g. zipWith (+) [1,2,3] [4,5,6] results in
[5,7,9]. splitAt splits a list into two parts at the provided offset. length re-
turns the length of a list. concat concatenates a list of lists to a list. transpose,
6 . . . over the domains supporting the fast Fourier transform, just like complex num-

bers C. If the domain does not support FFT, the fast multiplication is still possible,
through an implicit algebraic extension of the original domain. For details please
refer to the original paper [38] or a standard book on this topic [44].
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fft :: [Complex Double] -> [Complex Double]
fft f = mix [fft (l @+ r), fft ((l @- r)@* w)]

where (l, r) = splitAt (length f ‘div‘ 2) f
mix = concat . transpose
(@+) f g = zipWith (+) f g -- @-, @* analog
-- w is list of powers of an n-th primitive root of unity.

Fig. 3. Implementation of Cooley–Tukey algorithm in Haskell

(%*%) :: (Num a) => [a] -> [a] -> [a]
(%*%) f g = unlift $ ifft ((fft $ lift f) @* (fft $ lift g))

-- where lift :: (Num a) => [a] -> [Complex Double]
-- unlift :: [Complex Double] -> [Int]
-- ifft is the inverse fft, basicly the same fft with
-- different twiddle factors.
-- And (@*) is still element-wise multiplication

Fig. 4. FFT–based multiplication modulo xn − 1 in Haskell

as the name says, transposes a list of lists. The functions lift, unlift, ifft
and (@*) are part of our implementation. The inverse Fourier transformation
is nothing spectacular and is pretty much the forward Fourier transformation
with different values. As the fast Fourier transform (FFT) for a polynomial in
C[x] of degree n − 1 can be performed in O(n logn) time and the component–
wise multiplication in O(n), we can multiply two polynomials of degree n− 1 in
C[x] in O(n log n) time [44]. Due to limitations of the naive implementation we
receive the remainder of the product after the division through xn − 1. But it
is still possible to compute the whole product without changing the asymptotic
complexity, for example, applying one step of the Karatsuba algorithm first, or
just padding both arguments to the length of the product.

The technical representation of a polynomial in our case is a list of coeffi-
cients. The Cooley–Tukey decimation in frequency algorithm is utilised, using a
divide–and–conquer approach for computing the Fourier transform. This is the
simplest FFT algorithm, there exist some more sophisticated variants [44, 30].
Figure 5 presents the results, we used the same kind of input as in Figure 1. A
sub–quadratic method for polynomial multiplication is definitely superior. The
bottom line is the FFT–based multiplication algorithm, we compute the whole
product. It is clearly visible, that the current FFT algorithm is relying on the
fact, that the length of its input is a power of two. The rapidly ascending lines
correspond to the values shown in Figure 1. Unfortunately, we have no explana-
tion for the decreasing values of the FFT-based algorithm for n ∈ [16000..20000].

Now we have seen a fast polynomial multiplication in Haskell. By using ad-
vanced algorithms we significantly increase the performance, the implemented
functions can be used by any other Haskell program, as we have not tweaked
the compiler. The size of the code base is modest for the task it accomplishes.
This case study shows that it is possible to extend Haskell with further imple-
mentations of fast computer algebra algorithms, obtaining in the end a computer
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Fig. 5. Multiplication of dense univariate polynomials of degree n − 1 revised. Naive
Implementations vs. FFT–based. The left side of the plot corresponds to the Figure 1.

algebra library. The main interface to this system is the language itself, direct
interaction with the library is possible with an interpreter.

5 Related Work

Writing a computer algebra system in a functional programming language is
not a really new idea. The first generation CAS named Macsyma was written in
LISP 1.5 dialect called MACLISP, and LISP is considered to be the first functional
language ever. Axiom CAS has some interesting aspects. It features an embedded
(although detachable) functional programming language [7]. In addition, it uses
a hierarchical structure of mathematical objects (like: monoid – group – ring –
integrity domain – field) to specify and perform operations on them.

The DoCon computer algebra library [27] is at the first glance very similar to
our intention. It utilises Haskell as implementation language. Being a library,
it also has Haskell as an interface language. However, DoCon pursues a different
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goal. DoCon is an algebra framework, implementing different mathematical ob-
jects and their relations, thereby heavily dependent on Haskell’s type system.
For instance, it is easy to define a residue domain modulo some polynomial ideal
in DoCon. However, we focus on the computer algebra algorithms. We would like
to have e.g. a fast polynomial multiplication, while representing the polynomials
as simply as possible. Moreover, we are interested in parallelising our algorithm
implementations. Because of high communication costs, we need to keep the un-
derlying data structures as “dumb” as possible. It will be interesting to utilise
the DoCon approach in our own work and to share our results with the current
DoCon implementation.

6 Conclusions and Future Work

We propose to unify the internal implementation and the external interface lan-
guage of computer algebra systems and to use a functional language to achieve
this integration. The usage of a functional language in a computer algebra field
drastically reduces the size of the source code. Secondly, it does not affect the
performance. Hence, is not required to mix two different languages in an imple-
mentation of a CAS. We have shown that functional programs are competitive
with mainstream imperative programs and significantly easier to develop.

Concerning the performed case studies, a possible direction of the future work
would be the optimisation of the fast Fourier transform. Some practical tests in
the parallel context indicate an optimisation potential in switching to decimation
in time. From the theoretical viewpoint, it will be interesting to reconstruct the
Fourier transformed values in special cases, the so–called pruned FFT algorithm.
It would also be of interest to try other FFT algorithms, for example, the r–radix
implementations.

Concerning the future goals of this work: Modern functional languages and
computer algebra are two rapidly developing research areas, an intersection of
these two areas is highly interesting. A third component to mix into this “cock-
tail” of computational algebra and functional programming topics is parallelism.
Computer algebra applications tend to be quite resource hungry and functional
languages have great potential in parallelism, which is being currently quite
extensively investigated. With respect to our gradually evolving practical imple-
mentation, modern algorithms of computer algebra should be implemented in
relevant Haskell software packages, as a naive implementation typically leads
to asymptotically bad complexity. One should carefully design such implemen-
tations, as design choices play a significant role for the execution times in the
same complexity class. Such choices gain even more on importance in the parallel
setting. The aforementioned algorithms should provide

– fast polynomial multiplication – tackled in this paper,
– fast integer multiplication – our current approach is to use fast polynomial

multiplication,
– efficient Euclid’s algorithm for polynomials,
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– efficient vector and matrix computations,
– framework for symbolic computation and object manipulation.

Such foundation will be a solid base for more complex research areas, including

– algorithms of numerical number theory,
– implementation of public key cryptography,
– algorithms of computational algebraic geometry, based on Gröbner bases,
– symbolic integration and summation,
– parallel computations.

As for FFT–based multiplication, we provide our Haskell implementation of
polynomial multiplication, a multiplication routine for arbitrary long integers
based on top of it and an interface script to SCSCP [39] on request.
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Abstract. We propose a method for using existing finite model builders
for constructing infinite models of first-order formulae. The considered
interpretations are represented by tree tuple automata. Our approach is
based on formula transformation. It is proven to be sound (i.e. all the
constructed interpretations are models of the original formula) and com-
plete for the considered class of interpretations (i.e. a model is eventually
built for any formula having a model representable by a tree automaton).

1 Introduction

Many works in Automated Theorem Proving aim at defining efficient algorithms
for identifying valid (resp. unsatisfiable) formulae and constructing proofs (resp.
refutations). However, at the beginning of the 90s, Automated Model Building
emerged as a very important, – and complementary – trend of research. Con-
structing a counter-example (resp. model) of a formula is a very natural and
convincing way of proving that it is not valid (resp. that it is satisfiable). This
is very useful for some applications: for instance, in program verification, this
feature is critical for detecting bugs and giving hints to correct them.

Many systems have been developed for the automated construction of models
in first-order logic: Finder [13], Sem [14], FMC [11], Mace [10], Paradox [5] etc.
Of course, since first-order logic is undecidable (semi-decidable) no complete
algorithm exists for model construction.

Most existing automated model builders try to construct finite interpretations
by enumeration, using sophisticated techniques for pruning the search space,
in particular for detecting and discarding isomorphic interpretations. This is
obviously a critical point, since the number of interpretations is exponential
w.r.t. the cardinality of the domain (see for instance [2,1] for more details on
this problem). However, many satisfiable formulae have no finite models, or have
only models of very large size. Finite model builders are useless or inefficient on
such formulae.

Thus, methods have also been developed to construct automatically infinite
models, or more precisely to construct finite representations of infinite mod-
els. These approaches are mainly based on deduction and use refinements of
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deductive techniques such as resolution and tableaux for extracting models
from satisfiable formulae. The reader can consult [3] for a complete synthesis of
deduction-based approaches in automated model building. Of course, since the
interpretations are infinite (non enumerable) objects, no computer program can
generate them explicitly: what can be built is only a finite representation of these
objects. Various formalisms have been used for this purpose, with various ex-
pressive powers and complexities: sets of atoms (see for instance [9]), equational
formulae [4], contexts with exceptions [7] etc.

In this work we investigate another possibility, based on completely different
principles. Rather than designing new algorithms and systems, we propose to
use existing finite model builders for constructing infinite structures (instead of
finite ones). For this purpose, starting from a formula φ, we apply a transforma-
tion algorithm on φ in order to obtain a formula ψ = Δ(φ) with the following
properties:
– ψ is satisfiable iff φ is satisfiable (satisfiability is preserved).
– Any finite model of ψ can be seen as a finite representation of an infinite

model of φ.
In other words, rather than using the finite model builder for enumerating the

(finite) interpretations themselves, we propose to use it for enumerating finite
structures representing (possibly infinite) interpretations.

This principle can be used for various model representation formalisms. In
this paper, we restrict ourselves to interpretations representable by finite tree
automata on tuples of terms [6]. It is well known that this formalism is strictly
more expressive than finite models and than finite sets of ground atoms [3].
We show how to define the above transformation appropriately for this class of
interpretations. This is not easy since computing complements or projections of
regular (term) languages necessarily involves some fixpoint computations (e.g.
to check that a given final state is non reachable), which is in principle out of the
scope of first-order logic. We show how to overcome this issue if the considered
automaton is finite.

Our idea is well-illustrated by the schema below (see Figure 1).
The formula φ is transformed into a formula ψ = Δ(φ), then a finite model

M′ of ψ is built. M′ can be mapped to a finite tree automaton. The set of
terms accepted by this automaton defines an interpretation M validating φ. M
is infinite in general (since its domain is the set of ground terms).

The rest of the paper is structured as follows.
– In Section 2, we introduce some preliminary definitions (about first-order

logic and tree automata). The notations are mainly standard, although we
adapt some of the usual definitions to better suit our purposes.

– In Section 3, we describe the transformation algorithm.
– In Section 4, we give a simple example of application.
– In Section 5, we prove the soundness of our transformation algorithm and

its completeness w.r.t. the class of representable models.
– Section 6 contains a short conclusion and some lines of future works.
Due to space restriction, the most complex proofs are omitted.
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Fig. 1. From Finite to Infinite models

2 Preliminaries

2.1 Basic Definitions

In this section, we briefly review the definitions and notations that are necessary
for the understanding of our work. We assume some familiarity with the usual
notions in Logic (missing definitions can be found for instance in [8]).

We assume three disjoint sets of symbols are given: a set of function symbols
Σ, a set of predicate symbols Ω and a set of variables X . Let ar be a function
mapping each symbol in Σ ∪ Ω into a natural number. Constants are function
symbols of arity 0. Ω contains a special symbol ≈ of arity 2 (in infix notation).

Terms and formulae are built inductively as usual, using a set of logical sym-
bols ¬,∨,∧,⇒,⇔, ∀, ∃. FVar(φ) denotes the set of free variables occurring in
the formula φ (it is defined as usual). A term (formula) is said to be closed if it
contains no (free) variables.

A signature is a subset ofΣ∪Ω. An interpretation I of a signature S is defined
by a nonempty set DI called the domain of I and by a function mapping each
function symbol f of arity n in S into a n-ary function fI from Dn to D (in
particular constant symbols are mapped to elements of D) and each predicate
symbol p of arity n in S to a n-ary relation pI on the domain D.

A variable assignment for a term or formula φ and an interpretation I is a
function mapping each free variable in φ to an element in DI . The (truth) value
of a term or formula φ in a pair (I, σ), where I is an interpretation and σ a
variable assignment, is denoted by [φ]Iσ and defined inductively as usual.

A position is a finite sequence of natural numbers. ε denotes the empty se-
quence and p.q denotes the concatenation of the sequences p and q. For any
formula φ, the set of positions Pos(φ) occurring in φ and the formula φ|p occur-
ring at position p in φ are defined inductively as follows:
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– ε ∈ Pos(φ) and φ|ε
def
= φ.

– If φ is of the form ¬ψ (resp. (∃x)ψ or ψ ∧ ψ′) and p is a position in ψ, then

1.p ∈ Pos(φ) and φ|1.p
def
= ψ|p.

– If φ is of the form ψ′ ∧ ψ and p is a position in ψ, then 2.p ∈ Pos(φ) and

φ|2.p
def= ψ|p.

2.2 Tuple Term Automata

We recall some basic definitions on tuple tree automata (TTA for short). For
technical convenience we adapt some of the definitions (see [6] for more details).

Let ⊥ be a new symbol not occurring in Σ,Ω,X .
If t is a term, then t|i denotes the i-th argument of the term t (i.e. the

term ti if t is of the form f(t1, . . . , tn) with i ∈ [1..n]) and ⊥ otherwise (for
instance a|1 = ⊥). If t = (t1, . . . , tn) is a vector of terms, then t|i denotes
the vector (t1|i, . . . , tn|i). For any ground term t, we denote by head(t) the
head symbol of t i.e. the symbol f s.t. t = f(. . .). If t = (t1, . . . , tn) then

head(t)
def
= (head(t1), . . . , head(tn)).

Definition 1. A (n,m)-TTA is a tuple (S, s0, τ, SF ) where S is a finite set,
s0 ∈ S, SF ⊆ S, τ is a function mapping each pair (s,f) ∈ Sm × (Σ ∪ {⊥})n to
an element in S, s.t. τ(sm

0 ,⊥n) = s0.

S is a set of states, s0 is the initial state of the automaton, SF is a set of
final states and τ is a transition function. Intuitively, a (n,m)-TTA recognizes
n-tuples of terms, built on a set of function symbols of maximal arity m.

Let A = (S, s0, τ, SF ) be a TTA. If t is a n-tuple of terms, then A(t) is

inductively defined as follows: if t = ⊥n then A(t)
def
= s0, otherwise A(t)

def
=

τ((A(t|1), . . . ,A(t|m)), head(t)). Intuitively, A(t) is the state associated to the
tuple t. A tuple of terms is said to be accepted by A if A(t) ∈ SF .

Example 1. We assume that 3 function symbols a, f, g of arity 0, 1, 2 respectively
are given. Let A be the 2, 2-automaton defined as follows:

A def
= ({s0, s1, s2, s3, s4}, s0, τ, {s3})

where the transition function τ is defined as follows:

S2 Σ2 S
s0, s0 (⊥,⊥) → s0
s0, s0 (⊥, a) → s1
s1, s0 (⊥, f) → s2
s1, s2 (a, g) → s3

and τ(s, t)
def
= s4 otherwise (s4 is a “deadlock” state, useful only to make the

automaton deterministic).
The reader can easily check that the set of tuples accepted by A is

{(a, g(a, f(a)))}.
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The following definition will be useful in the following.
Let μ be a function symbol of arity m. If t, s are two terms built on ⊥, μ, we

write t ≤ s iff either t = s or t = ⊥ or t = μ(t1, . . . , tn), s = μ(s1, . . . , sm) and
for any i ∈ [1..m] we have ti ≤ si. We write t < s if t ≤ s and t �= s.

If t is a n-tuple of terms, then l(t) denotes a term built on the signature

⊥, μ inductively defined as follows: if t = ⊥n then l(t)
def
= ⊥, otherwise l(t)

def
=

μ(l(t|1), . . . , l(t|m)). l(t) encodes in some sense the “shape” of the vector t. For
instance, l(f(a), g(f(a), b)) = μ(μ(μ(⊥,⊥)), μ(⊥,⊥)).

3 Transformation Algorithm

In this section we define an algorithm transforming any formula φ into a formula
Δ(φ) satisfying the properties informally described in the Introduction.

3.1 Restricting the Input Language

For technical convenience, we make some further assumptions about the consid-
ered formulae. These assumptions help to improve the readibility of the forth-
coming sections without entailing any loss of generality.

We assume that the formulae contain no function symbol and no occurrences
of ∨, ∀,⇒,⇔. Obviously this does not restrict the expressive power of the lan-
guage, since all these connectives can be expressed by using only ¬,∧ and ∃
(structural transformation algorithms can be used to avoid an explosion of the
size of the formula). Moreover, functions may be denoted by predicate symbols,
by flattening the terms as it is done for instance in Prolog, for instance p(f(a))
becomes ¬a(x)∨¬f(x, y)∨ p(y), with the axioms (∃x)a(x) and (∀x)(∃y)f(x, y).
Moreover, we also assume that all the atoms occurring in the formulae are linear,
i.e. contain at most one occurrence of each variable. Since the formulae contain
no function symbol, this implies that any atom is of the form p(x1, . . . , xn) where
the xi’s are pairwise distinct variables.

This is possible since if any atom of the form p(x1, . . . , xn) where xi =
xj for some i, j ∈ [1..n], i �= j can be replaced by (∃x′j)[(x′j ≈ xi) ∧
p(x1, . . . , xj−1, x

′
j , xj+1, . . . , xn)], where x′j is a new (fresh) variable distinct from

x1, . . . , xn. It is clear that the last formula is equivalent to p(x1, . . . , xn). By re-
peating this process as many times as needed we eventually obtain a formula
only containing linear atoms.

We assume a total (arbitrarily chosen) ordering on the variables ≺ is given.
For any formula (∃x)ψ, x must be greater than every free variable in (∃x)ψ
according to ≺ (if it is not the case then we simply rename some of the variables
accordingly).

3.2 A-Interpretations

Let us start by an informal summary of our approach. We assume a set of
function symbols SN is given (SN is chosen arbitrarily, hence not related to
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the formula at hand, which, as explained in Section 3.1, contains no function
symbol).

Our method tries to construct, for any (satisfiable) formula φ satisfying the
condition of Section 3.1, a model of φ represented by a tree automaton on tuples
of terms built on SN . This model has the following property: for any n-ary
predicate symbol p, there exists a TTA A s.t. the interpretation of p is exactly
the set of n-tuples accepted by A.

Interpretations satisfying this requirement are called A-interpretations:

Definition 2. An interpretation I of a set of predicate symbols S is called a A-
interpretation (w.r.t. a set of function symbols SN ) iff it satisfies the following
conditions:

– The domain of I is the set of ground terms built on the set of function
symbols SN ∪ ⊥.

– For any n-ary predicate symbol q ∈ S, there exists a (n,m)-automaton ac-
cepting exactly the set of tuples t s.t. t ∈ [q]I .

A formula φ is A-satisfiable iff there exists an A-interpretation I s.t. I |= φ. In
this case, I is called a A-model of φ.

In order to construct the automaton corresponding to each predicate symbol, we
construct a new formula ψ from φ, in such a way that any finite model of ψ can
be associated (in a natural and “canonic” way) to the collection of automata
denoting a model of φ. The transformation algorithm is parametrized by the set
of symbols SN . The reader should note that the signature corresponding to the
formula ψ is distinct from SN and also distinct from the signature of the original
formula φ.

3.3 Signatures

We actually use three distinct signatures:

1. The set of symbols occurring in the original formula. This set contains only
predicate symbols, including the predicate ≈. It is denoted by SI .

2. The set of symbols SN defining the domain on the constructed model. We
assume that all the function symbols in SN have the same arity (denoted
by m in the following). The only constant symbol is the symbol ⊥. If it is
not the case then we can simply add the constant symbol ⊥ as additional
argument to some of the function symbols (for instance the term g(f(a), b)
becomes g(f(a(⊥,⊥),⊥), b(⊥,⊥))).

3. The signature of the transformed formula.

The first two signatures are already known. The purpose of this section is to
define the constant and function symbols used in the transformed formulae.

Let φ be a first-order formula. We assign to φ a signature Sφ containing the
following symbols:
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– The constant symbol ⊥;
– A constant symbol vp for each position p in φ;
– A constant symbol cq for each function or predicate symbol q occurring in
φ or in SN ;

– A function symbol #n of arity n for any n ∈ N;
– 3 function symbols n, i, t of arity 1, 1, 3 respectively;
– 5 predicate symbols F, in, <,≤, μs of arity 1, 4, 2, 2,m+ 1 respectively.

We assume that all these symbols are pairwise distinct.
Intuitively, the intended meaning of the newly introduced symbols is as fol-

lows.

– < simply denotes an (arbitrarily chosen) ordering.
– #n(t1, . . . , tn) can be seen as a n-tuple (t1, . . . , tn).
– n associates to each state a state corresponding in some sense to the “nega-

tion” of x.
– Each constant symbol of the form vp (where p is a position) or cq (where q

is a predicate symbol) will be associated to an automaton. The automaton
associated to cq, where q is a n-ary predicate symbol, will recognize the set
of tuples (t1, . . . , tn) s.t. q(t1, . . . , tn) holds, and the automaton associated
to vp will recognize the set of tuples (t1, . . . , tn) s.t. φ|p{xi → ti | i ∈ [1..n]}
holds, where x1 ≺ . . . ≺ xn is the (ordered) set of variables in φ. In particular
c≈ recognizes the set of tuples (t, t). The transition function, initial and final
state of these automata are specified using the symbols t and F:

– For any (n,m)-automaton a, t(a,#m(s),#n(f )) denotes the image of the
pair (s,f) by the transition function associated to a (s is a m-vector of
states and f is a n-vector of function symbols). i(a) denotes its initial state,
and F(x) indicates whether the state x is final or not. In particular, a state
#2(e1, e2) is final iff e1, e2 are final and n(e) is final if e is not.

– In order to encode projections, some states will be associated to sets of states.
Thus the formula in(n, e′, e, l) will hold if e′ is a state in e. n denotes the
automaton in which e occurs. l is an additional argument, which encodes
in some sense, the shape of the minimal derivation yielding the state e′.
This point will be explained in more details later, when handling existential
quantifications.

– μs denotes a partial strictly increasing function (μs cannot be total otherwise
there is no finite model).

The following section formalizes these ideas.

3.4 Computing Δ(φ)

We denote by Δ′(φ) the conjunction of the following formulae (V1), (V2), (V3),
(I), (O1), (O2), (O3),(E), (M1), (M2), (M3), (Tφ).

The following formulae specify the meaning of the symbols, following the
above intuitive explanations.

(V1) F(n(e)) ⇔ ¬F(e) (n(e) is final iff e is not final).
(V2) F(#2(e1, e2)) ⇔ (F(e1)∧F(e2)) (#2(e1, e2) is final iff e1, e2 are both final).
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(V3) F(e) ⇔ (∃e′, n, l)(F(e′) ∧ in(n, e′, e, l)) (e is final iff it contains a final
state).

(I) (∀v)
∧

n≤N t(v,#m(i(v), . . . , i(v)),#n(⊥, . . . ,⊥)) ≈ i(v) where N is the
maximal number of free variables of a subformula in φ (by the definition
of TTA’s, the image of (sm

0 ,⊥n) must be s0).
(O1) (∀l, l′, l”)(l < l′ ∧ l′ < l′′) ⇒ (l < l′′) (< is transitive).
(O2) (∀l)(l �< l) (< is irreflexive).
(O3) (∀l, l′)(l ≤ l′) ⇔ (l < l′ ∨ l ≈ l′) (definition of ≤).
(E) (∀f, g)F(t(c≈,#m(e1, . . . , em),#2(f, g))) ⇔ (f ≈ g ∧

∧m
i=1 F(ei) (this de-

fines the automaton associated to c≈ corresponding to syntactic equality
between terms built on SN : f(t1, . . . , tm) ≈ g(s1, . . . , sm) holds iff f = g
and if ti ≈ si holds for any i ∈ [1..n]).

The following formulae specify the interpretation of μs. As explained before,
it can be seen as a partial function mapping some tuples (x1, . . . , xm) to an
element y s.t. μs(y, x1, . . . , xm) holds and y > x1, . . . , xm.

(M1) (∀x, y1, . . . , ym, z1, . . . , zm)[μs(x, y1, . . . , ym) ∧ μs(x, z1, . . . , zm)] ⇒∧m
i=1(yi ≈ zi). This formula expresses the fact that this function is

injective.
(M2) (∀y1, . . . , ym)(¬μs(⊥, y1, . . . , ym)). This ensures that ⊥ is not in the co-

domain of the partial function corresponding to μs.
(M3) (∀y1, . . . , ym, x)(μs(x, y1, . . . , ym)) ⇒

∧m
i=1 x > yi. This expresses the fact

that the partial function corresponding to μs is strictly increasing.

We denote by (Tφ) the conjunction
∧

p∈Pos(φ) Γ (p), where Γ (p) is defined
below and by Δ(φ) the formula: Δ′(φ) ∧ (T ), where (T ) is the formula F(i(vε)).

Now, we define the formula Γ (p). It depends on the form of the subformula
occurring at position p in φ. Let p be a position in φ, let ψ = φ|p and v = vp.
We distinguish several cases.

Atoms. Assume that ψ is an atom. By definition, ψ is of the form q(x) for
some predicate symbol q (possibly ≈) and some tuple of distinct variables x =
x1, . . . , xn.

Let γ(i) be the rank of the variable xi in the ordered set of the free variables in
FVar(ψ). By definition γ is a bijective function from [1..n] to [1..n]. γ−1(i) is the
index of the i-th variable in the ≺-ordered set of the free variables in FVar(ψ).

Let t = (t1, . . . , tn) be a n-tuple. We assign to this tuple the n-tuple λx(t) =
(tγ−1(1), . . . , tγ−1(n)) (λx(t) contains the same elements as the tuple t but in the
order induced by the ordering ≺ on the components of x).

Let e be a variable. Let u be an (arbitrarily chosen) n-tuple of pairwise distinct
variables, distinct from the variable e. We define Γ (p) as follows.

Γ (p)
def
=

[(∀e,u)t(v, e,#n(λx(u))) ≈ t(cq, e,#n(u))]

∧i(v) ≈ i(cq).
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Informally, this formula relates the transition function corresponding to the
automaton associated to the position p to the one corresponding to the symbol
q. The transition function for p is the same as the transition function for q, but
applied to the tuple λx(u) instead of u. The initial states are the same.

Negations. Assume that ψ is of the form ¬ψ′. Let v′ = vp.1.
Let e1, . . . , em, x be (arbitrary chosen) distinct variables. We define:

Γ (p)
def
=

(∀e1, . . . , em, x)[t(v,#m(n(e1), . . . ,n(em)), x) ≈ n(t(v′,#m(e1, . . . , em), x))]

∧i(v) ≈ n(i(v′)).

This formula states that the automata corresponding to ψ is the same as the
one corresponding to ψ′, excepted that the states e are replaced by n(e). Due to
the formula (V1), this means that final states become non final – which implies
that accepted tuples become non accepted – and conversely (non accepted tuples
become accepted).

Conjunctions. Assume that ψ = (ψ1 ∧ ψ2). Let vi = vp.i (vi is the symbol
corresponding to ψi).

Let yi = yi
1 ≺ . . . ≺ yi

ni
be the ordered sequence of variables occurring in φi.

Let x = x1, . . . , xn be the ordered sequence of variables occurring in φ.
Let ei

j (i = 1, 2, j = 1, . . . ,m) be distinct variables (distinct from the variables
in x).

Γ (p)
def
=

[(∀e11, . . . , e1m, e21, . . . , e2m,x)

t(v,#m(#2(e11, e
2
1), . . . ,#

2(e1m, e
2
m)),#n(x))

≈ #2(t(v1,#m(e11, . . . , e
1
m),#n1(y1)), t(v2,#m(e21, . . . , e

2
m),#n2(y2))]

∧i(v) ≈ #2(i(v1), i(v2))

The state corresponding to a given vector t in the automaton associated to v is
of the form #2(e1, e2) where ei is the state corresponding to t in the automaton
associated to vi. By the formula (V2), #2(e1, e2) is final iff e1 and e2 are final.
Thus t is accepted iff it is accepted by the automata corresponding to v1 and v2.

Existential Quantifiers. This is the trickiest part since the computation of
the automaton corresponding to an existential quantification (i.e. a projection)
normally involves the computation of a fixpoint which is in principle beyond the
scope of first-order logic.

Assume that ψ = (∃x)ψ′. Let v′ = vp.1. Let x1 ≺ . . . ≺ xn+1 be the set of
free variables in ψ′. We assume that x occurs in x1, . . . , xn+1 (otherwise we can
simply remove the quantifier ∃x). By the restriction imposed in Section 3.1, we
must have x = xn+1 (otherwise the variables are renamed).
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For any n-vector t = (t1, . . . , tn) and for any term s, we denote by t.s the
(n+1)-vector t1, . . . , . . . , tn, x (s is inserted at position n+1 in t). Note that we
may have n = 0, in this case t is the empty vector and t.s is simply the term s.

Before giving the formal definition of the formula Γ (p), we start by some
informal explanation in order to help the reader to grasp the intuitive idea
behind the definitions below. Let A′ be the automaton corresponding to v′. As
explained before, we want to construct an automaton A corresponding to v. A
should accept the set of terms t s.t. there exists s s.t. t.s is accepted by A′. To
this purpose, we build an automaton in which any state e corresponds to a finite
set of states occurring in A′. A is defined in such a way that for any term t,
A(t) is the set of states A′(t.s), where s is a ground term. The more natural
way of defining this automaton is as follows: e′ ∈ t(v,#m(e1, . . . , em),#n(x)) iff
there exists a symbol g ∈ SN and e′1, . . . , e

′
m occurring in e1, . . . , em respectively

s.t. e′ = t(v′,#m(e′1, . . . , e
′
m),#n(x.g)). However, this definition is not well-

founded (for instance e can occur in e1, . . . , em). To capture the intended idea,
one would have to specify that the set of states t(v′,#m(e′1, . . . , e′m),#n(x.g))
is the smallest set having this property. However, this is beyond the scope of
first-order logic.

In order to overcome this difficulty, we add an argument to the membership
predicate. We specify, for each pair (e′, e), s.t. e′ ∈ e, the minimal (according to
subterm ordering) term l s.t. there exists a vector t with e′ = A′(t) and l = l(t)
(see Section 2.2 for the definition of l(t)). This avoids loops in the definition
hence ensures that the set of states e is well-defined. Since the number of states
is finite, the number of minimal terms is also finite (thus our definition does not
threaten the existence of a finite model).

We use the predicate symbol in for this purpose. If in(v, e′, e, l) for some l,
then e′ belongs to e. According to the formula (V3), this implies that e is final if
it contains a final state.

Terms of the form l(t) are encoded by repeated applications of the partial
function μ (which is injective and increasing). Note that if μs would be assumed
to be total, then no finite model would exist, which explains why we used a
predicate symbol for encoding μs instead of a function symbol.

For any term t, we denote by tn the term #n( t, . . . , t
︸ ︷︷ ︸
n times

).

Γ (p) is defined as the conjunction of the formulae Γ 1(p), Γ 2(p), Γ 3(p) defined
as follows.

Let e, e′, l, e1, . . . , em, e
′
1, . . . , e

′
m, x1, . . . , xn, u, l1, . . . , lm be distinct variables.

Let x = (x1, . . . , xn).

Γ 1(p)
def
= (∀e, e′)in(v, e′, e,⊥) ⇔ (e′ ≈ i(v′) ∧ e ≈ i(v))

Γ 2(p)
def
=

(∀e, e′, l, e1, . . . , em,x)(in(v, e′, e, l) ∧ (e ≈ t(v,#m(e1, . . . , em),#n(x))) ⇒
[(∃l1, . . . , lm, e′1, . . . , e′m, u)([

∨
g∈SN

u ≈ cg] ∧ e′ ≈ t(v′,#m(e′1, . . . , e
′
m),#n+1(x.u))

∧μs(l, l1, . . . , lm) ∧
∧m

j=1 in(v, e′j , ej , lj)]
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Γ 3(p)
def
=

(∀e, e′, e1, . . . , em, e
′
1, . . . , e

′
m, l1, . . . , lm, u)

(e ≈ t(v,#m(e1, . . . , em),#n(x)))∧
e′ ≈ t(v′,#m(e′1, . . . , e

′
m),#n+1(x.u) ∧

∧m
i=1 in(v, e′i, ei, li)

⇒ (∃l)in(v, e′, e, l) ∧ [μs(l, l1, . . . , lm) ∨
∨m

j=1(l ≤ lj)]

Intuitively, if a state e is reachable from a given tuple of states e1, . . . , em and
a tuple of function symbols x, then e′ occurs in e for some term l iff there exist m
elements e′1, . . . , e

′
m occurring in e1, . . . , em for some term l1, . . . , lm respectively,

a function symbol g s.t. e′ is reachable from e′1, . . . , e′m and x.g. The disjunction∨m
j=1(l ≤ lj) in Γ 3(p) is due to the fact that l must be minimal (thus either l is

of the form μ(l1, . . . , lm) or l occurs in one of the li’s).

3.5 Complexity of the Transformation

It is obvious that the size of the obtained formula is simply quadratic w.r.t. the
size of original one, provided that a structure-preserving transformation (see for
instance [12]) is used for eliminating the connective ⇔. The number of conjuncts
is linear and the size of each conjunct is also linear.

4 Example

We provide an example of application. The formula is deliberately simple and is
chosen only to illustrate the construction.

Let φ be the following formula:

φ = (∃x)¬p(x, x)

First, we transform φ in order to satisfy the pre-conditions of Section 3.1.

φ ≡ (∃x, y)(¬p(y, x) ∧ (x ≈ y))

We assume that SN contains two function symbols 0, s of arity 0, 1 respec-
tively. Let u = cp and v = c≈. We use the precedence x ≺ y. For the sake of
clarity we assume that c0 = 0, cs = s.

We denote by a, b, c, d, d′, d′′ the constant symbols vp corresponding respec-
tively to the positions 1111, 112, 111, 11, 1, ε, i.e. to the subformulae p(y, x), x ≈
y,¬p(y, x),¬p(y, x) ∧ (x ≈ y), (∃y)(¬p(y, x) ∧ (x ≈ y)) and φ.

We have

Γ (1111) = (t(a, x,#2(y1, y2) ≈ t(u, x,#2(y2, y1))) ∧ i(a) ≈ i(u).

Similarly:

Γ (112) = (t(b, x,#2(y1, y2)) ≈ t(v, x,#2(y1, y2))) ∧ (i(b) ≈ i(v)).

Then Γ (111) = (t(c,n(x), y) ≈ n(t(a, x, y)) ∧ i(c) ≈ n(i(a))
The conjunction is handled as follows:

Γ (11) = t(d,#2(x1, x2), y) ≈ #2(t(b, x1, y), t(c, x2, y))
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∧i(d) ≈ #2(i(b), i(c)).
Then comes the most difficult part, i.e. the existential quantifiers.
The formula at position 1 contains only one free variable x. We have:

Γ 1(1)
def
= (∀e, e′)in(d′, e′, e,⊥) ⇔ (e′ ≈ i(d) ∧ e ≈ i(d′))

Γ 2(1)
def
=

(∀e, e′, l, e1, x)(in(d′, e′, e, l) ∧ (e ≈ t(d′,#1(e1),#1(x))) ⇒
[(∃l1, e′1, g)(g ≈ 0 ∨ g ≈ s) ∧ e′ ≈ t(d,#1(e′1),#

2(x, g))

∧μs(l, l1) ∧ in(d′, e′1, e1, l1)]

Γ 3(1)
def
=

(∀e, e′, e1, e′1, l1, g)
(e ≈ t(d′,#1(e1),x)) ∧ e′ ≈ t(d,#1(e′1),#

2(x.g)) ∧ in(d′, e′1, e1, l1)

⇒ (∃l)in(d′, e′, e, l) ∧ [μs(l, l1) ∨ (l ≤ l1)]

The formula φ contains no free variable. Thus:

Γ 1(ε)
def
= (∀e, e′)in(d′′, e′, e,⊥) ⇔ (e′ ≈ i(d′) ∧ e ≈ i(v))

Γ 2(p)
def
=

(∀e, e′, l, e1)(in(v, e′, e, l) ∧ (e ≈ t(v,#1(e1),#0)) ⇒
[(∃l1, e′1, g)(g ≈ 0 ∨ g ≈ f) ∧ e′ ≈ t(v′,#1(e′1),#

1(cg))

∧μs(l, l1) ∧ in(v, e′1, e1, l1)]

Γ 3(p)
def
=

(∀e, e′, e1, e′1, l1, g)
(e ≈ t(v,#1(e1))) ∧ e′ ≈ t(v′,#m(e′1),#

1(g) ∧ in(v, e′1, e1, l1)

⇒ (∃l)in(v, e′, e, l) ∧ [μs(l, l1) ∨ (l ≤ l1)]

Δ(φ) is the conjunction of Δ′(φ) and the following formulae:

(T0) (∀x)(¬F(i(x))).
(V1) F(n(e)) ⇔ ¬F(e).
(V2) F(#2(e1, e2)) ⇔ (F(e1) ∧ F(e2)).
(V3) F(e) ⇔ (∃e′, n, l)(F(e′) ∧ in(n, e′, e, l)).
(I) (∀v)t(v,#1(i(v)),#0) ≈ i(v) ∧ t(v,#1(i(v)),#1(⊥)) ≈ i(v) ∧

t(v,#1(i(v)),#2(⊥,⊥)) ≈ i(v).
(O1) (∀l, l′, l”)(l < l′ ∧ l′ < l′′) ⇒ (l < l′′)
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(O2) (∀l)(l �< l).
(O3) (∀l, l′)(l ≤ l′) ⇔ (l < l′ ∨ l ≈ l′).
(M1) (∀x, y, z)[μs(x, y) ∧ μs(x, z)] ⇒ y ≈ z.
(M2) (∀y)(¬μs(⊥, y)).
(M3) (∀y, x)(μs(x, y)) ⇒ x > y.
(E) (∀f, g)F(t(u,#1(e),#2(f, g))) ⇔ (f ≈ g ∧ F(e)).

– F(i(d′′)).

5 Soundness of the Transformation

We shall prove that the transformation algorithm specified in the previous section
is sound, in the following sense: for any formula φ (satisfying the conditions in
Section 3.1), Δ(φ) has a finite model iff φ has a A-model, i.e. a model in which
the interpretation of each predicate symbol is the accepted tuples of a automaton
on the set of symbols SN .

We first show how to “come back”, i.e. how to construct the interpretation of
the original formula φ from the model of Δ(φ).

Let I be an interpretation of domain D validating the formula (I) (see Section
3.4 for the definition of (I)). From I, we associate to any v ∈ D a (m,n)-TTA
denoted by A(I, v) and defined as follows:

A(I, v) = (S, s0, τ, SF ) where:

– S
def
= D.

– s0
def
= iI(v).

– SF
def
= FI .

– τ((s1, . . . , sm), (f1, . . . , fn)) = tI(v,#m
I (s1, . . . , sm),#n

I(cf1I , . . . , cfnI)).

Note that τ is a transition function because, since (I) is satisfied, we have
τ(sm

0 ,⊥n) = s0. Thus A(I, v) is an (n,m)-automaton.
We denote by I� an A-interpretation of SI s.t. for any n-ary predicate symbol

q ∈ SI : qI� is the set of n-tuples accepted by A(I, cq).
Let φ be a formula of free variables x1 ≺ . . . ≺ xk. We denote by SolI(φ) the

set of tuples (v1, . . . , vk) ∈ D s.t. [φ]I{xi→vi|i∈[1..k]} = true.

Lemma 1. Let φ be a formula. Let ψ = Δ′(φ). Let I be a finite model of ψ.
For any position p in φ, the set of tuples accepted by A(I, [vp]I) is exactly the
set of tuples SolI�(φ|p).

Corollary 1. Let φ be a formula. Let I be a finite model of Δ(φ). I� |= φ.

Proof. Let A = A(I, [vε]I). Due to the formula (T ), we have i(ε) ∈ [F]I . But
since φ contains no free variable we have A(∅) = i(ε) (where ∅ denotes an
empty vector of terms) hence ∅ is accepted by A. By Lemma 1, this implies that
∅ ∈ SolI�(φ), i.e. I� |= φ.
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Remark 1. If one wants to consider only terms built on SN (without ⊥) and/or
handling function symbols of arity distinct than m, then this condition has to be
added explicitly in the formula. More precisely, any quantification (∃x)φ has to
be replaced by (∃x)(D(x)∧φ), where D is a special predicate symbol encoding to
fact that x does not contain ⊥. Obviously, the set of terms having this property
can be defined be a TTA. This automaton can be specified by adding axioms
into Δ(φ):

(∀x)¬F(τ(cD, x,⊥))

(∀x)
∨

f∈SN

F(τ(cD,#m(x1, . . . , xm), cf ) ⇔
ar(f)∧

i=1

F(xi) ∧
m∧

i=ar(f)+1

xi ≈ i(cD)

The first formula states that a term of the form ⊥(. . .) is not accepted and the
second formula states that for any f ∈ SN , f(t1, . . . , tk) is accepted iff k = ar(f)
and if t1, . . . , tk are accepted.

Now we show the converse, i.e. that any A-model of φ can be associated to a
finite model of Δ(φ).

Lemma 2. Let φ be a formula. Let I be a A-model of φ. There exists a finite
interpretation J s.t. J � = I and J |= Δ(φ).

Corollary 2. Let φ be a formula. An A-interpretation I is a model of φ iff
Δ(A) has a finite model J s.t. J � = I.

Proof. The proof follows immediately from Lemma 1 and 2.

6 Conclusion

We have defined a method for using any existing finite model builder (such as
FINDER, SEM, MACE etc.) for constructing infinite models of first-order formu-
lae. The constructed interpretations are represented by finite tree automata. We
have shown that the method is correct and complete in the sense that a model
can be obtained in finite time for any formula having a model representable in
this formalism (obviously this is not the case for any satisfiable formula).

From a practical point of view, we remark that a large part of the obtained
formula does not depend on the considered formula. Most conjuncts in Δ′(φ)
may be seen as the axioms of an “underlying theory”, specifying some properties
of the symbols used in the formula. In order to make the construction efficient,
this theory could be made built-in in finite model builders. Moreover the in-
terpretation of some of the symbols should be fixed a priori instead of being
reconstructed at each time. For instance, the terms of the form #n(t) are used
in our construction in order to denote a tuple t. Affecting an interpretation to
these symbols by enumeration is useless and time-consuming. Similarly, < could
be directly interpreted as a fixed ordering among the element of the domain. The
inclusion and efficient handling of such theories in finite model builders deserve
to be investigated in the future.
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1 Introduction

We developed in the nineties an algebraic model for classic Boolean logic and
many-valued modal logics (with a prime number of truth values1) and for rule
based experts systems (RBES) based on these logics [7,9,10].

These works extend previous works by Kapur-Narendran [6] and Hsiang [5]
and Alonso et al. [1,4], where how to perform effective calculations in classic
Boolean logic and many-valued modal logics using Groebner bases (GB) [2,3] is
respectively treated.

Following this approach, we have designed and developed RBES in different
fields. The implementations were written in the computer algebra system (CAS)
CoCoA [15]. Most of them are medicine applications; some of the topics treated

1 For the base field of the algebraic model, Zp (where p is the number of truth values
of the logic), to be a field. If the desired number of truth values was not prime, it
would be sufficient to consider a prime number greater than the given number and
not to use some truth values.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 170–183, 2008.
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are: coronary bypass clinical practice guidelines, anorexia [8] and migraine de-
tection, evaluation and treatment...

We have always used CoCoA for RBES developing so far, because, although
we are used to deal with Maple [16] (we have written a book [14], and have
used Maple to develop applications in transportation engineering, pharmacoki-
netics, mechanical theorem proving in geometry...), the external packages of the
old versions of Maple that could compute GB in finite characteristic presented
difficulties, similar to those analyzed in sections 7 and 8, that we were not able
to bypass.

The article is structured as follows. Section 2 provides some introductory
notes about RBES and Section 3 gives the flavor of what a Groebner basis is
and can do. Section 4 briefly describes polinomial models for classic Boolean and
many-valued logics and RBES whose underlying logics are these ones. Section
5 presents an example of the polynomial translation of the logical connectives
of Lukasiewicz’s three-valued logic. Section 6 shows how this translation can be
implemented in the CAS CoCoA. Sections 7 and 8 discuss the novelty of this
work: two different implementations of these polynomial models for Boolean
and modal many-valued logics and RBES written in Maple 10 & 11 and Maple
11, that can be freely obtained from the authors. They can perform knowledge
extraction and consistency checking in RBES which underlying logic is either
classic Boolean or Kleene’s or Lukasiewicz’s many-valued modal. They use a
GB-based inference engine and extend the possibilities of Maple’s built-in Logic
package. Finally, Section 9 contains a brief comparison of the performances of
CoCoA and Maple for this purpose.

As Maple is one of the most widely used CAS, it is good to have an implemen-
tation of the polynomial model presented here available in this CAS. Moreover,
Maple has some extra advantages, like plotting and GUI developing capability,
a wide offer of specialized packages for different applications (e.g. graphs)... that
can be used in a fruitful synergy with this new implementation.

2 Some Introductory Notes about RBES

A “rule based expert system” (to be hereinafter denoted as “RBES”) has a
“knowledge base” (hereinafter denoted as “KB”) and an “inference engine”
(hereinafter denoted as “IE”). A graphic user interface is frequently provided.

2.1 Literals and Rules

The KB consists of a certain number of logical formulae, of the form:

∧k
i=1	x[i] −→ ∨l

j=1	x[j]

where symbol 	 may mean:

• no symbol at all or “negation” (denoted ¬), if the underlying logic is classsic
Boolean,
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• no symbol at all, “negation”, “possibility” (denoted ♦), “necessity” (denoted
�), or a combination of these symbols, like “necessarily-not” (denoted �¬),
equivalent to ¬♦, if the underlying logic is a modal many-valued one

(we shall use this notation hereinafter).
For example, formula

x[1] ∧ x[2] ∧ ¬x[3] ∧ ♦x[4] ∧ ¬x[5] −→ x[13] ∨ �¬x[17]

is read as: “IF x[1] and x[2] and not x[3] and possibly x[4] and not x[5] HOLD,
THEN x[13] or necessarily-not x[17] HOLDS”.

The formulae of this type are known as “production rules” (and are usually
refereed to as, simply, “rules”).

The symbols x[1],x[2],x[3]... which appear in the production rules of our sys-
tem, are called “propositional variables”. If x[k] is one of these symbols, any
expression of the form 	x[k] is called a “literal”.

Therefore, the left hand side (or antecedent) of a production rule is a conjunc-
tion of literals and the right hand side (or consequent) of a production rule is a
disjunction of literals. This is because the ocurrences of “∧” in the consequent
and “∨” in the antecedent of a rule can be avoided: if such symbols ocurred in
a rule, the rule could be split into rules without them.

2.2 Potential Facts and Facts

In addition to production rules, the KB contains a set of “potential facts”, which
are the literals that do appear at the left hand side of at least one rule, but such
that no literal containing the same propositional variable appears in any right
hand side.

For instance, in case the underlying logic is classic Boolean, the whole set of
potential facts can be something like

A = {x[k] : k = 1, ..., 26} ∪ {¬x[k] : k = 1, ..., 26} .

In case the underlying logic is classic Boolean, that a given set of facts (i.e., a
subset of the set of potential facts that is stated as true) is “consistent” means
that, from each pair formed by a potential fact and its contrary, only one literal
is chosen. That it is “maximal” means that such a choice must be made for each
pair.

In case the underlying logic is a modal many-valued one, that a given set of
facts (i.e., a subset of the set of potential facts that is stated as true) is “consis-
tent” means that, for each propositional variable appearing in the potential facts
of the system, x[k], at most one expression of the form 	x[k], is chosen. That
it is “maximal” means that such a choice must be made for each propositional
variable appearing in the potential facts of the system.

2.3 The Inference Engine

The “IE” is a an automated tool (in our case, a program in the CAS), that veri-
fies consistency (that is, checks that the system does not lead to contradictions)
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and draws consequences from the information contained in the KB. The latter
corresponds to the logical concept of “tautological consequence” (a logical for-
mula A0 is a “tautological consequence” of the formulae A1,A2,..., Am, denoted
{A1,A2,..., Am} |= A0, if and only if, whenever A1, A2, ..., Am are true, then A0

is true).
An inconsistency is found when all formulae can be obtained from a consistent

set of facts, the rules and the integrity constraints (in case the logic is many-
valued, two different types of consistency can be distinguished [11]).

3 A Brief Note about Groebner Bases

In the early ’60s, both Heisuke Hironaka and Bruno Buchberger independently
proved that, for each polynomial ideal, a basis completely identifying it always
existed. They denoted their bases as “standard bases” and “Groebner bases”
(GB), respectively. The latter’s great advantage was that it provided a construc-
tive method (Buchberger’s algorithm).

Some GB are particularly important: we call them “reduced Groebner bases”.
We say that a Groebner basis is reduced if and only if the leading coefficient of
all its polynomials is 1 and we can’t “simplify” any of its polynomials by adding
a linear algebraic combination of the rest of the polynomials in the basis.

The input to Buchberger’s algorithm is a polynomial set, a term order (for
instance, “total degree” or “pure lexicographical”), and a variable order (for
instance, x > y > z) and its output is the ideal’s reduced GB with respect to
the specified term and variable orders.

The key point is that, once the term order and the variable order are fixed,
such a reduced GB completely characterizes the ideal: any ideal has a unique
reduced GB. As a consequence we have two most important results:

i) two sets of polynomials generate the same ideal if and only if their reduced
GB are the same,

ii) {1} is the only reduced Groebner basis for the ideal that is equal to the
whole ring.

An elementary introduction to the topic can be found in [12,13].

4 Polynomial Models

Sections 4.1 and 4.2 summarize [7,9,10].

4.1 A Polynomial Model for Propositional Logic

Let (C,∨,∧,¬,→) be a propositional Boolean algebra, with 0 and 1 respectively
denoting contradiction and tautology and X1, X2, ..., Xn denoting the proposi-
tional variables.
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Let us consider the propositional residue class ring

A = Z2[x1, x2, ..., xn]/〈x2
1 − x1, x

2
2 − x2, ..., x

2
n − xn〉

and let us define the operation: ∀a, b ∈ A, a+̃b = a + b − ab . Then (A,+̃, ·, 1+,
“is a multiple”) is a Boolean algebra.

Moreover, the natural homomorphism of Boolean algebras, ϕ, from C into
A, where uppercase letters correspond to lowercase letters, turns out to be an
ordering preserving isomorphism.

The principal ideal of the Boolean algebra (C,∨,∧,¬,→) generated by B ∈ C
is EB = {X ∈ C : X → B}. That the ideals of C correspond by ϕ to the ideals
of A, and that these ideals are exactly the same as the ideals of the polynomial
residue class ring A, can be proven.

This model can be extended to p-valued modal logics (where p is a prime
number) by considering the residue class ring

A = Zp[x1, x2, ..., xn]/〈xp
1 − x1, x

p
2 − x2, ..., x

p
n − xn〉

and corresponding polynomial translations of the logic connectives.

4.2 A Polynomial Model for the Propositional Boolean Algebra
Associated to a RBES

The Boolean algebra associated to a RBES whose underlying logic is classic
Boolean is a structure (C∗, ∨,∧,¬,→) where → is the relation obtained applying
the rules of logical deduction to the implications of C and the rules, facts and
integrity constraints of the RBES (consequently, → is not the usual implication),
and C∗ is the set of equivalence classes defined by this enlarged equivalence
relation ↔ in C.

If the rules Rule1,..., Rulev, the facts Fact1,..., Factm and the integrity con-
straints IC1,..., ICu of a RBES are added as true to the Boolean algebra C of
the previous section, the structure obtained is isomorphic to the image of A in
the natural surjective homomorphism

ψ : A −→ A/J

where J is the ideal

〈ϕ(¬Rule1), ..., ϕ(¬Rulev), ϕ(¬Fact1), ..., ϕ(¬Factm), ϕ(¬IC1), ..., ϕ(¬ICu)〉

That every formula can be obtained from the facts, rules and integrity con-
straints stated as true corresponds to the idea of RBES forward reasoning in-
consistency.

In the polynomial model, the equality J = A translates the RBES concept of
forward reasoning inconsistency. In such case of degeneracy, the whole residue
class ring collapses to a single element.
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The main theorem on which the inference engine is based is the following:

Theorem 1. A formula A0 is a tautological consequence of the formulae in the
union of a consistent subset of the set of potential facts and the set of all pro-
duction rules and integrity constraints of a RBES, if and only if, the polynomial
translation of the negation of A0 belongs to the ideal J of A/I, generated by the
polynomial translations of the negations of the given potential facts and of all
the production rules and the integrity constraints of the RBES2.

The key point is that this theorem can take advantage of the two important
results enunciated at the end of the previous section.

This model and the mentioned results can also be extended to p-valued modal
logics (where p is a prime number). A proof that the two structures are isomor-
phic and a general proof of Theorem 1 (in the many-valued case) can be found
in [10].

5 Polynomial Translation of the Logical Connectives

For instance, the polynomial expressions corresponding to the basic logical for-
mulae in Lukasiewicz’s three-valued logic (if 2 is assigned to “true”, 1 to “unde-
termined” and 0 to “false”) are detailed afterwards.

• ¬M is translated into the polynomial: 2 −m
• ♦M is translated into the polynomial: 2m2

• �M is translated into the polynomial: m2 + 2m
• M ∨N is translated into the polynomial: m2n2 +m2n+mn2 +2mn+m+n
• M ∧N is translated into the polynomial: 2m2n2 + 2m2n+ 2mn2 +mn
• M → N is translated into the polynomial: 2m2n2 + 2m2n + 2mn2 + mn +

2m+ 2
• M ↔ N is translated into the polynomial: m2n2 +m2n+mn2+2mn+2m+

2n+ 2

(note that the coefficients of these polynomials belong to Z3).
For the different logics these polynomials can be obtained by solving an alge-

braic system (that is obtained from the truth tables).

6 CoCoA Implementation

These polynomial translations can be input almost directly in CoCoA 4.3, that
provides a “Normal Form” command, NF(pol,I), that returns the reduction of
polynomial pol modulo ideal I (the algorithm of NF is also included in the theory
of GB).

2 Observe that we could alternatively check that A0 belongs to the ideal I + J of A.
We’ll work this way in CoCoA to avoid working in a residue class ring.
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We have to define the polynomial ring and ask CoCoA to use it:

USE Z/(3)[x[1..15]];

and then we can define the ideal MEMORY.I, generated by the expressions x3
i −xi

(denoting it this way, it is a global variable, and it can be an input to NF):

MEMORY.I:=Ideal([x[K_]^3-x[K_] | K_ In 1..15]);

and introduce the polynomial expressions for the three-valued connectives of
Lukasiewicz modal logic (the operators are prefix ones)3:

NEG(M):=NF(2-M,MEMORY.I);
POS(M):=NF(2*M^2,MEMORY.I);
NEC(M):=NF(M^2+2*M,MEMORY.I);
OR(M,N):=NF(M^2*N^2+M^2*N+M*N^2+2*M*N+M+N,MEMORY.I);
AND(M,N):=NF(2*M^2*N^2+2*M^2*N+2*M*N^2+M*N,MEMORY.I);
IMP(M,N):=NF(2*M^2*N^2+2*M^2*N+2*M*N^2+M*N+2*M+2,MEMORY.I);
IFF(M,N):=NF(M^2*N^2+M^2*N+M*N^2+2*M*N+2*M+2*N+2,MEMORY.I);

For instance, the CoCoA implementation of the polynomial expressions of a
7-valued modal logic can be found in [10].

With the notation of Theorem 1, whether A0 is a consequence of a set of
formulae or not, can be checked with CoCoA just typing:

NF(NEG(A[0]),MEMORY.I+J);

(where J is the polynomial ideal generated by the polynomial expressions of the
negation of the formulae in the given set). If the output of the command is 0,
the answer is “yes”, otherwise the answer is “no”.

It can also be directly checked using the Boolean command IsIn, that tests
ideal memberships, by typing:

NEG(A[0]) IsIn MEMORY.I+J;

With the notation of Section 4.2, whether the RBES is inconsistent or not
can also be checked using Groebner bases by typing in CoCoA:

GBasis(MEMORY.I+J);

If the output is 1, the RBES is inconsistent; otherwise (the output is normally
a large set of polynomials), that set of facts doesn’t lead to an inconsistency.

Again, using IsIn makes it even simpler, as it directly returns “true” or
“false”, just typing:

1 IsIn MEMORY.I+J;

3 In CoCoA 4.7 these operators would be defined using Define...EndDefine instead
of directly :=.
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7 Maple Implementation I (Using Groebner and
Ore algebra Packages)

Let us try to translate the model into Maple, as done above with CoCoA.
In Maple 10 & 11 it is possible to define a polynomial ring over a finite field

using Maple’s ‘Ore Algebra package. Either directly NormalForm command or
Reduce command (using a trick) can be used.

We load the Groebner and Ore algebra packages first, and then define the
list of variables, the polynomial ring and the order that will be used by the
GB-related commands:

> with(Groebner):
> with(Ore_algebra):
> SV:=x[1],x[2],x[3]:
> A:=poly_algebra(SV,characteristic=3):
> Orde:=MonomialOrder(A,’plex’(SV)):

and the ideal I (denoted iI, as I is a reserved word in Maple), using map in
order to save time:

> fu:=v->v^3-v:
> iI:=map(fu,[SV]);

3 3 3
iI := [x[1] - x[1], x[2] - x[2], x[3] - x[3]]

We can now define the functions that associate to the logical connectives their
polynomial expressions, as done in CoCoA above.

7.1 Maple Implementation I: First Attempt (Fails)

According to the “help file” of Reduce and NormalForm commands in Maple 11:

“The Reduce command reduces a polynomial by a list of polynomi-
als with respect to a given monomial order. In other words, it returns
the remainder of the full pseudo-division of a polynomial by a list of
polynomials with respect to a given monomial order.”

We can try to use this command to define the polynomial translation of the
connectives4:

> ‘NEG‘ :=(m::algebraic) -> Reduce(2-m,iI,Orde):
> ‘&AND‘:=(m::algebraic,n::algebraic) ->
> Reduce(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n),iI,Orde):
...
4 Note that in the definition of Orde in Section 7, plex appeared surrounded by right

single quotes or apostrophes (”’”). Enclosing an expression or subexpression in apos-
trophes delays its evaluation by one level. Meanwhile, left single quotes (”‘”), are
used in this section: enclosing an expression in left single quotes converts the expres-
sion into a name.
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(for instance, in the first of these lines we define NEG, that reduces “2 minus the
input” w.r.t. the ideal iI using the order denoted Orde).

Although many formulae, like x[1]∧x[2] or x[1]∧x[1] are correctly translated
into polynomials, others are not!:

> (2*x[1]) &AND (2*x[1]);
x[1]

(as idempotency holds, the output should be 2 · x[1] = −x[1] �= x[1]).
This is an intriguing behavior, so we decided to construct truth tables from the

polynomial expressions of the connectives to try to find out what is happening,
and all the truth tables obtained are incorrect (no 2s can be found in the truth
tables)! For instance, for &AND, we obtain:

> with(linalg);
> M:=Matrix(3,1):
> for i from 0 to 2 do
> for j from 0 to 2 do M[i+1,j+1]:=i &AND j od;
> od;
> evalm(M);

⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠

The problem is that, when dealing with ideals of a polynomial ring over a
field, the coefficients of the generators don’t care (in our particular case, all
ideals are principal). But in this application we are substituting symbolic or
numerical expressions in the reduced form of the polynomial, so the extra multi-
plicative coefficient introduced in the pseudo-division procedure should be taken
into account.

7.2 Maple Implementation I: Second Attempt (Using Reduce)

Command Reduce has an optional fourth argument, ’s’, where the multiplica-
tive coefficient is stored.

Surprisingly, it is enough to specify that coefficient in the implementation
of the polynomial expressions of the logic connectives for command Reduce to
change its behavior, and for everything to work correctly (we do not multiply
by the multiplicative coefficient!). For example, if we type:

> ‘&AND‘:=(m::algebraic,n::algebraic)->
> Reduce(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n),iI,Orde,
> ’s’):

instead, then, e.g. (2*x[1]) &AND (2*x[1]); works as expected. Moreover, all
truth tables obtained from these commands are also correct now.
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7.3 Maple Implementation I: Third Attempt (Using NormalForm)

Another option would be to directly use the right command (NormalForm), in-
stead of Reduce. If we define the commands as follows:

> NEG :=(m::algebraic) -> NormalForm(2-m,iI,Orde):
> NEC :=(m::algebraic) -> NormalForm(expand(m^2+2*m),iI,Orde):
> POS :=(m::algebraic) -> NormalForm(expand(2*m^2),iI,Orde):
> ‘&AND‘:=(m::algebraic,n::algebraic) ->
> NormalForm(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n),
> iI,Orde):
> ‘&OR‘ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(m^2*n^2+m^2*n+m*n^2+2*m*n+m+n),
> iI,Orde):
> ‘&IMP‘ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n+2*m+2),
> iI,Orde):
> ‘&IFF‘ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(m^2*n^2+m^2*n+m*n^2+2*m*n+2*m+2*n+2),
> iI,Orde):

Then everything works fine. This implementation is available for Maple 10 & 11.

8 Maple Implementation II (Using Only Groebner
Package)

In Maple 11, to first define a ring in order to perform GB-related commands
when the base ring is a finite field is no longer needed. Now NormalForm and
Reduce commands of Maple’s Groebner package already include an option for
specifying the characteristic of the base field. Nevertheless, a strange behavior
showed up in the first one, as the output sometimes includes fractions! Again,
we could bypass this obstacle.

Now we only have to load the Groebner package and define the list of variables
and the ideal iI:

> with(Groebner):
> SV:=x[1],x[2],x[3]:
> fu:=v->v^3-v:
> iI:=map(fu,[SV]):

8.1 Maple Implementation II: First Attempt (Fails)

That the characteristic is 3 can be specified as an input of NormalForm command.
For instance:

> ‘&AND‘:=(m::algebraic,n::algebraic) ->
> NormalForm(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n),
> iI,plex(SV),characteristic=3):
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(we do not include the code of the other connectives for the sake of brevity).
Surprisingly, there are fractions in the polynomial expressions:

> p &AND q;
2 2 2 2

1/2 x[1] x[2] + 1/2 x[1] x[2] + 1/2 x[1]x[2] + x[1]x[2]

and in the truth tables reconstructed from the polynomial expressions, for in-
stance, of ∧:

⎛

⎝
0 0 0
0 1 1
0 1 1

2

⎞

⎠

(we expected all these 1
2s to be 2s). Therefore, the base field is not Z3, as

expected. We have reported this behavior to Maplesoft.

8.2 Maple Implementation II: Second Attempt (Using Reduce)

Let us try Reduce command, instead of NormalForm.
According to the “help file” of these commands in Maple 11:

“The Reduce command is similar to NormalForm, except that pseudo-
division is performed. The result is a pseudo-remainder r, denominator s,
and quotient Q such that r/s = Sum(Q[i]*G[i],i = 1 .. n) and r/s is the
normal form. Note that NormalForm and Reduce return the same quo-
tients Q (they are not scaled by s). In fact, both commands use the same
underlying implementation.”

So we use the Reduce command but multiply the output by the denominator s
and include mod 3 afterwards. The reason for including mod 3 is that the output
of the Reduce command is computed modulo 3, but if it is directly multiplied by
s (in Z) then, although the truth tables are correct, coefficients strictly greater
than 2 can appear in the polynomial expressions of formulae. This is the case,
for instance, for x[1] ∧ x[2]. Observe that, in the implementations of Section 7
and in the CoCoA implementation, we switch to a polynomial ring over a finite
field, meanwhile in the implementations of Section 8 we have to simplify each
calculation.

If we define:

> ‘NEG‘ :=(m::algebraic) ->
> Reduce(2-m,iI,plex(SV),’s’,characteristic=3)*s mod 3:
> ‘NEC‘ :=(m::algebraic) ->
> Reduce(expand(m^2+2*m),
> iI,plex(SV),’s’,characteristic=3)*s mod 3:
> ‘POS‘ :=(m::algebraic) ->
> Reduce(expand(2*m^2),
> iI,plex(SV),’s’,characteristic=3)*s mod 3:
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> ‘&AND‘:=(m::algebraic,n::algebraic) ->
> Reduce(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n),
> iI,plex(SV),’s’,characteristic=3)*s mod 3:
> ‘&OR‘ :=(m::algebraic,n::algebraic) ->
> Reduce(expand(m^2*n^2+m^2*n+m*n^2+2*m*n+m+n),
> iI,plex(SV),’s’,characteristic=3)*s mod 3:
> ‘&IMP‘ :=(m::algebraic,n::algebraic) ->
> Reduce(expand(2*m^2*n^2+2*m^2*n+2*m*n^2+m*n+2*m+2),

iI,plex(SV),’s’,characteristic=3)*s mod 3:
> ‘&IFF‘ :=(m::algebraic,n::algebraic) ->
> Reduce(expand(m^2*n^2+m^2*n+m*n^2+2*m*n+2*m+2*n+2),
> iI,plex(SV),’s’,characteristic=3)*s mod 3:

everything works fine. For instance:

> x[1] &AND x[2];
2 2 2 2

2 x[1] x[2] + 2 x[1] x[2] + 2 x[1] x[2] + x[1] x[2]

And all truth tables are correctly reconstructed from the truth tables. For in-
stance, for ∧:

⎛

⎝
0 0 0
0 1 1
0 1 2

⎞

⎠

is obtained.

9 Performance Comparison

The tests carried out with real RBES show very similar times for WinCoCoA
4.3 and Maple 11 Classic running the implementation of Section 7.3, and much
worse times for the implementation of Section 8.2. We believe that the difference
is due to when the modular reductions take place.

For instance, checking the consistency of a real example from [8] of a RBES
which underlying logic is classic Boolean, with 69 propositional variables and 182
rules, takes slightly more than 38 seconds in both WinCoCoA 4.3 and Maple 11
Classic running the implementation of Section 7.3. Meanwhile, the computation
hasn’t yet finished after 20 minutes in Maple 11 Classic running the imple-
mentation of Section 8.2. Command GBasis was used in WinCoCoA 4.3 and
command Basis was used in Maple 11 Classic. The computer was a standard
portable computer running the most common operating system.

10 Conclusions

We were finally able to implement our algebraic approach to RBES consistency
checking and knowledge extraction in the CAS Maple.



182 E. Roanes-Lozano, L.M. Laita, and E. Roanes-Maćıas

If working with packages Ore algebra and Groebner (of Maple version 10
or later) is chosen, it is simpler to use the implementation that uses command
NormalForm than the one that uses command Reduce.

Meanwhile, if working only with the new version of package Groebner of Maple
version 11 or later, then Reduce command must be used instead.

The implementation that uses both packages, Ore algebra and Groebner,
has turned out to be much faster than the other one, and very similar in speed
to the one written in WinCoCoA 4.3 .

We believe that, due to the size of Maple’s community of users and the wide
variety of possibilities that this CAS offers, these implementations can be really
useful both for RBES design and implementation and for logic and RBES teach-
ing (that the inference engine is an algebraic one, based on an ideal membership,
can be kept hidden to the user, that only deals with logic processes or knowledge
extraction and consistency checking in a RBES).

The two packages, for Maple 10 & 11 and Maple 11, dealing with classic
Boolean and Lukasewicz’s or Kleene’s many-valued modal logics, can be freely
obtained from the authors.
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Abstract. Based on the category MAS of base diagrams of Multiagent
Systems (MAS) and morphisms between them, a transformation system
for MAS can be established using the well known Double Pushout (DPO)
Approach. An important part in the DPO approach is to find a pushout
complement for a given situation. This is usualy done by checking the
so called “gluing condition”. In this contribution a new approach for the
pushout complement construction in the category MAS is introduced.
For illustration a simple robot example is presented.

1 Introduction

In previous work we introduced a new method for MAS base diagram trans-
formations [1] based on the Double Pushout Approach (DPO) introduced by
Ehrig, Pfender, and Schneider [2]. Fundamental important for our work is the
observation that the general communication and cooperation structure of a MAS
can be represented by a corresponding arrow diagram, called base diagram of
the MAS. The basic notion of base diagram has been introduced recently by J.
Pfalzgraf [3]. To each MAS we associate such a base diagram, which represents
the complete relational structure (i.e. communication in the general sense). The
nodes of this arrow diagram represent agents, the arrows (and paths of arrows)
hold the communication and cooperation information. This gives a category by
its own right, more precisely a typed category [1].

In a MAS communication and cooperation (in general relations) between
agents can change. This fact gives rise to the definition of the category MAS
of all MAS where the objects are base diagrams of Multiagent Systems and the
morphisms are MAS morphisms i.e. structure preserving maps between base di-
agrams. Based on this category MAS a transformation system for Multiagent
Systems can be established by applying the double pushout approach to Multi-
agent Systems.

In this contribution we present a new approach to construct transformation
steps. The main difficulty applying the DPO Approach is to construct the so
called pushout complement. In [4] checking the so called “gluing condition” solves
this problem, in this paper we introduce an alternative algorithm. The proposed
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concepts have been implemented in java and have been applied to a simple
cooperating robot scenario.

2 The Category MAS

Base diagrams of MAS and maps between those form the category MAS . Roughly
speaking a base diagram is a snapshot of the actual cooperation structure in a
MAS, it can be modeled by a typed category. We present an example of a MAS
object (see Fig. 1) and a MAS morphism (see Fig. 2). For more details regarding
the category MAS we refer to [1].

a1,3

b2,3

c2,3

c

c

Fig. 1. A simple example of a base diagram (MAS -object). The left hand side shows
three robots (a,b and c), two robots (b,c) with a gripper (index 2) and an assembly
robot (a) equipped with a welding device (index 1). Index 3 indicates that the robot
“is not assigned to a task“. Let A = {a, b, c} be the set of agents and C ⊆ A × A be
the communication relation C = {(a, b), (a, c), (b, a), (c, a)} i.e. the robots a and b as
well as a and c are able to communicate (arrow type c). The underlying base diagram
is depicted in the right hand side. Note that the base diagram is not only an object in
MAS but is a category as well. Therefore in the diagram exist the identity arrows, as
well as a composition operation on the morphisms, i.e. there is an arrow of arrow type
c from b to c and vice versa. To increase readability this arrows are not drawn in the
diagram.

a1,3 a1,3

b2,3

c2,3

cc

c

[b, c]2,3

d2

p

F

Fig. 2. Example of a MAS morphism. We observe that F maps the agents a to a, b
and c to [b, c], the arrows between a and c as well as the arrows between a and b to
the arrows between a and [b, c], the arrow type c to c and the object types 1 to 1, 2 to
2 and 3 to 3. We can see F is structure preserving.

A transformation system is defined by a concept introduced by Ehrig, Pfender,
and Schneider [2] the so called double pushout (DPO) approach, which is a far
developed concept in the field of algebraic graph transformations [4]. A transfor-
mation rule is defined by a production p = (pL, pR), which is a pair of morphisms
with common domain. Given a MAS production p = (pL : I → L, pR : I → R),



186 T. Soboll

a MAS object MASL and a MAS morphism m : L → MASL, called match,
define a direct transformation step as follows: An object MASR is called direct
derivable from an object MASL via p (MASL ⇒p MASR), iff there exists a
context object MASC with corresponding MAS morphism g : I → MASC , such
that MASL and MASR are pushout objects in the following diagram.

L
m ��

I
g��

pL�� pR �� R
g′

��
MASL MASC

p′
R ��p′

L�� MASR

This diagram illustrates a double pushout, for more details we refer to the
book [4].

3 Pushout Complements

In the previous section the Double Pushout Approach as a tool for MAS trans-
formations was discussed. It is essential to note that in general the application of
a production or a rule to a given object, in the case of MAS transformations to a
base diagram of a MAS, leads to the following situation. We have a production,
a base diagram as well as the match which is a morphism from the left hand
side of the production to the given base diagram. Now we need to construct a
so called pushout complement [4].

Definition 1. Given two C morphisms f : A → B and g : B → C a pushout
complement is a C object PC together with two C morphisms f ′ : PC → C and
g′ : A → PC such that the following diagram yields a pushout square.

A
f

��

g′
��

B
g ��

PC
f ′

�� C

Pushout complements need not exist in any case and if they exist they need
not be unique. This is of course a problem that must be handled. In the field
of graph transformations usually the so called ”gluing condition“ [4] is checked
to find a pushout complement. In the next section we describe an alternative
construction algorithm, that in the case that a PC exists, yields the minimal
pushout complement. In the case that no pushout complement exists, the algo-
rithm produces a production that transforms the base diagram in one for which
the pushout complement construction works.

Recall that given two monomorphisms f : A → B and g : B → C in SET
the pushout complement can be constructed in two steps. We construct the co-
product complement CC of g and then construct the coproduct of A and CC
denoted by A+CC, this is the pushout complement we search. This suggests to
construct pushout complements in MAS in a similar way. There are two prob-
lems with this construction: First is that we want to be able to construct pushout
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f f ′
A

BX

h
h

ii

a
a

b
b

c c

Fig. 3. Failed Coproduct Complement Construction in MAS . We observe that even
though f is monic the coproduct complement B is no MAS object (the arrow i is dan-
gling).

complements for all arrows not only for monomorphims. The second problem
is that (unlike in SET ) in general coproduct complements do not even exist
for monics (see Fig. 3). The need for a new notion arises. We introduce quasi
coproduct complements that fulfill our needs.

Definition 2. Let C be a category that has coproducts. Given a morphism f :
A → X a quasi coproduct complement is a C object B together with a C mor-
phism g : B → X such that the following diagram (1) commutes with e being
an epimorphism and for each other C object B′ with C morphism g′ : B′ → X
and e′ being an epimorphism there exists a (not necessarily unique) morphism
k : B → B′ such that g′ ◦ k = g (diagram (2)).

(1) Ai1
		������

f

��
A+B

e 

������

X

B

i2

��

g

����������

(2) Ai1
		������

f

��

j1
��������

A+B

e 

������ A+B′
e′

������

X

B
k

��

i2

��

g

����������
B′

g′����������
j2

��

In the sequel we will restrict the morphims g and g′ to monics, then k is the
unique morphism that makes the diagram (2) commute.

Proof: If g′ is monic and the diagram commutes for k : B → B′ (i.e. g′ ◦ k = g),
given another morphism k′ : B → B′ s.t. the diagram commutes (i.e. g′ ◦k′ = g),
it follows immediately that g′ ◦ k = g′ ◦ k′, but g′ is monic i.e. k = k′.

4 Construction of Pushout Complements

MAS is (Epi,Mono)-structured i.e. every MAS -morphism f can be factored into
an epimorphism fe and a monomorphism fm s.t. f = fm ◦ fe. In the se-
quel given an morphism f : A → B we will denote the quasi coproduct com-
plement object as B − A. In every (Epi,Mono)-structured category that has
pushouts and coproducts we construct the pushout complement of a given dia-
gram A

f
�� B

m ��
C

as follows (see Fig. 4):
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(1) A
f

�� B
m ��
C

C −B
m′

���������

(2) A
i1 ��

f
�� B

m ��
A + (C −B) C

C −B

i2

��
m′

�����������

(3) A
i1 ��

f
�� B

m ��
A + (C −B)

!k
�� C

C −B

i2

��
m′

�����������

(4) A

i1

��

f
�� B

m

��

k(A + (C −B))
km



���������

A + (C −B)
!k

��ke

��							
C

(5) A
ke◦i1 ��

f
�� B

k(A + (C −B))

(6) A
ke◦i1 ��

f
�� B

(ke◦i1)′
��

k(A + (C −B))
f ′

�� P

(7) B
(ke◦i1)′

��
m

��







P
iso �� C

Fig. 4. Pushout Complement Construction

(8) B
m��

A
f�� g �� D

C

(9) B
m��

A
f��

��

g �� D

C PC��

(10) B
m��

A
f��

��

g �� D

��
C PC�� �� C′

Fig. 5. Application to the DPO Approach

The first step is to compute the quasi coproduct complement C−B (1). Next
we construct the coproduct of A and C−B(2). Due to the universal property of
coproducts it follows that there is exactly one morphism k : A + (C − B) → C
such that the diagram (3) commutes. Next we compute the image of A+(C−B)
over k via the (Epi,Mono)-factorization k = km◦ke and denote the image object
as k(A+(C−B)) (4). Now we build the pushout of the diagram (5) and get the
pushout square (6). k(A+ (C −B)) together with the morphisms ke ◦ i1 and f ′

is the pushout complement for the diagram (1) if there exists an isomorphism
iso : P → C such that the diagram (7) commutes.

In the case that there is no isomorphism from P to C s.t. the diagram (7)
commutes i.e. the base diagrams are not structurally the same we interpret
(m, (ke◦ i1)′) as a production and try to apply it. This results in a base diagram
for which the initial production is applicable.

We can apply this result to the DPO as follows (see Fig 5): Given a MAS
-production (f : A → B, g : A → D), a MAS object C and a match m (8). We
construct the pushout complement PC as described above and get the diagram
(9), the last step is to construct the right hand side pushout (10). This is a
transformation step from C to C′ (C ⇒ C′).
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(A)

c2,3

a1a1a1

a1,3

b2,3

b2,3

b2b2
f g

m

(B)
c2,3

c2,3

a1a1

a1,3

a3

b2,3

b2,3

b2
f

m

m′

(C)
c2,3

c2,3
c2,3

a1a1

a1
a1,3

a3

a3

b2,3

b2,3

b2

b2

f

m
k

m′

i1

i2

(D)

c2,3

c2,3

c2,3
a1

a1 a1

a1,3

a1,3

a3b2,3

b2,3

b2

b2

b2
f

m

k

kekm i1

(E)

c2,3 c2,3 c2,3

a1a1

a1,3 a1,3 a1,3
b2,3 b2,3

b2,3

b2

b2
f

f ′

m ke ◦ i1(ke ◦ i1)
′

iso

(F)

c2,3c2,3 c2,3

a1a1a1

a1,3a1,3 a1,3

b2,3

b2,3 b2

b2b2

b2

f g

f ′
m ke ◦ i1 (ke ◦ i1)

′′

g′′

Fig. 6. Example: Given the production p = (f, g) (upper part of (A), which advises
an agent with a gripper to deliver a color cube to an agent with a welding device,
indicated by the additional arrow ���), the initial base diagram from Fig. 1, together
with a suitable match m, we apply the construction algorithm. We construct the quasi
coproduct complement (step (1) above) and receive diagram (B). Next we build the
coproduct and the unique arrow k (step (2),(3)), the result is depicted in (C). Now
we factor k (step (4)) and get the diagram (D). The last steps (5),(6),(7) lead to the
diagram (E). We observe that there is an isomorphism iso that makes the diagram
(E) commute i.e. we found a pushout complement for the start situation (A). To finish
the transformation we build the right hand side pushout (step (9),(10)) and get the
diagram (F).

⇒p

Fig. 7. In the robot simulation transforming the initial base diagram (see Fig. 1) via
the production p from Fig. 6 into a new base diagram (down-right object in diagram(F)
of Fig. 6) triggers the robot b to deliver a color cube to agent a
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5 Conclusion

The concept of MAS transformations, which is an adaption of graph transfor-
mations [4] to typed categories, is a natural way to describe changes in the base
diagram of Multiagent Systems. In this contribution we have pointed out a new
approach for pushout complement construction based on the new notion of a
quasi coproduct complement. This construction produces the minimal pushout
complement. A special feature is that if the approach does not find a suitable
pushout complement, its result can be regarded as a new production that trans-
forms the given base diagram in a base diagram for which a pushout complement
exists.

Future work will concern local-global modeling aspects. It turned out that
logical fiberings [5] provide a concept to assign a system of distributed logics
to a MAS in a natural way. The basic idea is to assign a logical fiber to every
agent, this fiber models the local logical state space of an agent, the entire logical
fiber bundle forms the global logical state space of the whole MAS. For more
details we refer to [6]. This motivates the introduction of a ’Relational Fibering’
with the aim to model local global interactions in the relational structure of a
MAS. We assign a relational fiber to every agent, the fiber models the relational
information attached to the agent. A first application of this approach is to
compute subcategories of a MAS on demand, by taking the collection of the
fibers over a defined set of agents as a starting point.
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Abstract. The paper at hand introduces a refinement of interpretation
based termination criteria for term rewrite systems in the dependency
pair setting. Traditional methods share the property that—in order to
be successful—all rewrite rules must (weakly) decrease with respect to
some measure. The novelty of our approach is that we allow some rules to
increase the interpreted value. These rules are found by simultaneously
searching for adequate polynomial interpretations while considering the
information of the dependency graph. We prove that our method extends
the termination proving power of linear natural interpretations. Further-
more, this generalization perfectly fits the recursive SCC decomposition
algorithm which is implemented in virtually every termination prover
dealing with term rewrite systems.

Keywords: term rewriting, termination, polynomial interpretations.

Related Topics: implementations of symbolic computation systems,
logic and symbolic computing.

1 Introduction

Termination of term rewriting systems (TRSs) has been a very active area of
research for the last decades. In the early days many different (mostly non-
modular) techniques have been developed based on syntactic and/or semantic
aspects. In the recent past the demand for suitable ways for automating the
methods grew. The international competition of termination tools1 gave a strong
stimulus in that direction. In this competition every tool can only spend a fixed
amount of time on checking a rewrite system for (non-)termination. Since a vast
number of termination criteria are known (and implemented), tool authors have
to cleverly select a strategy which determines the order in which to apply the
different methods and/or come up with fast implementations of termination cri-
teria. In 2004 Kurihara and Kondo [17] were the first to encode a termination
method in propositional logic. In 2006 for the first time termination analyzers

� This research is supported by FWF (Austrian Science Fund) project P18763.
1 http://www.lri.fr/∼marche/termination-competition/
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incorporated translations to SAT (Jambox [4] and Matchbox [20]) in the com-
petition and astonished the termination community by the gains in power and
speed. Another important issue of a termination method is locality which means
that the method should fit the dependency pair method [1]. The technique we
propose in this paper satisfies both demands, (a) it is modular and local in the
sense that it perfectly fits the recursive SCC decomposition algorithm [12] and
(b) it allows an efficient implementation using SAT solving.

The paper is organized as follows. In Section 2 the necessary definitions for
graph reasoning, polynomial interpretations, and dependency pairs are given.
Section 3 motivates our approach by means of an example and already suggests
that special care is needed for generalizing the approach to the recursive SCC
algorithm. Afterwards in Section 4 the main theorem is formally stated. Imple-
mentation details are presented in Section 5. An assessment of our contribution
can be found in Section 6 before ideas for future work are addressed in Section 7.

2 Preliminaries

The termination method we present relies on (dependency) graph reasoning. The
next subsection defines graphs and related concepts.

2.1 Graphs

Let N be a finite set. A graph G = (N,E) is a pair such that E ⊆ N × N .
Elements of N (E) are called nodes (edges). A labeled graph is a pair (G, �)
consisting of a graph G = (N,E) and a labeling function � : N → Z that assigns
to every node an integer. A path from n1 to nm in a graph G = (N,E) is a finite
sequence [n1, . . . , nm] of nodes such that (ni, ni+1) ∈ E for all 1  i < m. A path
is called elementary if all its nodes are distinct. The length (or cost) of a path
[n1, . . . , nm−1, nm] is �(n1)+· · ·+�(nm−1). The distance between two nodes a and
b is the maximal length of an elementary path from a to b. A cycle [n1, . . . , nm]
is a path with m > 1, n1 = nm, and i �= j implies (ni, ni+1) �= (nj , nj+1) for
all 0  i, j < m. A cycle [n1, . . . , nm−1, nm] is called elementary if n1, . . . , nm−1

are pairwise distinct. The definition of length carries over naturally from paths
to cycles. Furthermore we define the distance d(n) for a single node n as the
maximal length of an elementary cycle starting in n if such a cycle exists. A
strongly connected component (SCC) is a maximal set of nodes such that there
is a path from every node to every other node. Maximality means that the
property of being an SCC is lost if a further node is added. For esthetic reasons,
labels of nodes are associated to edges in graphical representations of graphs
throughout the paper, where edges (n,m) are labeled with �(n).

Example 1. In the labeled graph of Figure 2.1, p1 = [1, 2, 3, 4, 1] is an exam-
ple of a (non-elementary) path and an elementary cycle. The (non-elementary)
path p2 = [1, 4, 1, 4, 1] is no cycle since the edge (1, 4) appears twice. We have
length(p1) = 0 and length(p2) = 2. The distance of node 1 is 1 since it is the
maximum length of the elementary cycles [1, 4, 1] and [1, 2, 3, 4, 1].
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Fig. 1. A labeled graph

2.2 Polynomial Interpretations

For a signature F a polynomial interpretation I [18] maps each n-ary function
symbol f ∈ F to a polynomial fI over the natural numbers in n indeterminates.
The induced mapping from terms to polynomials is denoted by [·]I . For two
terms s and t we have s >I t if [s]I > [t]I holds for all possible instantiations of
variables by natural numbers. The comparison s �I t is similarly defined. For
polynomials with coefficients ranging over the natural numbers these problems
are known to be undecidable (Hilbert’s 10th problem). By fixing an upper bound
for the coefficients the search space becomes finite. In typical implementations
polynomials are ordered by absolute positiveness criteria [14]. Thus, in order to
test whether p > q holds for linear polynomials p = c0x0 + · · ·+ cnxn + cn+1 and
q = d0x0 + · · · + dnxn + dn+1, a sufficient condition is ci � di for all 0  i  n
and cn+1 > dn+1. The test p � q is similar except for the constant case, i.e.,
cn+1 � dn+1.

There already exist generalizations of polynomial interpretations, e.g., to ra-
tional and real coefficients [19] or to negative constants as well as coefficients [11].
Furthermore matrix [5], quasi-periodic [22], and arctic [15] interpretations do also
extend the termination proving power significantly. All these extensions share
the property that the rewrite rules under consideration must weakly decrease
and at least one rule has to decrease strictly. Our approach differs from these
ones in the sense that we allow a possible increase for some rules (under the
side condition that some other rules eliminate that increase). In order to detect
possible candidates where the interpreted value might increase when applying
a rule, the dependency pair method in combination with the dependency graph
(Definition 3) refinement is employed.

2.3 Dependency Pairs

We assume basic familiarity with term rewriting [2]. In the recent past there has
been much research related to the dependency pair method [1] and its refine-
ments. In this subsection we just recall the very basic definitions.

Definition 2. Let R be a TRS over a signature F . The defined symbols are
the root symbols of the left-hand sides of the rewrite rules in R. The original
signature F is extended to a signature F � by adding for every defined sym-
bol f a fresh symbol f � with the same arity as f . For a term t = f(t1, . . . , tn)
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with defined symbol f we denote f �(t1, . . . , tn) by t�. In examples one often uses
capitalization, i.e., one writes F for f �. If l → r ∈ R and t is a subterm of r
with defined root symbol, then the rule l� → t� is a dependency pair of R. We
write DP(R) for the set of all dependency pairs of R.

Dependency pairs correspond to recursive function calls. They are the basic in-
gredient for the dependency graph [1], which is kind of a call-graph that visualizes
the order in which these recursive calls can be performed.

Definition 3. Let R be a TRS. The nodes of the dependency graph DG(R) are
the dependency pairs of R and there is an edge from node s → t to node u → v
if there exist substitutions σ and τ such that tσ →∗

R uτ .

The dependency graph is not computable in general but sound approximations
exist. Here soundness means that every edge in the original graph is also an edge
in the estimated graph and hence it forms an over-approximation of the actual
dependency graph.

Next, the notion of a reduction pair [1] is defined. We simplify the original
definition by omitting argument filterings since they are automatically built in
when dealing with polynomial interpretations (as zero coefficients correspond to
deleting positions of an argument filtering).

Definition 4. A reduction pair (�, >) consists of a rewrite pre-order � (a pre-
order on terms that is closed under contexts and substitutions) and a well-founded
order > that is closed under substitutions such that the inclusion � · > · � ⊆ >
(compatibility) holds.

The main theorem dealing with dependency pairs and including a dependency
graph formulation is not given here but in Section 4 since then it is easier to see
the differences between the usual theorem and our formulation.

3 A Simple Example

This section demonstrates the limitations of polynomial interpretations and sug-
gests an improvement by additionally considering the order of recursive calls
encoded in the dependency graph.

Example 5. Consider the TRS consisting of the following three rules:

f(0, x) → f(1, g(x)) (1)
f(1, g(g(x))) → f(0, x) (2)

g(1) → g(0) (3)

The dependency pairs

F(0, x) → G(x) (4)
F(0, x) → F(1, g(x)) (5)

F(1, g(g(x))) → F(0, x) (6)
G(1) → G(0) (7)
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admit the following dependency graph:

(7) (4)�� (6)
���� (5)��

The idea in [12] is to find a reduction pair (�, >) for every SCC S such that all
rules in S ∪ R decrease weakly and at least one rule in S decreases strictly. In
the sequel we will show that the (only) SCC consisting of the nodes (5) and (6)
cannot be handled by reduction pairs based on traditional implementations of
linear polynomial interpretations. To be able to address all possible polynomial
interpretations, we consider our problem as an abstract constraint satisfaction
problem. Consequently the coefficients for the polynomials are variables whose
values are natural numbers. Similarly to [6] a term F(x, y) is transformed into
an abstract linear polynomial F0x+ F1y + F2. Doing so for the SCC mentioned
above results in the constraints

F000 + F1x+ F2 � F010 + F1(g0x+ g1) + F2

F010 + F1(g0(g0x+ g1) + g1) + F2 � F000 + F1x+ F2

where at least one inequality is strict. By simple mathematics the inequations
simplify to

F000 + F1x � F010 + F1g0x+ F1g1 (8)
F010 + F1g0g0x+ F1g0g1 + F1g1 � F000 + F1x (9)

From the fact that one of the above inequalities has to be strict it is obvious
that F1 > 0. The constraints for x in (8) demand g0  1 and similarly (9) gives
g0 � 1. Hence the constraint problem is equivalent to

F000 � F010 + F1g1 (10)
F010 + F1g1 + F1g1 � F000 (11)

which demands g1 > 0 to make one inequation strict. The (simplified) constraint
for rule (3) amounts to

10 � 00 (12)

The proof is concluded by the contradictory sequence

F000 � F010 + F1g1 � F000 + F1g1

where the first inequality derives from (10), the second one from (12), and the
contradiction from the fact that F1, g1 > 0 which we learned earlier.

Although we just proved that there is no termination proof for the system
above with linear polynomials, we will present a termination proof right now.
Assume the weakly monotone interpretation

FN(x, y) = x+ y fN(x, y) = 0 gN(x) = x+ 1 0N = 0 1N = 0
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Table 1. Rules with increasing interpretations

f(0, x)→ f(1, g(x)) 0 � 0 (1)

f(1, g(g(x)))→ f(0, x) 0 � 0 (2)

g(1) → g(0) 1 � 1 (3)

F(0, x)→ F(1, g(x)) x � x + 1 (5)

F(1, g(g(x)))→ F(0, x) x + 2 � x (6)

which orients almost all rules of interest correctly as can be seen in Table 1.
The idea to turn this interpretation into a valid termination proof is to com-

bine the information of the dependency graph with the interpretation. From the
(labeled) dependency graph

(7) (4)0�� (6)
−2

��−2�� (5)
+1

��

one infers that the two dependency pairs (5) and (6) are used alternately. The
labels of the graph are computed as follows: From Table 1 one infers that an
application of rule (6) decreases the interpreted value by the constant 2 (hence
label −2) whereas rule (5) increases the value by the constant 1 (hence label
+1). Consequently, after performing the cycle once the total value decreases by
at least one. Therefore, the cycle cannot give rise to an infinite rewrite sequence.

3.1 From Cycles to SCCs

The above idea naturally extends from plain cycles to SCCs as described below.
Nevertheless some care is needed when the dependency graph contains more
complicated SCCs as the following example demonstrates. Consider the TRS R
consisting of the five rules

f(0, 0, x, g(g(g(g(y))))) → f(0, 1, g(g(x)), y)
f(0, 1, g(x), y) → f(1, 1, x, g(g(y)))

f(1, 1, x, y) → f(0, x, x, y)
g(0) → g(1)
g(x) → x

and the only SCC

F(0, 0, x, g(g(g(g(y))))) → F(0, 1, g(g(x)), y) (1)
F(0, 1, g(x), y) → F(1, 1, x, g(g(y))) (2)

F(1, 1, x, y) → F(0, x, x, y) (3)
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Fig. 2. Different parts of (labeled) dependency graphs

The corresponding SCC of the dependency graph depicted in Figure 2(a)
contains the two cycles [1, 2, 3, 1] and [2, 3, 2]. The first one is handled by the
increasing interpretation

FN(x, y, z, w) = w fN(x, y, z, w) = 0 gN(x) = x+ 1 0N = 0 1N = 0

For the second we take the interpretation as above but with FN(x, y, z, w) = z.
Hence for the elementary cycle [1, 2, 3, 1] the interpreted value decreases by 2 in
every loop. Similarly there is a decrease of 1 for the elementary cycle [2, 3, 2].
The two labeled graphs in Figures 2(b) and 2(c) describe the symbiosis of the
interpretations and the elementary cycles. The only problem is, that

f(0, 0, 0, g(g(g(g(y))))) → f(0, 1, g(g(0)), y) → f(1, 1, g(0), g(g(y)))
→ f(0, g(0), g(0), g(g(y))) → f(0, g(1), g(0), g(g(y)))
→ f(0, 1, g(0), g(g(y))) → f(1, 1, 0, g(g(g(g(y)))))
→ f(0, 0, 0, g(g(g(g(y))))) → . . .

constitutes a non-terminating sequence in this TRS. What exactly went wrong
can be seen when considering the whole SCC of the labeled dependency graph
(using the first interpretation, cf. Figure 2(d)). In the conventional setting it
suffices to consider only the two cycles. This is the case because a strict decrease
in every single cycle ensures a strict decrease in larger cycles by combining the
partial proofs lexicographically. The example above shows that this is no longer
true for increasing interpretations. The problematic non-terminating sequence
corresponds to a run [1, 2, 3, 2, 3, 1] where the interpreted value is increased in
the elementary cycle [2, 3, 2] and consequently the length of [1, 2, 3, 2, 3, 1] is zero
and there is no decrease. Considering (infinitely many!) possibly non-elementary
cyclic paths is undoable. Hence the smart thing is to work with SCCs instead. To
recognize dangerous runs, it suffices to compute the distance for every node. For
the graph in Figure 2(d) we have d(1) = −2, d(2) = 2, and d(3) = 2. Only if for
every node the distance is smaller than or equal to zero we know that problematic
runs as demonstrated above cannot occur. Furthermore we know that in such a
case we can delete nodes with negative distance because on every possible run the
interpreted value decreases. If for the SCC under consideration one had managed
to find a weakly monotone interpretation with labeled dependency graph like the
one in Figure 3(a) (which is of course impossible since the system at hand is not
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Fig. 3. A hypothetically labeled DG

terminating) then deleting node (1) would have been possible since d(1) = −1,
d(2) = 0, and d(3) = 0. In such a situation node (1) could safely be removed and
one could proceed with the simpler graph in Figure 3(b) with a possibly totally
different interpretation.

4 Correctness of the Approach

The example in the preceding section shows that SCCs that consist of more than
just one cycle need special attention. For usual reduction pairs it is sufficient to
consider single cycles and hence in the literature theorems are usually dealing
with cycles; theoretically there is no difference in power when considering cycles
or SCCs but all fast implementations follow the recursive SCC approach [12].
The reason is that normally the formulation for cycles is a bit easier but in our
setting it is essential to switch to an SCC treatment in order to avoid reasoning
about an infinite number of possibly non-elementary cyclic paths as the example
of the previous section demonstrates.

It is well known that (linear) weakly monotone polynomial interpretations over
the naturals form a valid reduction pair. Note that there are strictly stronger
formulations of the theorem since both restrictions—to polynomials and natural
numbers—are severe.

Theorem 6. Let I be a weakly monotone polynomial interpretation over the
naturals. Then (�I, >I) is a reduction pair.

Definition 7 ([12]). Let R be a TRS, S a subset of the dependency pairs in
DG(R), and (�, >) a reduction pair. The notation (�, >) |=∃ R,S means that

R ⊆ � S ⊆ � ∪ > S ∩> �= ∅

In words the above definition says that all considered rules (R and S) are weakly
decreasing and at least one rule in S is strictly decreasing. The most basic
theorem concerning dependency pairs (using the notation of [12]) and including
the usage of the dependency graph is then formulated as follows.

Theorem 8 ([1]). A TRS R is terminating if and only if for every cycle C in
DG(R) there exists a reduction pair (�, >) such that (�, >) |=∃ R, C.
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There are many generalizations of the theorem above—usable rules [1,9,10], ar-
gument filterings [1], and reduction triples [13]—to name a few. To keep the
presentation and discussion simple we present our work without these refine-
ments (although our results directly generalize).

Definition 9 ([12]). Let R be a TRS and S a subset of the dependency pairs
in DG(R). We write |= R,S if there exists a reduction pair (�, >) such that
(�, >) |=∃ R,S and |= R,S′ for all SCCs S′ of the subgraph of DG(R) induced
by the pairs l → r ∈ S such that l �> r.

The theorem below states that concerning termination proving power it makes
no difference if one considers cycles or performs a recursive SCC computation.
The latter has the advantage that the number of SCCs is linear in the number
of nodes in the dependency graph whereas the former might be exponential.

Theorem 10 ([12]). Let R be a TRS. The following conditions are equivalent:

– |= R,S for every SCC S in DG(R)
– |=∃ R, C for every cycle C in DG(R)

We now show how to label the dependency graph by a given interpretation I.
When considering a root rewrite step which applies a rule l → r, the change of
the interpreted value is [r]I− [l]I. The idea is to label every edge by the constant
part of that difference.

Definition 11. For a polynomial p we denote the constant (non-constant) part
of p by cp(p) (ncp(p)). For a term t and a polynomial interpretation I we abbrevi-
ate ncp([t]I) by ncpI(t). This notation naturally extends to rules and TRSs, e.g.,
ncpI(l → r) = ncpI(l) → ncpI(r) and ncpI(R) = {ncpI(l → r) | l → r ∈ R}.
The same notation is freely used for cpI .

Definition 12. Let I be an interpretation and DG a dependency graph. The
labeled dependency graph DGI is defined as (DG, �) with �(l → r) = cp([r]I−[l]I)
for every node l → r in DG. By dI(n) we denote the distance of a node n ∈ DGI.

The next definition presents analogous versions of Definitions 7 and 9 in the
setting of increasing interpretations.

Definition 13. Let R be a TRS and S a subset of the dependency pairs in
DG(R). We write |=I

∃ R,S if I is an interpretation over the naturals and

R∪ ncpI(S) ⊆ �I dI(S) ⊆ Z�0 dI(S) ∩ Z<0 �= ∅

Consequently |=I R,S if |=I
∃ R,S and for all SCCs S′ of the subgraph of DGI(R)

induced by the pairs l → r ∈ S such that dI(l → r) �< 0 there exists an interpre-
tation I ′ such that |=I′

R,S′.

Now we are ready to present the main theorem. In Section 3 we already showed
that this extends the termination proving power of natural linear interpretations.
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Theorem 14. A TRS R is terminating if for every SCC S in the dependency
graph DG(R) there exists a weakly monotone polynomial interpretation I over
the naturals such that |=I R,S holds.

Proof. We show that under the assumption |=I
∃ R,S with s → t ∈ S satisfying

dI(s → t) < 0 there cannot be a non-terminating rewrite sequence that applies
s → t indefinitely. The theorem follows immediately from that property. For a
proof by contradiction assume the existence of such a sequence:

s0 →s→t t0 →∗
S∪R s1 →s→t t1 →∗

S∪R s2 →s→t t2 →∗
S∪R s3 → . . .

Since �I is closed under contexts and substitutions, for all terms u, v, and all
rules l → r ∈ R ∪ S with u →l→r v we get ncpI(u) � ncpI(v). Because the
infinite sequence was chosen such that the rule s → t is used infinitely often it
is obvious that when starting from term s0 one must cycle in the dependency
graph in order to reach s1. The fact that dI(s → t) < 0 together with dI(S) ⊆
Z�0 ensures that every cycle containing the node s → t decreases the constant
part of the interpretation strictly (note that cpI(R) ⊆ � by definition). Hence,
cpI(s0) > cpI(s1). Repeating this argument gives rise to the sequence

cpI(s0) > cpI(s1) > cpI(s2) > cpI(s3) > . . .

which contradicts the well-foundedness of > over the natural numbers. #�

5 Implementation

Almost all fast implementations of polynomial interpretations are based on a
transformation to a SAT problem. Also many other termination criteria are very
suitable for a SAT encoding as can be seen by the vast amount of literature. The
major drawback is that one has to work with abstract encodings all the time.
Hence when labeling the dependency graph one does not have concrete integers
at hand but some propositional formulas which abstractly encode the range of all
possible values. Since encoding polynomials in SAT has already been described
in detail [6], in this paper we refrain from giving all implementation issues. The
only encoding which is discussed here is how to compute the distance between
two (not necessarily distinct) nodes within a labeled graph.

5.1 General Algorithm

The idea is to compute the distance of a node by means of a transitivity closure.
The integer variable Rabi is −∞ if b is not reachable in at most 2i steps from
a and otherwise this variable keeps the (currently known) distance from a to b.
It is obvious that in a graph (N,E) an elementary cycle contains at most |N |
edges and hence for k′ � k := -log2(|N |). one has surely reached a fixed point,
i.e., Rabk′ = Rabk for all a, b ∈ N .
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More precisely, the variables Rab0 reflect the edges of the graph and hence
b is reachable from a with a cost of �(a) if (a, b) ∈ E and it is unreachable if
(a, b) �∈ E. Thus we initialize these variables as follows:

Rab0 =

{
�(a) if (a, b) ∈ E

−∞ otherwise

Since Rabi might be −∞, addition and maximum operation are extended natu-
rally, i.e., n + −∞ = −∞ + n = −∞ and max(n,−∞) = max(−∞, n) = n for
all n ∈ Z ∪ {−∞}. For 0  i < k we define

Rab(i+1) = max(Rabi,maxm∈N{Rami +Rmbi})

If one first forgets about the max then the above formula expresses that b is
reachable from a in at most 2i+1 steps with a cost of Rab(i+1) if it is already
reachable within 2i steps with that cost or there is a mid-point2 m and the cost
from a to m and the one from m to b just sum up. Taking the maximum of
all possible costs ensures that we consider a worst case scenario. In the end we
want to test if Rnnk  0 for all n ∈ N . Note that it might happen that the
value Rnnk does not emerge from an elementary cycle (because it might happen
that one cycles more than once). Nevertheless the idea remains sound because if
the length of a maximal elementary cycle is smaller than zero, then the length
remains smaller than zero if we go along that cycle more often. Dually this
property holds for distances greater than zero. For a demonstration consider the
following example.

Example 15. In the labeled graph from Example 2.1 we have k = -log2(4). = 2
and

d(1) = 1 d(2) = 0 d(3) = 0 d(4) = 1
R112 = 2 R222 = 0 R332 = 0 R442 = 2

The reason for the different values is that R112 does not correspond to an ele-
mentary cycle; we have d(1) = 1 (see Example 1) but R112 = 2 since it derives
from the cyclic path [1, 4, 1, 4, 1]. A similar argument explains the discrepancy
of d(4) and R442.

5.2 Special Algorithms

The encoding for computing maximal paths in SAT from the previous subsection
has complexity O(n2log(n)) where n is the number of nodes in the underlying
SCC of the labeled DG. To get a faster implementation we specialize the algo-
rithm for SCCs that have a special shape:

2 Fortunately Zeno of Elea was wrong and this approach constitutes a valid method
for computing reachability.
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Fig. 4. Two special shapes of SCCs

(a) Simple SCCs: An SCC is called simple if it contains exactly one cycle, i.e.,
omitting any edge would destroy the property of being an SCC. An example
of this shape is depicted in Figure 4(a). Linear time suffices to decide if a
given SCC S is simple (the number of edges equals the number of nodes).
In such a case the encoding specializes to

∑

n∈S
�(n) < 0

which expresses that the constant part of the interpretation I decreases when
cycling. The encoding is linear in the size of the nodes.

(b) Almost simple SCCs: An SCC is called almost simple if it is not simple
and there exists a node n (called selected node) such that after deleting all
outgoing edges of n there is no non-empty sub-SCC left. Here we will exploit
the fact that in every cycle within this SCC we pass the node n. The nodes
indicated with � in Figure 4(b) satisfy this property. In the encoding we
demand that −�(n) > �(m1)+ · · ·+ �(mp) holds where n is the selected node
and m1, . . . ,mp are the nodes in the SCC that have a positive label. The
underlying idea is that node n decreases the interpretation more than all
other rules together might increase it and since that node n must be passed
in every cyclic run there cannot be infinite reductions. For every selected
node n the encoding is of linear size.

Note that the specialization for case (a) is exact whereas (b) is an approximation.

6 Assessment

In this paper we showed that increasing interpretations are strictly more pow-
erful than standard linear interpretations over the naturals. Clearly for SCCs
consisting of just a single rule they are of equal power.

The reason why the TRS of Example 5 cannot be proved terminating by
means of linear polynomials is that we cannot differentiate constant 0 from 1
by the interpretation. Hence it is not so astonishing that the problematic SCC
can be handled by matrix interpretations [5] of dimension two. Actually all of
the tools (dedicated to proving termination) participating in the TRS category



Increasing Interpretations 203

of the 2007 edition of the international termination competition can handle this
system. All the proofs rely on matrix interpretations with dimension two. As a
pre-processing step AProVE [8] and TTT2

3 use dependency pair analysis whereas
Jambox [4] performs a reduction of right-hand sides [21].

It is an easy exercise to construct (larger) TRSs than Example 5 such that
all tools of the termination competition fail. To disallow Jambox the rewriting
of right-hand sides we introduce overlaps. To knock-out the matrix method just
increasing the size of the system suffices. Since TTT2 can still prove these examples
by bounds [7,16] we ensure the TRS to be not left-linear which makes increasing
interpretations the only successful method.

Example 16. For the TRS where g8(x) is a shortcut for g(g(g(g(g(g(g(g(x))))))))

f(0, 0, 0, x) → f(0, 0, 1, g(x)) f(0, 0, 1, x) → f(0, 1, 0, g(x))
f(0, 1, 0, x) → f(0, 1, 1, g(x)) f(0, 1, 1, x) → f(1, 0, 0, g(x))
f(1, 0, 0, x) → f(1, 0, 1, g(x)) f(1, 0, 1, x) → f(1, 1, 0, g(x))

f(1, 1, 0, x) → f(1, 1, 1, g(x)) f(y, y, y, g8(x)) → f(0, 0, 0, x)
g(g(0)) → 1 g(g(1)) → g(g(0))

none of the existing termination tools succeeds in proving termination within a
60 seconds time limit. Increasing interpretations produce a successful—and very
intuitive—proof for the challenging SCC. It considers the changes of F’s fourth
argument. Both the general approach described in Section 5.1 and the specializa-
tion (b) from Section 5.2 yield the increasing interpretation FN(x, y, z, w) = w,
gN(x) = x + 1, fN(x, y, z, w) = 0N = 1N = 0 which ensures that all nodes have a
negative distance and hence the whole problematic SCC can be removed. The
only difference between the two is that it takes the first method almost half a
minute whereas the optimized encoding succeeds within a fraction of a second.

The theory of increasing interpretations as described above directly applies to
the matrix method [5] as well. Note that when interpreting dependency pairs the
constant part amounts to a natural number and hence the dependency graph is
labeled in exactly the same fashion.

7 Future Work

Generalizing the approach in such a way that not only the constant part of the
interpretation is used as additional information in the dependency graph but also
the non-constant part, is highly desirable. We anticipate that this would make
the approach significantly more powerful. The only drawback is that probably
this generalization applies to a very restricted class of TRSs only. To get a feeling
for the problems that arise consider the non-terminating system

f(s(x)) → g(s(x)) g(x) → f(x)

3 http://colo6-c703.uibk.ac.at/ttt2

http://colo6-c703.uibk.ac.at/ttt2
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which admits the dependency pairs (1) F(s(x)) → G(s(x)) and (2) G(x) → F(x).
The increasing interpretation FN(x) = 2x, GN(x) = x, fN(x) = 0, sN(x) = x + 1
would remove both dependency pairs since there is a strict decrease for every
cycle in the labeled dependency graph, which looks like

(1)
−x−1

��
(2)

+x

��

The problem in this example is that in the two dependency pairs the variable x
does not correspond to the same term. For this example it is obvious that in any
minimally non-terminating sequence, s(x) is substituted for the variable x in the
second rule. Hence, one should not consider the original system but immediately
change the variable x in the second rule on both sides to s(x). Then increasing
interpretations are no longer successful. However such a transformation is not
always possible. In the example above for every minimally non-terminating se-
quence there are no R-steps and hence one can compute the substitution for x
in the second rule by unification. Similar cases can be dealt with narrowing [1].

To conclude, we summarize that increasing interpretations can be extended
to allow an increase also in the variable part if the TRS under consideration
satisfies two properties: (a) all dependency pairs are variable disjoint (this can
always be achieved by renaming) and (b) for every minimally non-terminating
sequence

s0 →DP(R) t0 →∗
R s1 →DP(R) t1 →∗

R s2 →DP(R) t2 →∗
R · · ·

the R-sequences are empty (and hence the values for variables can possibly be
computed by unification). Note that one sufficient condition for (b) is that the
set of usable rules is empty.

Acknowledgments. We thank Niklas Eén and Niklas Sörensson for develop-
ing and providing MiniSat [3]. We thank Sarah Winkler for writing a suitable
OCaml interface for MiniSat that paved the way for an integration of increasing
interpretations into the termination prover TTT2.
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Abstract. Because of the importance of special functions, several books
and a large collection of papers have been devoted to the numerical com-
putation of these functions, the most well-known being the Abramowitz
and Stegun handbook [1]. But up to this date, no environment offers
routines for the provable correct evaluation of these special functions.

We point out how series and limit-periodic continued fraction repre-
sentations of the functions can be helpful in this respect. Our scalable
precision technique is mainly based on the use of sharpened a priori trun-
cation and round-off error upper bounds, in case of real arguments. The
implementation is validated in the sense that it returns a sharp interval
enclosure for the requested function evaluation, at the same cost as the
evaluation.

1 Introduction

Special functions are pervasive in all fields of science and industry. The most
well-known application areas are in physics, engineering, chemistry, computer
science and statistics. Often encountered functions are the Gauss hypergeometric
function 2F1(a, b; c;x), the Bessel functions of integer and half-integer order, the
(complementary) error function to name just a few. Because of their importance,
several books and a large collection of papers have been devoted to algorithms
for the numerical computation of these functions.

Virtually all present-day computer systems, from personal computers to the
largest supercomputers, implement the IEEE floating-point arithmetic standard,
which provides 53 binary or approximately 16 decimal digits accuracy. For most
scientific applications, this is more than sufficient. For instance, in electromag-
netic simulation models the final required accuracy is usually in the order of only
2 to 3 significant digits.

However, for a rapidly expanding body of applications, 64-bit IEEE arith-
metic is no longer sufficient. These range from some exploratory mathematical
investigations to large-scale physical simulations performed on highly parallel
supercomputers. In these applications, portions of the code typically involve nu-
merically sensitive calculations, which produce results of questionable accuracy
using conventional arithmetic. These inaccurate results may in turn induce other
errors, such as taking the wrong path in a conditional branch.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 206–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Such blocks of code benefit enormously from validated numerical techniques,
possibly in combination with high-precision arithmetic. Indeed, a reliable nu-
meric technique delivers a floating-point enclosure for the exact result rather
than a computed estimate.

Up to this date, even environments such as Maple, Mathematica, MATLAB
and libraries such as IMSL, CERN and NAG offer no routines for the provable
correct evaluation of special functions. The following quotes concisely express
the need for new developments in the evaluation of special functions:

– “Algorithms with strict bounds on truncation and rounding errors are not
generally available for special functions. These obstacles provide an oppor-
tunity for creative mathematicians and computer scientists.” Dan Lozier,
general director of the DLMF project, and Frank Olver [2,3].

– “The decisions that go into these algorithm designs — the choice of reduction
formulae and interval, the nature and derivation of the approximations —
involve skills that few have mastered. The algorithms that MATLAB uses for
gamma functions, Bessel functions, error functions, Airy functions, and the
like are based on Fortran codes written 20 or 30 years ago.” Cleve Moler,
founder of MATLAB [4].

2 Validated Function Evaluation

Let us assume to have at our disposal a scalable precision IEEE 754-854 compli-
ant [5] floating-point implementation of the basic operations, comparisons, base
and type conversions, in the rounding modes upward, downward, truncation and
round-to-nearest. Such an implementation is characterized by four parameters:
the internal base β, the precision t and the exponent range [L,U ]. Here we aim at
least at implementations for β = 2 at precisions t ≥ 53, and at implementations
for use with β = 2i or β = 10i where i > 1.

We denote by ⊕,0,⊗,1 the exactly rounded (to the nearest) floating-point
implementation of the basic operations +,−,×,÷ in the chosen base β and
precision t. Hence these basic operations are carried out with a relative error of
at most 1/2 β−t+1 which is also called 1/2 ulp in precision t:

∣
∣
∣
∣
(x� y) − (x ∗ y)

x ∗ y

∣
∣
∣
∣ ≤

1
2
β−t+1, ∗ ∈ {+,−,×,÷}.

The realization of a machine implementation of a function f(x) in that floating-
point environment is essentially a three-step procedure:

1. For a given argument x, the evaluation f(x) is often reduced to the evaluation
of f for another argument x̃ lying within specified bounds and for which there
exists an easy relationship between f(x) and f(x̃). The issue of argument
reduction is a topic in its own right and mostly applies to only the simplest
transcendental functions [6]. In the sequel we skip the issue of argument
reduction and assume for simplicity that x = x̃.
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2. After determining the argument, a mathematical model F for f is con-
structed and a truncation error

|f(x) − F (x)|
|f(x)| (1)

comes into play, which needs to be bounded. In the sequel we systematically
denote the approximation F (x) ≈ f(x) by a capital italic letter.

3. When implemented, in other words evaluated as F(x), this mathematical
model is also subject to a round-off error

|F (x) − F(x)|
|f(x)| (2)

which needs to be controlled. We systematically denote the implementation
F(x) of F (x) in capital typewriter font.

The technique to provide a mathematical model F (x) of a function f(x) differs
substantially when going from a fixed finite precision context to a finite scalable
precision context. In the former, the aim is to provide one optimal mathemati-
cal model, requiring as few operations as possible. Here optimal means that the
model’s complexity is minimal with respect to the truncation error bound im-
posed by the fixed finite precision. In the latter, the goal is to provide a generic
technique, from which a mathematical model yielding the imposed accuracy,
is deduced at runtime. Hence best approximants are not an option since these
models have to be recomputed every time the precision is altered and a function
evaluation is requested. At the same time the generic technique should generate
an approximant of as low complexity as possible.

We aim, on the one hand, at a generic technique suitable for use in a multi-
precision context, which on the other hand, is efficient enough to compete with
the traditional hardware algorithms when the base β is set to 2 and the precision
t to 53. We also want our implementation to be reliable, meaning that a sharp
interval enclosure for the requested function evaluation is returned without any
additional cost.

Besides series representations, as presented in Section 3, continued fraction
representations of functions can be very helpful in the multiprecision context. A
lot of well-known constants in mathematics, physics and engineering, as well
as elementary and special functions enjoy very nice and rapidly converging
continued fraction representations. In addition, many of these fractions are
limit-periodic. Both, series and continued fraction representations, are classi-
cal techniques to approximate functions and there’s a lot of literature describing
implementations that make use of them [7]. But so far, no attempt is made at
an efficient yet provable correct implementation.

It is well-known that the tail or remainder term of a convergent Taylor series
expansion converges to zero. It is less well-known that the tail of a convergent
continued fraction representation does not necessarily converge to zero. It does
not even need to converge at all. A suitable approximation of the usually dis-
regarded continued fraction tail may speed up the convergence of the continued
fraction approximants. This idea is elaborated in Section 4.



Validated Evaluation of Special Mathematical Functions 209

3 Taylor Series Development

For simplicity, but without loss of generality, we assume that the Taylor series
of f(x) is given at the origin:

f(x) =
∞∑

n=0

anx
n. (3)

If we want the total error |f(x)−F(x)|/|f(x)| to be bounded by αβ−t+1 we must
determine N such that for F (x) = pN(x), the partial sum of degree N of (3),
the truncation error ∣

∣
∣
∣
f(x) − pN(x)

f(x)

∣
∣
∣
∣ ≤

α

2
β−t+1

and evaluate pN(x), possibly in a working precision s slightly larger than the
user precision t, such that the computed value F(x) = pN(x) satisfies

∣
∣
∣
∣
pN (x) − pN(x)

f(x)

∣
∣
∣
∣ ≤

α

2
β−t+1.

An upper bound for the error |f(x) − pN (x)| is obtained from the sequence of
coefficients {an}n. If this sequence is strictly decreasing with all an > 0 and with

rn = an/an−1 ≤ R < 1, n ≥ 1,

then ∞∑

n=N+1

an ≤ aN

∞∑

n=0

Rn =
aN

1 −R
.

If the sequence is alternating with {(−1)nan}n positive and decreasing and if N
is odd, then

∞∑

n=N+1

an ≤ aN+1.

Furthermore in both cases |f(x)| ≥ |pN (x)| and hence
∣
∣
∣
∣
pN (x) − pN(x)

f(x)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
pN (x) − pN(x)

pN(x)

∣
∣
∣
∣ .

A standard method for the evaluation of the polynomial pN (x) is Horner’s
scheme, namely

pN (x) = a0 + x(a1 + x(a2 + x(. . . + xaN ))). (4)

Since the coefficients an of pN (x) are often related by a simple ratio rn =
an/an−1, Horner’s scheme can be rewritten as

pN (x) = a0(1 + xr1(1 + xr2(1 + xr3(. . .+ xrN )))). (5)
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Let ã0 and r̃n denote the machine representations available for a0 and rn re-
spectively. Let δ(·) denote an upper bound for the relative error (expressed as a
multiple of the working precision 1/2 ulp) due to replacing the expression (·) by
its floating-point counterpart. Hence

ã0 = a0(1 + δ0), |δ0| ≤
1
2
δ(a0)β−s+1,

r̃n = rn(1 + δn), |δn| ≤
1
2
δ(rn)β−s+1, n = 1, . . . , N.

A round-off error analysis of the nested scheme

qN (x) = 1,
qn(x) = 1 ⊕ x⊗ r̃n+1 ⊗ qn+1(x), n = N − 1, . . . , 0,
pN(x) = ã0 ⊗ q0(x)

provides the bound [8, pp. 69]

∣
∣
∣
∣
pN(x) − pN(x)

pN (x)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

ε(N)
1 − ε(N)

∣
∣
∣
∣
p+

N(|x|)
|pN(x)| ,

where

p+
N (x) =

N∑

n=0

|an|xn,

ε(N) =
1
2

(

δ(a0) +N

(

3 + δ(x) + max
n=1,...,N

δ(rn)
))

β−s+1.

Note that the factor
p+

N(|x|)
|pN (x)| ≥ 1. (6)

It equals 1 if an ≥ 0 for all n and x ≥ 0, or if (−1)nan ≥ 0 for all n and x ≤ 0.
Otherwise this factor can sometimes be arbitrarily large.

4 Continued Fraction Representation

Let us consider a continued fraction representation of the form

f =
a1

1 +
a2

1 + . . .

=
a1

1
+

a2

1
+ . . . =

∞∑

n=1

an

1
, an := an(x), f := f(x) (7)

with an ≥ -1/4. Here an is called the n-th partial numerator. The continued
fraction is said to be limit-periodic if the limit limn→∞ an exists (it is allowed to
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be +∞). We respectively denote by the N -th approximant fN (x;wN ) and N -th
tail tN (x) of (7), the values

fN (x;wN ) =
N−1∑

n=1

an

1
+

aN

1 + w
,

tN (x) =
∞∑

n=N+1

an

1
.

We restrict ourselves to the case where a sequence {wn}n, wn �= 0 can be chosen
such that limn→∞ fn(x;wn) = limn→∞ fn(x; 0).

The tails tN (x) of a convergent continued fraction can behave quite differently
compared to the tails of a convergent series which always go to zero. We illustrate
the different cases with an example. Take for instance the continued fraction
expansion √

1 + 4x− 1
2

=
∞∑

n=1

x

1
, x ≥ −1

4
.

Each tail tN (x) converges to the value 1/2(
√

1 + 4x − 1) as well and hence the
sequence of tails is a constant sequence. More remarkable is that the even-
numbered tails of the convergent continued fraction

√
2 − 1 =

∞∑

n=1

(
(3 + (−1)n)/2

1

)

=
1
1

+
2
1

+
1
1

+
2
1

+ . . .

converge to
√

2 − 1 while the odd-numbered tails converge to
√

2 (hence the
sequence of tails does not converge), and that the sequence of tails {tN (x)}N =
{N + 1}N of

1 =
∞∑

n=1

n(n+ 2)
1

converges to +∞. When carefully monitoring the behaviour of these continued
fraction tails, very accurate approximants fN (x;wN ) for f can be computed by
making an appropriate choice for wN . For instance, when limn→∞ an = a < +∞
then an estimate of the N -th tail is given by (

√
1 + 4a− 1)/2. The appearance

of the square root explains the condition an ≥ -1/4.
The relative truncation error |f(x)− fN (x;wN )|/|f(x)| is bounded by the so-

called interval sequence theorem [9]. Let the sequence of intervals {[Ln, Rn]}n

with -1/2 ≤ Ln ≤ Rn < ∞ be given such that we have for

bn := (1 + sign(Ln)max(|Ln|, |Rn|))Ln−1,

cn := (1 + sign(Ln)min(|Ln|, |Rn|))Rn−1,

that
bn ≤ an ≤ cn, 0 ≤ bncn.
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Then
∣
∣
∣
∣
f(x) − fN (x;wN )

f(x)

∣
∣
∣
∣ ≤

RN − LN

1 + LN

N−1∏

n=1

Mn,

LN ≤ wN ≤ RN , Mn = max
{∣
∣
∣
∣

Ln

1 + Ln

∣
∣
∣
∣ ,

∣
∣
∣
∣

Rn

1 +Rn

∣
∣
∣
∣

}

.

The Ln and Rn are tails of continued fractions constructed with the entries bn

and cn [9] which actually bound the floating-point uncertainty on an. If the
partial numerators an of the continued fraction (7) satisfy an ≥ -1/4, then we
know that:

– in case all an > 0 and wN ≤ tN , the even approximants satisfy fN (x;wN ) ≤
f(x),

– in case all an < 0 and wN ≤ tN , all approximants satisfy fN (x;wN ) ≤ f(x).

Hence we obtain for the round-off error on the computed value F(x) = fN(x;wN ):
∣
∣
∣
∣
fN (x;wN ) − fN(x;wN )

fN (x;wN )

∣
∣
∣
∣ ≤

∣
∣
∣
∣
fN (x;wN ) − fN(x;wN )

fN(x;wN )

∣
∣
∣
∣ .

If the machine representation ãn = an(1 + δn) with |δn| ≤ 1/2 δ(an)β−s+1 then
[10, pp. 156–158] [11]
∣
∣
∣
∣
fN (x;wN ) − fN(x;wN )

fN(x;wN )

∣
∣
∣
∣ ≤

1
2

(4 +Δ)
(
1 +M + . . .+MN−1

)
β−s+1,

Δ = max
n=1,...,N

δ(an), M = max
n=1,...,N

Mn,

where s ≥ t is the working precision.

5 Example: The Error Function

We consider the error function and the complementary error function

erf(x) =
2√
x

∫ x

0

e−t2dt,

erfc(x) =
2√
x

∫ ∞

x

e−t2dt

for x ∈ R. These functions are closely related to one another through

erfc(x) = 1 − erf(x). (8)

Furthermore, we can limit the discussion to x > 0 since

erf(0) = 0,
erf(−x) = −erf(x),

erfc(−x) = 2 − erfc(x).
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5.1 Series Implementation 0 < x ≤ 1

The Maclaurin series of erf(x) is defined by

erf(x)
2/

√
π

=
∞∑

n=0

(−1)nx2n+1

(2n+ 1)n!
. (9)

Its coefficients are related by the ratio

rn = − 2n− 1
n(2n+ 1)

,

which can be computed using one floating-point division, if we assume that N
is such that N(2N + 1) remains exactly representable in the base β precision
s floating-point system in use. Then maxn=1,...,N δ(rn) = 1. A sufficient lower
bound for erf(x) is given by

e(x) = x− x3

3
for which erf(x)/e(x) ≤ 1.121. The factor (6) is bounded by 2. To compute the
series using (5) we replace x by x2 and a0 by x, with δ(x2) = 1 and δ(a0) = 0
given that x is a floating-point number.

In Table 1 we display the evaluation of erf(x) in a scalable precision floating-
point system with β = 2 and t = 125 for a number of x-values. We also list the
degree N of the partial sum and the working precision s.

Table 1.

x erf(x) N s

0.125 0.14031620480 . . . 15 139

0.250 0.27632639016 . . . 19 139

0.375 0.40411690943 . . . 21 139

0.500 0.52049987781 . . . 25 139

0.625 0.62324088218 . . . 27 140

0.750 0.71115563365 . . . 29 140

0.875 0.78407506105 . . . 31 140

1.000 0.84270079294 . . . 35 140

5.2 Continued Fraction Implementation on 1 < x

Using (8) in combination with

erfc(x) =
e−x2

√
π

⎛

⎝ 2x/(2x2 + 1)
1

+
∞∑

n=2

−(2n−3)(2n−2)
(2x2+4n−7)(2x2+4n−3)

1

⎞

⎠
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the values in Table 2 are obtained. Again β = 2, t = 125 and the approximant
number N and the working precision s are listed.

Here for n ≥ 2 all an < 0 with

δ(an) = 7, M = 0.85.

We can safely put that the integers 4N − 3 and (2N − 3)(2N − 2) can be rep-
resented exactly and that δ(x2) = 1 since δ(x) = 0. For the additional factors
exp(−x2)/

√
π in combination with 2x/(2x2+1) a separate error analysis is made.

Table 2.

x erfc(x) N s

1.750 1.3328328780 . . . e−2 77 143

2.500 4.0695201744 . . . e−4 41 142

3.250 4.3027794636 . . . e−6 27 143

4.000 1.5417257900 . . . e−8 20 142

4.750 1.8485047721 . . . e−11 16 142

5.500 7.3578479179 . . . e−15 14 143

6.250 9.6722041318 . . . e−19 12 142

7.000 4.1838256077 . . . e−23 11 144

6 Special Function Support

In Table 3 we indicate which functions and which argument ranges (on the
real line) are covered by our implementation. For the definition of the special
functions we refer to [10].

Table 3.

special function series continued fraction

γ(a, x) a > 0, x �= 01

Γ (a, x) a ∈ R, x ≥ 0

erf(x) |x| ≤ 1 identity via erfc(x)

erfc(x) identity via erf(x) |x| > 1

dawson(x) |x| ≤ 1 |x| > 1

1 For a > 0, a > x a faster implementation making use of series is under development.
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Table 3. (continued)

special function series continued fraction

Fresnel S(x) x ∈ R2

Fresnel C(x) x ∈ R2

En(x), n > 0 n ∈ N, x > 03

2F1(a, n; c; x) a ∈ R, n ∈ Z,

c ∈ R \ Z−
0 , x < 1

1F1(n; c; x) n ∈ Z,

c ∈ R \ Z−
0 , x ∈ R

In(x) n = 0, x ∈ R n ∈ N, x ∈ R

Jn(x) n = 0, x ∈ R n ∈ N, x ∈ R

In+1/2(x) n = 0, x ∈ R n ∈ N, x ∈ R

Jn+1/2(x) n = 0, x ∈ R n ∈ N, x ∈ R

A similar implementation in the complex plane is the subject of future re-
search.
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Abstract. Many inequalities involving the functions ln, exp, sin, cos,
etc., can be proved automatically by MetiTarski: a resolution theorem
prover (Metis) modified to call a decision procedure (QEPCAD) for the
theory of real closed fields. The decision procedure simplifies clauses by
deleting literals that are inconsistent with other algebraic facts, while
deleting as redundant clauses that follow algebraically from other clauses.
MetiTarski includes special code to simplify arithmetic expressions.

1 Introduction

Many branches of mathematics, engineering and science require reasoning about
the elementary functions : logarithms, sines, cosines and so forth. Few techniques
are known for automatically proving statements involving such functions. We
have been working on an approach that involves replacing functions by polyno-
mial upper or lower bounds, attempting to reduce the problem to the theory of
real closed fields (RCF), and then applying a suitable decision procedure.

The theory of real closed fields (RCF) concerns equalities and inequalities
involving addition, subtraction and multiplication. (We call logical formulas in
this theory algebraic.) Real closed means every positive number has a square
root. The decision procedure works by eliminating quantifiers from the supplied
formula; for example, ∃x. ax2 + bx + c = 0 reduces to (a �= 0 ∧ b2 − 4ac ≥
0)∨ (a = 0∧ b �= 0)∨ (a = b = c = 0). Both universal and existential quantifiers
can be eliminated, but our current experiments involve refuting purely existential
formulas.

Tarski proved the decidability of RCF in the 1930s, but his procedure was
impractical [10]. McLaughlin and Harrison [17] recently implemented a more
efficient procedure credited to Hörmander [13] and Cohen. We used it in earlier
work [1,2], but unfortunately it fails to terminate if applied to a polynomial of
degree greater than six. QEPCAD-B [6,12] is an advanced implementation of
cylindrical algebraic decomposition (CAD), which is the best available decision
procedure for the complete theory of RCF [10]. CAD is still doubly exponential
in the number of variables, but it is polynomial in other parameters such as
size of the input. In our experience, QEPCAD usually returns quickly. Its main
drawback is that we have to run it as a separate process, while Harrison’s ML
code could be integrated with that of Metis.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 217–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Our approach to proving inequalities involving elementary functions is to re-
place function occurrences one by one with appropriate upper or lower bounds.
Once we have also eliminated occurrences of division, we can call QEPCAD.
Daumas et al. [9] present families of upper and lower bounds for square roots,
trigonometric functions, logarithms and exponentials. The approach can obvi-
ously be generalized to handle a wide variety of well-behaved functions.

Our approach requires a full theorem prover even to prove simple inequalities.
The bounds typically have side conditions that must be proved. Case analysis
is necessary when eliminating division and often when substituting bounds. We
chose to modify a resolution theorem prover, rather than implementing a the-
orem prover from scratch. Impressive examples of the latter approach include
Analytica [8] and Weierstrass [5]. However, we felt that writing an entire prover
would require more effort than modifying a resolution prover, while deliver-
ing inferior results. We were also inspired by SPASS+T [18], which effectively
combines the resolution theorem prover SPASS with various SMT solvers. For
the resolution prover, we chose Joe Hurd’s Metis [14]. Compared with leading
provers, it is slow (being coded in Standard ML rather than C) and it lacks
many refinements (such as advanced data structures for indexing). However, it
implements the superposition calculus [4] and its code is extremely clear.

Paper outline. We begin by describing (§2) how we modified the resolution prover
Metis. We then discuss (§3) the upper and lower bounds we use. We present a
table of new results (§4) along with brief conclusions (§5).

2 Modifications to the Resolution Prover

In order to make this paper self contained, we briefly outline the general ap-
proach, which was described in our previous paper [1].

A resolution prover accepts its problems in conjunctive normal form. Seeking
a contradiction, the conjecture to be proved is negated and conjoined with any
axioms. The entire problem is then transformed into a conjunction of disjunc-
tions. Each disjunction is called a clause. Each member of a disjunction is an
atomic formula or its negation, and is called a literal. Each resolution inference

Passive
clause set

Active
clause set

 selected 
clause

 inference 
rules

 deduced 
clauses

 simplification

new
clauses

Contradic-
tion found

Fig. 1. The main loop of resolution
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combines two clauses and yields new clauses. If the empty clause emerges, the
proof is finished because the desired contradiction has been found.

A resolution prover’s main loop (Fig. 1) manages two sets of clauses, Active
and Passive [16]. At the start, all clauses belong to Passive. At each iteration,
a Passive clause is selected and moved to Active. New clauses are inferred by
resolving this clause with each of the other Active clauses. The new clauses are
simplified and then added to Passive.

MetiTarski is a version of the Metis prover modified in several respects:

– Its implementation of the Knuth-Bendix ordering supports subterm coeffi-
cients [15]. This encourages the replacement of functions by bounds, even if
the bounds superficially appear to be more complex.

– The integer constants are available. Note that all variables are assumed to
range over the real numbers.

– A list of all ground algebraic clauses is maintained. They may contain only
constants (including Skolem constants) and the functions +, − and ×.

– Arithmetic expressions are simplified in order to identify redundant forms
and to isolate the elementary functions.

– Ground algebraic literals that are inconsistent with existing algebraic facts
are deleted from every new clause. This brings us closer to the empty clause.

– New clauses in that follow in RCF from existing algebraic facts are regarded
as redundant and deleted. This reduces the use of space and time.

2.1 Arithmetic Simplification

MetiTarski uses a sparse recursive representation of polynomials. Originally, our
sole objective was to map all variants of an expression to a unique canonical
form [1]. We have added the objective of supporting the proof search by identi-
fying occurrences of division and functions.

Horner normal form. The idea behind our representation is that any poly-
nomial in x can be rewritten in recursive form as

p(x) = anx
n + · · · + a1x+ a0 = a0 + x(a1 + x(a2 + · · ·x(an−1 + xan)).

We can express a multivariate polynomial as a polynomial in one variable whose
coefficients are polynomials in other variables. For example, we can represent
the polynomial 3xy2 + 2x2yz + zx+ 3yz as

[y(z3)] + x([z1 + y(y3)] + x[y(z2)]),

where the terms in square brackets are considered as coefficients.

The Treatment of Division. Our normal form supports the operations of
addition, subtraction, and multiplication. Division by an integer (or a rational
number) does not present a problem, since a coefficient can be a rational number:
the divisor is recursively supplied to the normal form conversion.

General nested divisions can occur in expressions as a proof develops. With-
out special treatment, they will be difficult to eliminate and the RCF decision
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procedure will not be applicable. We transform an expression containing division
into a rational function according to the following rules. (We identify E with E

1
if necessary.)

x1

y1
+
x2

y2
=

x1y2 + x2y1

y1y2

x1

y1
× x2

y2
=

x1x2

y1y2

x1

y1
− x2

y2
=

x1y2 − x2y1

y1y2

x1

y1
÷ x2

y2
=

x1y2

y1x2

The effect is to replace nested divisions by one single division, which as the
outermost symbol can be eliminated by one proof step using an appropriate
division axiom. In this example, three divisions are replaced by one.

(
x

y

)
1

(
x+ 1

x

) =
x2

y(x2 + 1)

We add literals to the resulting clause to account for the possibility of division
by zero. In particular, if we simplify x1/y1 + x2/y2 then we make the resulting
clause conditional on y1 �= 0 and y2 �= 0. However, for (x1/y1) × (x2/y2) and
(x1/y1) ÷ (x2/y2), no such conditions are necessary. That is because we define
x/0 = 0. It is trivial to see that (x1/y1)(x2/y2) = 0 if and only if any of x1,
x2, y1, y2, are zero, and in this they agree with the corresponding right-hand
side. The alternative of introducing an error value and defining x/0 = ∞ would
introduce great complications.1

Isolating Function Occurrences. We attempt to restore inequalities to a
natural form. For example, we simplify X ≤ Y by normalizing X − Y , yielding
an equivalent form X ′ ≤ Y ′ where X ′ and Y ′ both have positive coefficients. We
have strengthened this process to isolate occurrences of elementary functions.

In the Horner normal form transformation, we regard any non-algebraic term
(typically a function occurrence) as a variable. We order the variables, taken in
this general sense, using Metis’s built-in Knuth-Bendix ordering. This ensures
that one of the function occurrences will appear as the outermost “variable.” If
we detect this situation, we leave this term by itself on one side of the inequality,
for example as ln(t) ≤ u. We even divide both sides by any constant coefficient,
but at present we have no way of isolating the function in cases such as x ln(t) ≤
u. This challenge is a focus of our current work.

2.2 Algebraic Literal Deletion

Literal deletion [1] simplifies new clauses that emerge from inference rules. For
each ground algebraic literal in such a clause, we conjoin it with the negations
of all ground algebraic literals in that clause (its context) and with all ground
algebraic clauses known to the prover. We then form the existential closure of this
formula, taking as variables all Skolem constants present in that formula. If the
1 Harrison [11, §2.5] discusses various approaches to formalizing “undefined”, taking

1/0 = 0 as an example.
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RCF solver (QEPCAD) reduces this formula to false, then that literal is deleted.
This is the primary mechanism by which the decision procedure contributes to
deduction.

As a small example, suppose we are trying to prove

∀x. − 3 < x < 1 → ln(1 − x) ≤ −x

with the help of a range-restricted polynomial upper bound f2,

∀x. 2 ≤ x ≤ 4 → ln(x) ≤ f2(x).

Skolemization of the conjecture will yield three clauses, with u a Skolem constant:

−3 < u u < 1 ¬[ln(1 − u) ≤ −u].

At the start of the proof, −3 < u and u < 1 will be the only elements of our list
of ground algebraic clauses. As the proof proceeds, using axioms to be described
later, a resolution step will eventually substitute our upper bound, yielding the
following unsimplified clause:

f2(1 − u) ≤ −u ∨ 2 > 1 − u ∨ 1 − u > 4.

Ordinary arithmetic simplification can reduce 2 > 1−u to u > −1, and 1−u > 4
to −3 > u, but if f2(1 − u) is a complicated polynomial, then only QEPCAD
can achieve a real simplification: we give it the formula

∃u. f2(1 − u) ≤ −u ∧ u ≤ −1 ∧ −3 ≤ u
︸ ︷︷ ︸

negated literals

∧ −3 < u ∧ u < 1
︸ ︷︷ ︸
algebraic clauses

.

Provided f2 is a sufficiently tight bound, the result will be false and the literal
can be deleted. The literal u < −1 turns out to be consistent with its context.
Then we call QEPCAD for −3 > u:

∃u.−3 > u ∧ u ≤ −1 ∧ −3 < u ∧ u < 1.

This again is false, and the final simplified clause is

u > −1.

It is a ground algebraic clause and will be added to our list. We have tightened
the range of u to −1 < u < 1; if it becomes empty, then we have reached a
contradiction.

In this example, the constraints that accumulate are essentially linear. More
generally, the use of rational function upper and lower bounds causes an accu-
mulation of algebraic constraints, which eventually turn out to be inconsistent.
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2.3 Algebraic Subsumption

Resolution theorem provers generate many redundant clauses. To conserve space,
they typically delete any clause that is a syntactic instance of another. We gen-
eralize this redundancy criterion, known as subsumption, by performing an anal-
ogous redundancy check in the RCF theory.

When a new clause is generated, we identify its ground algebraic literals and
form their disjunction. If this disjunction is an algebraic consequence of existing
algebraic facts, then we ignore the clause. Thus the formulas given to QEP-
CAD do not contain redundant conjuncts. This technique can even improve the
performance of some failing proofs so that they fail finitely rather than run-
ning forever. The resulting performance improvement depends on other aspects
of the formalization; at present only four percent of our problems are proved
significantly faster when this technique is enabled.

Recall our previous example, where the ground algebraic clauses included
−1 < u and u < 1. Suppose that a resolution step yields the following clause:

ln(1 − u) ≤ u2 ∨ u2 < 2 ∨ 4u > 3.

Algebraic subsumption will call QEPCAD with the formula

∃u. u2 ≥ 2 ∧ 4u ≤ 3
︸ ︷︷ ︸

negated literals

∧ −1 < u ∧ u < 1
︸ ︷︷ ︸
algebraic clauses

.

QEPCAD returns false, indicating that the algebraic part of the clause follows
from −1 < u < 1. The clause is discarded.

2.4 Modified Knuth-Bendix Ordering

The execution of a modern resolution prover is governed by an ordering [4]. This
ordering serves a twofold purpose: first, to eliminate redundant combinations of
inferences that would lead to identical results; second, to draw the prover’s at-
tention to literals of high priority. For us, high priority literals are those involving
the functions we wish to eliminate.

Ordered resolution frequently employs a heuristic entitled negative selection:
a literal’s sign is taken into account, in addition to its rank in the ordering.
Specifically, only maximal negative literals can be selected for resolution. Metis
employs negative selection by default but also offers (via a simple change to
its source code) unsigned literal selection. With this option, 67 percent of our
problems are proved; with negative selection, only eight percent are proved; with
no ordering whatever, 54 percent are proved.2 The terrible result with negative
selection, where 79 percent of the problems are actually reported as satisfiable,
indicates a mismatch with our heuristics, since with pure resolution this heuristic
is complete. Nevertheless, unsigned literal selection is appropriate because we
wish to eliminate occurrences of elementary functions regardless of their sign.

2 Tests were run on a 2.66 GHz Mac Pro allowing 10 seconds per problem.
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A more significant change concerns the ordering itself. Metis follows most
resolution theorem provers in providing the Knuth-Bendix ordering (KBO) [3,
p. 124], whose advantages include computational efficiency and a tendency to
prefer simpler terms. The latter property, however, can be a drawback. We are
concerned with clauses such as the following:

¬0 < X ∨ ¬[((2X3 − 9X2 + 18X − 11)/6) ≤ Y ] ∨ ln(X) ≤ Y.

This combines the upper bound property ln(x) ≤ (2x3 − 9x2 + 18x − 11)/6
with transitivity, allowing ln(X) to be replaced by its bound. We would like
resolution to select the literal ln(X) ≤ Y in order to eliminate an occurrence
of ln(t) from another clause. Unfortunately, standard KBO will want to select
¬[((2X3 − 9X2 + 18X − 11)/6) ≤ Y ] because it is syntactically larger than
ln(X) ≤ Y . We can attempt to force the issue by assigning ln a high weight.
Weights (typically positive integers) can be assigned to all function symbols; the
sum of the weights in a term is a key measure compared in the ordering. By
choosing a sufficiently high weight, we can ensure that ln(X) ≤ Y is selected.
Unfortunately, the second literal will continue to be selected as well, because it
contains several occurrences of the variable X . Both literals are maximal under
KBO, for which the number of variable occurrences in terms is significant. The
spurious selection needlessly expands the search space.

Ludwig and Waldmann [15] provide a solution to this difficulty. They give
precise definitions of useful extensions to KBO, along with theory and imple-
mentation advice. We have modified Metis’s built-in ordering so that a function
can have not only a weight, but also a subterm coefficient. For example, if ln has
a subterm coefficient of 10, then each occurrence of a variable in ln(t) is equiv-
alent to 10 occurrences of that variable in t. By choosing subterm coefficients
appropriately, we can ensure that a literal containing an elementary function
is selected every time. This modification to Metis yields dramatic reductions in
solution times for the great majority of problems.

3 Bounds for the Elementary Functions

We have devoted much effort to the choice of appropriate bounds. We first relied
on Daumas et al. [9], who provide bounds for several elementary functions. Those
bounds, however, were intended for a different application: to decide constant
formulas using interval arithmetic. For each function, they supplied a family of
increasingly precise bounds. Each bound included range reduction in order to
ensure accuracy for all possible function arguments. In effect, each bound was
an infinite family indexed in two dimensions. Resolution provers require a finite
and preferably small axiom system.

We have simplified the bounds, largely eliminating the range reduction. We
have used only a few members of the infinite family, preferring polynomials of
modest degree (typically below 6, though in one case up to 15). These simplifi-
cations are adequate for our experiments, allowing us to focus on crucial issues
such as the search space and the treatment of complex expressions. The original
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bounds were only claimed to hold over narrow intervals; these could often be
relaxed. In other cases, we sought new bounds that were valid over wide inter-
vals. Relaxing the range restrictions allows inequalities to be proved over infinite
intervals. Our theorem prover can perform case analyses in order to join proofs
involving bounds valid over different intervals, but of course it can only consider
finitely many cases.

Remark : we use exp(x) and exp(x) to stand for various upper or lower bounds
of exp(x), etc.; Daumas et al. [9] supply specific and fixed definitions of such
functions.

3.1 The Logarithm Function

Daumas et al. [9] derive bounds for ln(x) from Taylor approximations,

n∑

i=1

(−1)i+1 (x− 1)i

i
,

for the range 1 < x ≤ 2. With this series, even values of n yield lower bounds
while odd values of n yield upper bounds. For x > 2, they perform range re-
duction by writing x = 2my where 1 < y ≤ 2. When 0 < x < 1, they use the
identity ln(x) = − ln(1/x).

Our upper bounds come from this Taylor series, using odd values of n up to 7.
They are valid not merely for 1 < x ≤ 2, but for all x > 0.

Proposition 1. If n is odd and x > 0 then

ln(x) ≤
n∑

i=1

(−1)i+1 (x− 1)i

i
,

with equality only if x = 1.

Remark : We would be grateful for a reference to a published proof of this fact,
which has a straightforward proof using Rolle’s theorem.

As for range reduction, note that if ln(x) ≤ ln(x) for all x > 0 then

ln(2my) = m ln(2) + ln(y) ≤ m ln(2) + ln(y) = ln(2my)

for all y > 0. Therefore, the range reduction technique suggested by Daumas
et al. [9] yields upper bounds that hold for all positive arguments, and not
merely for the intervals they claim. At present, we use three of these, all with
m = 1 and thus intended originally for the interval (2, 4]; the simplest of them
is ln(x) < x/2.

Our lower bounds are those that Daumas et al. [9] use for the interval [1/2, 1).
That is, they are given by the series

2n+1∑

i=1

1
i

(
x− 1
x

)i
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Fig. 2. An Upper Bound for the Logarithm Function

for n = 0, 1, 2. For x > 1, they are only slightly worse than the corresponding
(and higher degree) lower bounds for ln(x) given by Daumas et al. We therefore
use them for all x > 0.

The current lack of range reduction means that our upper bounds are poor
when x > 2 and similarly our lower bounds are poor when x < 1/2. This point is
evident in Fig. 2, which plots ln(x) against the upper bound (2x3 − 9x2 + 18x−
11)/6 as x ranges from 0.1 to 3. Bounds of higher degree are actually worse as
x increases. We are considering alternative logarithm bounds that may exhibit
less extreme behaviour.

3.2 The Exponential Function

Daumas et al. [9] derive bounds for exp(x) from its Taylor expansion, but only
for −1 ≤ x < 0. They use a complicated system of transformations, first covering
the negative numbers in separate intervals of the form [k−1, k) for integer k < 0.
For x > 0, they use the identity

exp(−x) =
1

exp(x).

The rapid growth of the exponential function necessitates a degree of case analy-
sis and range reduction, but we have managed to find simpler bounds valid over
wide ranges.

We use a crucial fact about the Taylor expansion [7, p. 83].

Proposition 2. If n is odd and x �= 0 then

exp(x) >
n∑

i=0

xi

i!
.

If n is even then this inequality holds if x > 0, while the opposite inequality holds
if x < 0. Obviously we have equality when x = 0.
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Fig. 3. An Upper Bound for the Exponential Function

Our upper bounds for x ≤ 0 rely on this opposite inequality. The bound using
n = 4 is already poor when x < −2, so they could benefit from range reduction,
but they are valid for all x ≤ 0. Our upper bounds for x ≥ 0 rely on Prop.2
with odd n. We define exp(−x) = 1/exp(x): dividing by a positive lower bound
yields an upper bound. Obviously the exponential function is not bounded by
any rational function for x > 0, and one might imagine that the exponential
function overtakes its bound after a certain point. In fact, our upper bounds
are never overtaken, but reach a discontinuity as the denominator goes to zero.
With n = 3, the upper bound is 6/(6 − 6x + 3x2 − x3); its denominator is a
cubic equation with one real root at x ≈ 1.60. The divergence of the upper
bound function can be seen in Fig. 3, which plots exp(x) against the upper
bound (dashed line) as x ranges from 0 to 1.5. We could get a much tighter fit
by choosing n = 5, which diverges at x ≈ 2.18.

Due to the limited range of these bounds, we also include a few versions with
range reduction, via the identity exp(x) = exp(x/k)k, for k = 2, 3, 4. With
k = 4 and n = 3, the denominator of the upper bound becomes a 12th degree
polynomial.

The treatment of lower bounds is simple, thanks to Prop.2. The Taylor expan-
sion of exp(x) for odd n is a valid lower bound over the entire real line. Figure 4
plots exp(x) against the lower bounds 1+x (dashed line) and 1+x+x2/2+x3/6
(dotted line) as x ranges from −4 to 3. It is clear that the lower bounds are poor
when x < −3. We can again use exp(x) = exp(x/k)k for range reduction, but
only for odd k. We want to deduce

exp(x/k)k ≤ exp(x/k)k = exp(x)

from exp(x/k) ≤ exp(x/k), for which we need k to be odd because exp(x/k)
could be negative.

No single lower bound is uniformly best, so we use the Taylor expansion with
n = 1, 3, 5 and 7. For n = 3 and n = 5, we also perform range reduction as
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Fig. 4. Lower Bounds for the Exponential Function

described above with k = 3; the best of these bounds has degree 15 and is an
excellent fit for −8 ≤ x ≤ 8.

3.3 Other Functions

For the functions sin(x), cos(x) and tan−1(x), we use a selection of the bounds
recommended by Daumas et al. [9]. They also suggest families of bounds that
converge to π, but we cannot use families and have simply chosen two fractions
based on the decimal expansion of π. We have improved the accuracy of their
bounds for

√
x while retaining their use of Newton’s method.

We specify the absolute value function by a pair of clauses:

¬(0 ≤ x) ∨ |x| = x 0 ≤ x ∨ |x| = −x

Strengthening the second clause to 0 < x ∨ |x| = −x harms performance. The
theorem prover uses these axioms to remove occurrences of the absolute value
function while introducing new literals of the form ¬(0 ≤ t) or 0 ≤ t. Presumably,
it helps to make these literals complementary.

3.4 Axioms

The guiding principle behind our axiom system is to avoid all use of general
properties of orderings, such as transitivity, antisymmetry and monotonicity of
addition and multiplication. Necessary instances of these properties are built
into other axioms, built into simplification or left to the decision procedure. To
limit problem size and search space, we include only axioms that are relevant
to the functions that appear in the problem. It is often obvious by inspection
whether upper or lower bounds are required. At present the user has to convert
the problem to clause form and to include the required sets of axioms, although
these steps would be trivial to automate.
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A significant change from our previous paper [1] is that the less-than rela-
tion no longer exists. We have only one ordering relation, ≤. The equivalence
X < Y ⇐⇒ ¬(Y ≤ X), formerly a pair of clauses, is now built into the parser.

To illustrate our formalization of bounds, consider the fact 1 + x ≤ exp(x).
We could combine it with transitivity for ≤ and < by asserting two axioms:

¬(Y ≤ 1 +X) ∨ Y ≤ exp(X)
¬(Y < 1 +X) ∨ Y < exp(X)

However, writing each bound twice would be inconvenient. Instead we introduce
a generalized less-than relation. Its first argument indicates which relation it
designates. We express the following two equivalences using the obvious four
axiom clauses:

lgen(0, X, Y ) ⇐⇒ X ≤ Y

lgen(1, X, Y ) ⇐⇒ X < Y

Now, the lower bound axiom for ≤ and < can be expressed by a single clause:

¬(lgen(R, Y, 1 +X)) ∨ lgen(R, Y ≤ exp(X)).

The theorem prover will then generate the two clauses shown above.
We use weights and subterm coefficients to ensure that the exp literals are

selected. The lower bound clauses combine with literals of the form ¬(t ≤ exp(u))
or ¬(t < exp(u)), respectively. These can substitute the lower bound in both
conjectures and facts.

– They reduce a conjecture of the form t ≤ exp(u) to t ≤ 1 + u, and similarly
for <.

– They can resolve with facts of the form exp(u) < t yielding the new fact
1 + u < t, and similarly for ≤.

As before [1], we include axioms concerning division, which we give a high
weight to encourage its replacement by multiplication.

¬(X ≤ Y × Z) ∨X/Z ≤ Y ∨ Z ≤ 0
¬(X ≤ Y/Z) ∨X × Z ≤ Y ∨ Z ≤ 0
¬(X × Z ≤ Y ) ∨X ≤ Y/Z ∨ Z ≤ 0
¬(X/Z ≤ Y ) ∨X ≤ Y × Z ∨ Z ≤ 0

Now that simplification pulls quotients to the outside of a term (Sect. 2.1), we
can dispense with the other division axioms mentioned in that paper. These
axioms concern the case Z > 0; we also need axioms for Z < 0.

4 Results

Our previous paper presented a table of results for about 30 simple problems.
As of this writing, we have 179 problems, which 68 percent are proved in under
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Table 1. Problems and Runtimes

problem seconds

−1 < x =⇒ 2|x|/(2 + x) ≤ 1 + |ln(1 + x)| 0.373
|x| < 1 =⇒ |ln(1 + x)| ≤ − ln(1− |x|) 0.112
|x| < 1 =⇒ |x|/(1 + |x|) ≤ |ln(1 + x)| 1.478
|x| < 1 =⇒ |ln(1 + x)| ≤ |x|(1 + |x|)/|1 + x| 2.052
|x| < 1 =⇒ |x|/4 < |exp(x)− 1| 2.068

0 < |x| < 1 =⇒ |exp(x)− 1| < 7|x|/4 1.071
|exp(x)− 1| ≤ exp(|x|)− 1 1.760
|exp(x)− (1 + x)| ≤ |exp(|x|)− (1 + |x|)| 3.617
|exp(x)− (1 + x/2)2| ≤ |exp(|x|)− (1 + |x|/2)2| 27.802
0 ≤ x =⇒ 2x/(2 + x) ≤ ln(1 + x) 0.147

−1/3 ≤ x ≤ 0 =⇒ x/
√

1 + x ≤ ln(1 + x) 0.241
1/3 ≤ x =⇒ ln((1 + x)/x) ≤ 2/3 + (12x2 + 12x + 1)/(12x3 + 18x2 + 6x) 0.216

1/3 ≤ x =⇒ ln((1 + x)/x) ≤ 1/3 + 1/
√

x2 + x 0.528
0 ≤ x ≤ 1 =⇒ exp(x− x2) ≤ 1 + x 0.068
x ≤ 1/2 =⇒ exp(−x/(1− x)) ≤ 1− x 0.094

|x| < 1 =⇒ |sin(x)| ≤ 6/5|x| 0.342
0 < x < 100/201 =⇒ cos(πx) > 1− 2x 0.079
cos(x)− 1 + x2/2 ≥ 0 0.004
0 < x ≤ π =⇒ cos(x) ≤ sin(x)/x 0.130
0 < y < x =⇒ (1/2) ln(x/y) > (x− y)/(x + y) 1.176

60 seconds. For this paper, we present (Table 1) a small sample of the more
interesting and difficult problems. The runtimes were measured on a 2.66 GHz
Mac Pro running Poly/ML.

Limitations of our approach can be seen in the facts that cannot be proved. We
cannot prove 2 > 2/(e(ln 2)2) or other problems in which functions are multiplied
together. We can prove cos(πx) > 1−2x under the assumption 0 < x < 100/201
but unfortunately not under the assumption 0 < x < 1/2: our approximation to
π is fixed and some precision is inevitably lost. Some problems involving square
roots can be proved, but each square root

√
E in the problems presented here

has been manually replaced by a new variable y such that y ≥ 0 and y2 = E.
This transformation encodes square roots as algebraic constraints and can easily
be automated. It is only useful if E is algebraic.

5 Conclusions

MetiTarski, which combines a resolution theorem prover with specialized simpli-
fication and a decision procedure, can prove numerous facts about the elemen-
tary functions automatically. By further refining our techniques, particularly for
products of functions, we expect to prove increasingly difficult theorems. The
approach is flexible, and should work with any well-behaved functions.
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Our objective is to perform proofs that could in principle be reconstructed or
checked using other tools. Such reconstruction would be difficult however because
QEPCAD performs lengthy computations using sophisticated algorithms. Our
use of x/0 = 0 is well-known in interactive theorem proving. Although it is
unconventional, it is logically consistent with traditional mathematics, which
ascribes x/0 no value at all.

Resolution is traditionally regarded first as a formal calculus and only second
as an implementation. A resolution calculus is first developed, then proved to be
complete, before an implementation is contemplated. Our choice of Metis could
also be questioned. On this point, however, we have the support of SPASS+T
implementer Uwe Waldmann: “switching to SPASS would make sense for you
only if you plan to deal with huge problems” and we would spend a lot of time
“getting memory (de)allocation right.”3 ML’s garbage collector certainly simpli-
fies our task. Our results demonstrate that modifying an implementation can,
at least, deliver proofs and insights. Our modifications are sympathetic to the
overall architecture of resolution: we modify its notions of simplification and
subsumption and its ordering. We ignore completeness because proving some-
thing is better than proving nothing. Nonetheless, we welcome suggestions for
achieving completeness under particular circumstances.
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Abstract. We introduce high-level theories in analogy with high-level
programming languages. The basic point is that even though one can
define many theories via simple, low-level axiomatizations, that is neither
an effective nor a comfortable way to work with such theories. We present
an approach which is closer to what users of mathematics employ, while
still being based on formal structures.

1 Introduction

The mission of mechanized mathematics is to develop software systems that sup-
port the process people use to create, explore, connect, and apply mathemat-
ics. There are historically two main kinds of mechanized mathematics systems
(MMSs): theorem proving systems (TPSs) and computer algebra system (CASs).
Both kinds of systems encapsulate a body of mathematical knowledge and a col-
lection of tools for using this knowledge. The tools of TPSs tend to be primarily
deductive, while those of CASs tend to be primarily computational.

MMSs have two kinds of users. End users use the tools of an MMS to help
them do mathematics, whatever that involves. Developers use the tools of an
MMS to produce new mathematical knowledge and new tools to facilitate the
work of end users. Developers need to have a deep understanding of the logical
and mathematical foundation of their MMS of choice. They are interested in the
structure of mathematics, the problems involved in formalizing mathematics, and
the MMS. End users need much less depth in their understanding of the MMS.
They are computer scientists, engineers, and other scientists who are primarily
interested in an MMS as a (mathematical) tool to solve a problem.

Mathematics is usually done in informal high-level reasoning environments
that include a rich set of concepts and practical tools. The tools involve a mix-
ture of computation and deduction and are highly integrated with each other.
While the setting appears informal, enough rigor is applied that, in theory, the
results could be made formal. MMS end users want to work in similar high-level
environments, and MMS developers want to build such environments. But con-
temporary MMSs do not provide such environments, nor do they provide the
tools to build them. We would like to provide something akin to the ease-of-use
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of Theorema [4] with the computational correctness and efficiency provided by
Focal [27] and the soundness of Coq [9].

Contemporary TPSs provide low-level reasoning environments based on ax-
iomatic theories. An axiomatic theory consists of a set of formulas (called ax-
ioms) in a formal language. An axiomatic theory encodes a body of mathematical
knowledge declaratively; the “truths” of the body of knowledge are the logical
consequences of the axioms. In a TPS, new concepts are expressed by writing
definitions, and the consequences of the concepts are explored by stating and
proving conjectures. Making definitions and proving theorems is the primary
emphasis; performing computations and introducing derived reasoning rules is
secondary. As a result, doing mathematics in a TPS requires working at a very
low conceptual level—much like programming in an assembly language. TPSs
give developers the access they need to low-level details, but generally not the
capability to build the kind of high-level reasoning tools that end users want.
As a result, TPSs are almost useless for end users who are interested in “getting
work done” and lack the necessary understanding of mathematics at the level of
axiomatic theories.

Contemporary CASs provide high-level computational environments based on
algorithmic theories. An algorithmic theory consists of a set of algorithms that
perform symbolic computations over a formal language. An algorithmic theory
encodes a body of mathematical knowledge procedurally; the “truths” of the
body of knowledge are the results that can be obtained by running the algo-
rithms on the range of inputs. In a CAS, new algorithms can be expressed in the
theory by writing programs, usually in a special, system-supplied programming
language. Reasoning is narrowly focused on computation; there is usually little
support for deductive reasoning. Moreover, not only is the background theory
of the algorithms largely hidden from the user, these background theories are
(unfortunately) inconsistent from algorithm to algorithm, which makes the re-
sults obtained from such computations frequently untrustworthy. As a result,
doing mathematics in a CAS is like programming in a high-level programming
language with an inaccessible, untrustworthy compiler. CASs offer end users
a high-level reasoning environment, but one that supports only computation
and provides untrustworthy results. By not giving developers access to their
logical foundations, CASs have very limited use for developers of mechanized
mathematics.

We argue in this paper that, in order for mechanized mathematics to achieve
its potential, MMSs must provide end users with high-level environments for
reasoning and computation, similar to the informal environments they are used
to, in which they can work in a sound and convenient fashion. MMSs must also
provide developers with the capabilities to build high-level environments for end
users that are derived from a solid logical foundation. Toward this goal, we
introduce the notion of a high-level theory, a semi-formal high-level environment
for reasoning and computation that is analogous to a high-level programming
language.
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The paper is organized as follows. Section 2 discusses what a high-level rea-
soning environment is. Section 3 introduces the notion of a high-level theory
and explores the analogy between high-level theories and high-level program-
ming languages. How mathematics is performed within a high-level theory is
the subject of section 4. How high-level theories are created and connected is
covered in section 5. Two examples of high-level theories are briefly discussed
in section 6. We comment in section 7 on some related issues and conclude in
section 8 with some remarks and a recommendation that MMS builders design
and implement systems that offer high-level theories instead of just axiomatic
or algorithmic theories.

2 High-Level Reasoning Environments

As we have mentioned above, mathematics practitioners work in high-level rea-
soning environments that offer integrated sets of concepts and deductive, com-
putational, visual, and other kinds of tools. Working in them is more convenient
and practical than working in an axiomatic theory or even in a network of ax-
iomatic theories.

For example, consider the informal reasoning environment of natural number
arithmetic (which is also called number theory). Even though an axiomatization
of natural number arithmetic is relatively simple, the informal environment that
people actually work in is quite sophisticated. For instance, it includes a set of
algebraic operators, a linear order, several lattice structures, a collection of induc-
tion principles, a collection of algorithms for adding, multiplying, dividing (with
remainder), etc., and various connections to set theory, analysis, and abstract
algebra. An axiomatization of natural number arithmetic—even one augmented
with many definitions and theorems—is an enfeebled reasoning environment in
comparison to this standard informal high-level environment. Figure 1 gives a
taste of what we mean. It is important to notice that the “signature” of Nat does
not export the implementation details of the representation of Nat. We are thus
free to provide “implementations” via Peano’s axioms or via some other (more
efficient) means.

Another good example of an informal high-level environment is what is often
called group theory. It includes the basic definitions of the algebraic structure
called a group, machinery connecting groups via homomorphisms, tools such as
the Sylow theorems and the orbit-stabilizer theorem for analyzing the structure
of groups, and standard applications of groups to various symmetric structures
and problems in mathematics. Group theory cannot be naturally derived from an
axiomatization of a group. It is based on a set of axiomatic theories that includes
a theory of a single group, several copies of this theory for homomorphisms, a
theory of a group action, a theory of natural number arithmetic, and a theory of
sets and functions. In common use, group theory is more about its connections
to other theories than about groups themselves.1

1 There are exceptions, naturally.
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Theory Nat:
concepts 0,1 : Nat.
transformers +, * : Nat -> Nat -> Nat. total, commutative, associative.
transformers <, = : Nat -> Nat -> Bool.
theorem: Nat is an ordered semi-ring.
language AE(Nat) = {0,1,+,*} // Arithmetic Expressions over Nat
derive transformer: eval : AE -> Nat // Evaluation, derived
theorem: total(eval).
derive transformer induction : Prop(AE) -> InductiveProof
... // Structural induction principle

Fig. 1. Nat as a sample high-level theory

1. Convenient, human-oriented, sound, and precise.
2. Supports deduction, computation, and mixtures of the two.
3. Allows the end user to work at a high conceptual level.
4. Includes a well-constructed, highly integrated set of tools.
5. Constructed modularly.
6. Efficiently implemented with respect to resources.
7. Enables multiple modes of interaction (e.g., graphical).

Fig. 2. The pragmatic properties of a high-level theory

Reasoning in one of these high-level environments is analogous to program-
ming in a high-level programming language like Java or ML. The reasoning can
be reduced to the level of axiomatic theories, but this is rarely necessary or even
desirable.

3 High-Level Theories

So what exactly are high-level theories? Informally, they should be to mechanized
mathematics what high-level programming languages are to programming. This
analogy is quite rich, and deserves to be expanded upon. But first, we will
explicitly list in Figure 2 the pragmatic properties that we want a high-level
theory to have. While these might all sound quite desirable, each is a nontrivial
constraint. Furthermore, if they are not designed into a system, they are rather
unlikely to be emergent properties of an implementation.

3.1 The High-Level Programming Analogy

Taking a wide, top-down view of high-level programming languages, we first en-
counter programming paradigms, namely procedural, functional, object-oriented,
and logical/relational. Mathematicians also have styles. Some like to prove purely
existential theorems, others are engaged in giant computations, whilst others like
to find relations between various theories; there are entire books and active con-
ferences dedicated to studying these topics. While our goal is to support as many
of these activities as possible, we will focus on deduction and computation.
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If we look at most modern high-level programming languages, we get a large
set of features, even though we know that we could achieve much the same by
directly programming in an assembly language (or a Turing machine or the λ-
calculus). The same reasons that drove programming languages to include such
high-level features should guide our search. Furthermore we should not look
merely at language advances or even programming systems (languages combined
with a standard library). It is important to realize that some languages thrive
because they inhabit a complete ecosystem, with rich IDEs offering non-ASCII
based methods of interaction, project management features, etc. It is sobering
to remember that N.G. de Bruijn had foreseen some of this 40 years ago [12].

At the simplest level, we want to combine oft-used chains of primitive deduc-
tions into new transformers which are meant to be used as units. For example,
loops are so pervasive in programming that all languages offer high-level con-
structs for this, with a range of semantics. This varies from the one-size-fits-all
while loop of early imperative languages to the semantically richer foreach loop,
and the even richer fmap and foldl (from Haskell). In an MMS, once we have the-
orems that prove the correctness of algorithms for addition and multiplication
over Nat, we should simply add these algorithms as new “fundamental” tools.

Between the two extremes of programming paradigm and low-level primitives,
programming languages offer further tools, for “programming in the large”, like
classes, modules, or functors. The analogy extends: we want structuring mech-
anisms for our MMSs. We favor using theories and parameterized theories for
that purpose. And even though our aim is to present to users rich high-level
theories, we still firmly believe in the little theories method [19]. These can be
assembled in a principled and modular fashion, and implemented atop a module
system like Mei [29,30].

Perhaps the biggest difference is that a high-level theory needs to support
more than just computation, it also needs to support deductive reasoning (and
vice versa). These activities should not just co-exist: they should be tightly
integrated with each other as they are in mathematical practice. Furthermore,
reasoning and computation should not be restricted to objects of a particular
theory: they should be applicable to theories and their interconnections [7].

3.2 Informal Definition

In this subsection, we give a preliminary, informal definition of a high-level the-
ory, while in the next section we show how to effectively make this definition
precise. In other words, we give an abstract specification now and then an im-
plementation later. The aims of this subsection is to convey the intuition behind
our ideas.

Definition 1. A high-level theory (HLT) is a tuple (C, T ) of concepts and
transformers that possesses the pragmatic properties given in Figure 2. Concepts
C are the basic objects of discourse and transformers T are n-ary functions on
expressions concerning concepts.
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Implicit in the above definition is the notion of a language and a base theory over
which everything is defined, which enters more directly in the next definition.

A concept is a pair (s, d) of a new symbol s and a definition d for s. In
other words, a concept consists of a name and its meaning—defined in a formal
language over a theory. This can be a basic object like 0 or 1, a particular
group G, the definition of the fundamental group π1 of a surface, the Gaussian
elimination algorithm, an algorithm for integer factorization, the set theory nbg,
or an abstract 2-category. The definition d of a concept can be given implicitly as
a certain set of properties or explicitly as an expression that denotes an object.

A transformer is a function that maps expressions to expressions. It can em-
body computations or deductions. So a transformer can be as simple as the
modus ponens deduction rule or integer arithmetic, up through induction or
Gröbner basis computations, to proof rules for applying tactics, or an algorithm
for solving PDEs symbolically. It is important to note that all these are maps
from some pieces of syntax to other pieces of syntax, although our chief interest
in all of them is what that syntax denotes. This point is worth emphasizing
because this is a principal difference between theorem proving systems and com-
puter algebra systems: both implement transformers, but they differ greatly in
what meaning is a priori given to each transformer.

Another characteristic of mathematics which is important to model is the
pervasive use of conceptual layers and abstraction. Concepts often appear in
various guises: for example, (computable) functions can both be used directly as
transformers and can also be a concept of study. Directed graphs with labeled
edges and nodes can be studied directly or can be used to conveniently represent
other concepts like commutative diagrams, which themselves represent equations
in a theory. An HLT should give us the tools to draw a commutative diagram
(as a labeled graph) and have the MMS properly interpret the result.

3.3 Semi-formal Definition

In the previous subsection we defined an HLT to be a collection of concepts and
transformers that satisfy certain pragmatic requirements. Concepts are names
representing mathematical ideas and objects, while transformers are functions
mapping expressions to expressions that represent deduction and computation
rules. In this section we will introduce a semi-formalization of an HLT, based on
the notion of a biform theory [16,20].

We will begin by formalizing the notion of a transformer. Fix a set E of
expressions that includes a set of formulas. For n ≥ 0, an n-ary transformer for
E is Π = (π, π̂) where π is a symbol and π̂ is an algorithm that implements
a (possibly partial) function fπ̂ : En → E . The symbol π serves as a name
for the algorithm π̂. There is no restriction on how the algorithm is presented.
For example, it could be a lambda-expression in E or a program written in a
high-level programming language.

Definition 2. A biform theory T is a triple (E , T , Γ ) where E is a set of ex-
pressions, T is a set of transformers for E, and Γ is a set of formulas in E .
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The set E is generated from a set of symbols. Each symbol is either the name
of a concept of T or is the name of a transformer of T . The members of Γ are
the axioms of T . They specify the meanings of the concepts and transformers
of T . Implicit in the above definition is the notion of a background logic that
provides a semantic foundation for the meaning of a biform theory. We may
define a biform theory T = (E , T , Γ ) to be an axiomatic theory if T is empty
and an algorithmic theory if Γ is empty. Thus a biform theory is a generalization
of both an axiomatic theory and an algorithmic theory.

A rule for E is a formula A in E of form

∀ e1 : E , . . . , em : E . B

where B contains one or more occurrences of an expression of the form
π(a1, . . . , an), which represents an application of the algorithm π̂ to n expres-
sions denoted by a1, . . . , an. The application of A to an input list E1, . . . , Em of
expressions in E is the formula A′ obtained by replacing each occurrence of the
form π(E′

1, . . . , E
′
n) in

B[e1 �→ E1, . . . em �→ Em]

with the result of applying π̂ to the list E′
1, . . . , E

′
n of expressions. A rule can be

a rule of computation, deduction, or a mixture of the two.
Declaratively, a rule is a formula that specifies the set of transformers whose

names occur in the formula. Functionally, a rule maps a list of expressions to
a formula that relates the expressions as inputs to the expressions that are
produced as outputs.

Definition 3. A high-level theory (HLT) is a biform theory T = (E , T , Γ ) such
that Γ includes a set of rules that have the pragmatic attributes listed in Figure 2.

Since rules are statements about both the syntax of expressions and what the
expressions mean, nontrivial biform theories are not easy to formalize in tradi-
tional logics such as first-order logic or simple type theory [16]. A logic is needed
in which reasoning about the syntax of expressions (normally performed outside
the logic) is integrated with reasoning about the semantics of expressions (nor-
mally performed in the logic itself). We have proposed a logic of this kind named
Chiron [17,18] that we believe is exceptionally well-suited for formalizing biform
theories. A derivative of von-Neumann-Bernays-Gödel (nbg) set theory, Chiron
supports several reasoning paradigms by integrating set theory with elements of
type theory, a scheme for handling undefinedness, and a facility for reasoning
about the syntax of expressions.

3.4 Extended Example

To give a taste of what we would like to do, we present a “simple” example of
what we can express in this setting.

Suppose that we define the concept commutative as the property ∀ a, b .
a◦ b 3 b◦a of a (possibly) partial binary operation ◦ : A×A ⇀ A. As expected,
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commutativity is a property of binary operators; less usual is the generalization
to the partial setting.

Now consider the theory of Abelian groups. We would obtain a rather unusual
theory if we used the above definition of commutativity. Yet, that is exactly the
definition that we wish to use. Will we then need to rebuild all of group theory
for a generalization that does not seem important? No, as we also have the
following property:

Proposition 3.1. Let ∗ : A × A → A be a total binary operation. Then ∗ is
commutative if and only if ∀ a, b : A . a ∗ b = b ∗ a.

This property is really an immediate corollary of a more fundamental equiva-
lence, namely

∀ a, b ∈ E . (a↓ ∧b↓) → (a 3 b ↔ a = b) .

(a↓ means a is defined.)
We recall that a binary operation ∗ is total if and only if ∀ a, b : A . (a ∗ b)↓.

Combining this with the property above allows us to create a theory level trans-
former which (in Chiron with syntactic sugar) reads

λ e : E . if(match(e, e1 3 e2) ∧ �e1�↓ ∧�e2�↓, e1 = e2, e1 3 e2).

In other words, when we instantiate the concept of commutativity in the process
of creating the theory of Abelian groups, our theory building operators can use
the above as a simplification rule2. This rule belongs in the HLT dedicated
to building theories, which is a computation on the syntactic representation of
theories but relies on intermediate deductions (and computations) for its proper
application. Another aspect is to note the different quantifications we are using
above—universal for the definition of commutativity, over expressions for the
equivalence of 3 and =, and over values for the definition of total.

4 Exploring High-Level Theories

The ultimate purpose of an HLT is to provide a convenient environment for
end users to formulate mathematical problems and to explore possible solutions
using deduction, computation, and other techniques such as visualization. An
HLT is intended to be self-contained in the sense that everything the end user
needs to reason within the HLT is available in the HLT. The end user should
not have to introduce many new concepts, construct many new transformers, or
look for many results in other HLTs. Not only does the end user have the tools
he or she needs, the tools are designed to work together efficiently.

Since the tools of an HLT should usually involve both deduction and com-
putation, an HLT-based MMS should provide a derivation facility for proving
conjectures and performing computation in which proving and computing are
2 It is important to note that we are implicitly using deep inference and inference “in

context” in the statement of this rule.
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> using ParnasTables

> f(x) =
x < 1 x ≥ 1 ∧ x ≤ 5 x > 5

0 x 5
denotes

⎧
⎪⎨

⎪⎩

0 x < 1

x x ≤ 5

5 otherwise

> f(π)

π

> total? f

true proof

Fig. 3. (Mock up of) working in an HLT of Parnas tables

mixed. For example, in derivation a computation can involve the proof of side
conditions and a proof can involve the computation of expressions. Figure 3
shows an idealized end user interaction with the HLT of Parnas tables [21] (as a
particularly useful visual metaphor for piecewise functions [6]). A notable “fea-
ture” is the first-class proof object in the last interaction, while we retain the
dubious feature of Parnas tables using only first-order logic to specify how to
partition the domain of f . Note the difference with Figure 1 which gives the
developer’s view of the definition of an HLT, whereas Figure 3 is the end user’s
view. The vocabulary is the same, but an end user will typically interact via
(the names of) transformers on expressions and see their results pretty-printed,
while the developer gets a more theory-centric view.

5 Creating and Connecting High-Level Theories

The job of an MMS developer is to create HLTs. There are several approaches
for doing this. First, an HLT can be created from scratch. This will be difficult
and labor intensive if the subject matter of the HLT is complex or unfamiliar.
On the other hand, this could be feasible if the HLT mirrors a well-understood
and well-tested high-level reasoning environment such as elementary calculus. In
either case, there is a significant danger that the concepts and transformers of
the HLT may be inconsistent with each other. Another danger is that it could be
extremely difficult to connect an HLT developed from scratch to another HLT
so that results shared between the HLTs can be trusted, as witnessed by CASs.

A second approach is to construct an HLT incrementally starting from a set
of very low-level axiomatic theories. Using concept and transformer definition
techniques as well as module building techniques such as extension, union, re-
naming, and parameter instantiation [30], a network of interconnected biform
theories can be build on top of the starting set of axiomatic theories. As one of
the biform theories in the network, the HLT has a modular construction that is
recorded in the structure of the theory network. The HLT is thus derived in a
structured fashion from its underlying set of axiomatic theories.
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The concepts and transformers of the HLT can be viewed as its interface and
the theory network that records its construction can be viewed as its imple-
mentation. Just like the interface of a software module, the interface should not
include everything in the implementation. Many low-level tools that are needed
by developers to construct an HLT are either of no use to the end user or are
subsumed by the high-level tools in the HLT’s interface. Moreover, it is cer-
tainly possible that the same HLT can be derived from several different sets of
axiomatic theories. That is, an HLT can have more than one implementation.

The implementation of an HLT is crucial for connecting one HLT to another
HLT. Suppose we would like to connect an HLT T1 to an HLT T2. Let us assume
that Ti is derived from a set Si of axiomatic theories for i = 1, 2. We first
construct translations from the axiomatic theories of S1 to the axiomatic theories
of S2. Next we show that these translations are meaning preserving, i.e., are
theory interpretations [14,15]. The last step is to use the constructions of T1

and T2 as a guide to lift and merge these axiomatic theory interpretations to
a theory interpretation of T1 in T2. This last step would ideally be performed
automatically. This has very natural categorical semantics in terms of limits of
diagrams (in the category of biform theories).

A third approach is to construct an HLT, or least part of an HLT, auto-
matically from an axiomatic theory. The work by R. McCasland on mechanical
theorem discovery is an interesting step in this direction [24]. Two classical ex-
amples are the use of the Knuth-Bendix completion algorithm to automatically
generate a terminating term rewrite system from a set of equational axioms [23]
and the use of Buchberger’s algorithm to construct a Gröbner basis for a sys-
tem of polynomials [3]. For the algorithmic aspects, one can instantiate generic
algorithms and still get efficient implementations [5,8].

We will finish this section with an important observation. Mathematical knowl-
edge as a whole is a network of interconnected smaller bodies of mathematical
knowledge. The interconnectivity of mathematics allows problems to be expressed
and solved in a general context (e.g., metric spaces) and then their solutions to
be applied in more specialized contexts (e.g., real analysis). The little theories
method [19] models the network of interconnected bodies of mathematical knowl-
edge as a network of separate, but interconnected axiomatic theories. The big
theory method [19] models mathematical knowledge as one big theory. The lit-
tle theories method is central in the creation and connection of HLTs, but the big
theory method is followed in the exploration of HLTs.

6 Examples of High-Level Theories

We further examine how we might formalize the two examples of high-level
reasoning environments given in section 2.

An HLT formalization of natural number arithmetic would be a biform theory
T1 containing several hundred concepts, transformers, and axioms. It would be
carefully constructed in two ways.
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First, T1 would be constructed in a modular fashion from a well-understood,
low-level axiomatization of natural number arithmetic, like Peano’s axioms, and
a set of supporting low-level theories about such things as sets and real numbers.
Its construction would demonstrate that each of its axioms is a theorem derived
from the low-level theories. How the low-level theories are axiomatized is not
important as long as the axioms of T1 can be derived from the theories.

Second, the concepts, transformers, and axioms of T1 would be carefully cho-
sen. They would not include every known concept, transformer, and theorem
of natural number arithmetic. In particular, T1 would not be simply the sum
of the low-level theories from which it is constructed. Instead the constituents
of T1 would have a high level of coverage and a low level of redundancy. For
example, the concepts of T1 might well not include the successor function since
it can be easily expressed using the addition function. And there would be no
need for the recursive definitions of addition and multiplication if T1 includes
transformers for computing sums and products. The axioms of T1 would be high-
level theorems such as the fundamental theorem of arithmetic and the Chinese
remainder theorem, high-level deduction rules such as various induction prin-
ciples, and high-level computation rules such as those for computing greatest
common divisors and factoring natural numbers into primes.

To end users, T1 would look like a formalization of what mathematicians
call “number theory”; the concepts, transformers, and axioms of T1 would be
basic ideas, tools, and assumptions of the theory. To developers, T1 would look
like the end result of a large, complicated theory development; the concepts,
transformers, and axioms of T1 would be the high-level ideas, tools, and theorems
derived from the underlying low-level theories.

An HLT formalization of group theory would be a biform theory T2 that
contains, like T1, several hundred concepts, transformers, and axioms, and con-
structed in the same careful manner to embody “group theory”. In particular,
“group theory” does not care whether an inverse function is provided axiomati-
cally or as a derived property.

7 Related Work

As we have already mentioned, the working environment of a mainstream CAS
(like Maple and Mathematica) gives the impression of working in a HLT, but in
reality only achieves properties (3) and (7) (of those in Figure 2), and somewhat
implements (5) and (6). Theorema [4] adds (2). But since they are unsound, it
is unclear if that all amounts to much.

Current large TPSs (like Coq [9], Isabelle [26], and PVS [25]) also seem to be
moving in this direction, with their strength being properties (4) and frequently
(5), and slowly moving in the direction of (2). Mizar [28] is hobbled by being
nonmodular. There is a lot of work being done to integrate computation into
deduction [1,2,13]. This work will certainly have an effect on ours, but we feel
that it is too asymmetric compared to the symmetry between computation and
deduction in biform theories.
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The most direct implementation of something akin to HLTs is in Focal [27].
Unfortunately, this system is only really comfortable for dedicated developers
and does not yet enable multiple modes of interaction.

It is possible to build a safe computational system atop a theorem prover,
as Kaliszyk and Wiedijk show [22]. While a definite achievement, this seems to
embody (part of) one handbuilt HLT.

Lastly, we should note that it is possible to encode biform theories in the
Calculus of Inductive Constructions [10,11], and thus in Coq. It is however our
current feeling that Chiron is better suited for this task.

8 Conclusion

A high-level theory (HLT) is a model of the high-level reasoning environments
employed in mathematical practice. Roughly speaking, it consists of a well-
crafted set of concepts and transformers. More precisely, it is a biform theory
with certain pragmatic properties. In particular, it includes high-level tools for
deduction, computation, and a mixture of the two. An HLT is to a low-level ax-
iomatic theory or algorithmic theory as a high-level programming language is to
an assembly language. Working in an HLT is much more effective and convenient
than working in a low-level theory.

We recommend that the ultimate goal of an MMS should be to provide a
library of HLTs that are useful and accessible to a wide range of mathematics
practitioners. The library’s HLTs should include the best of the features cur-
rently found in the axiomatic and algorithmic theories of contemporary TPSs
and CASs. Low-level axiomatic and algorithmic theories should be considered
as part of the supporting infrastructure of the library, not as the end product
of the system. To facilitate the development and expansion of the library, the
MMS should include a facility with a powerful set of tools for developers to con-
struct HLTs from low-level theories. We believe that an MMS that offers HLTs
to end users and the tools for building HLTs to developers has the best chance
of realizing the immense potential of mechanized mathematics.
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Abstract. We use higher-order logic to verify a quantifier elimination
procedure for linear arithmetic over ordered fields, where the coefficients
of variables are multivariate polynomials over another set of variables,
we call parameters. The procedure generalizes Ferrante and Rackoff’s
algorithm for the non-parametric case. The formalization is based on
axiomatic type classes and automatically carries over to e.g. the rational,
real and non-standard real numbers. It is executable, can be applied to
HOL formulae and performs well on practical examples.

1 Introduction

Most LCF-like theorem provers provide proof automation for several theories
of arithmetic. These include universal real [14] and linear integer arithmetic,
Presburger arithmetic [21,6] and the full first order theories of linear and non-
linear real or complex arithmetic [11,20,12,7,5] using quantifier elimination (qe.).
See also [4] for mixed real-integer linear arithmetic and [13,8,5] for ring problems.
Present procedures able to deal with multiplication in quantified problems have
non-elementary complexity and do not scale in practice. We are not aware of any
proof-procedure with elementary complexity in an LCF-like theorem prover, but
see [19] for very promising progress in verifying CAD in Coq.

In this paper we present a formally verified quantifier elimination procedure
(qep.) for linear arithmetic over ordered fields, where the coefficients of variables
are multivariate polynomials over another set of variables, we call parameters.
The procedure is a generalization of Ferrante and Rackoff’s algorithm [9] for the
non-parametric case. Our formalization is based on axiomatic type classes [24]
and hence automatically carries over to several interesting structures such as the
rational, real and non-standard real numbers. The formalization is executable
and can be applied to HOL formulae. Our procedure has doubly exponential
space complexity and is hence optimal [23]. It is however, slightly less efficient
than the procedure by Loos and Weispfenning [18], who gave the first qep. for
parametric linear arithmetic. A description of the present work also appears in
the author’s thesis [5].

This paper is structured as follows. In § 2 we give the informal qep.. In § 3
we present a formalization of multivariate polynomials, which will serve as pa-
rameters. We formalize the qep. in § 4 and § 5 and integrate it in § 6.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 246–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 The Main Algorithm

Let F
ρ
+ be the first order theory of parametric linear arithmetic over ordered

fields, i.e. coefficients of bound variables are multivariate polynomials over an-
other set of variables. Note that F

ρ
+ is more expressive than the non-parametric

theory. Consider for instance P (x) = a2 = 2 ∧ x < a over the reals. Then
S(P ) = {x | P (x)} =] −∞,

√
2[, which is not expressible in the non-parametric

theory. Expressible sets in F
ρ
+ are finite unions of intervals whose endpoints are

infinite or algebraic (in the non-parametric case replace algebraic by rational),
see [18].

The goal of this section is to give a qe. algorithm informally using the usual
mathematical notation, except that under an ordered field F we understand
an ordered field satisfying 0−1 = 0 for all x, i.e. F is 0-totalized [2,15]. This
assumption is also made in [18] and is satisfied in all practical instances in
Isabelle/HOL for our formalization.

We consider an ordered field F and two disjoint infinite sets of variables: V

and Vp. A parameter is any multivariate polynomial over Vp. Terms are built up
from the field constants and variables in V by addition, subtraction and restricted
multiplication by parameters. Atomic formulae are True,False, s = t, s �= t, s < t
and s ≤ t, where s and t are terms. The set of all formulae is then obtained by the
closure under the usual boolean operations ¬,∧,∨,→ and ↔, and by universal ∀
and existential ∃ quantification over variables in V. Let L denote this language.
It is a standard result of qe. that we only need to provide a qep. for ∃x.P , where
P is qf. Furthermore, we can transform any qf. P into Q, which contains no
negations and, by “gathering” the same terms, only contains atoms of the form
a ·x = t, a ·x �= t, a ·x < t, a ·x ≤ t or those not involving the existentially bound
variable x. Thereby, a is a parameter and t is a term not involving x. Let UQ

denote the set of all pairs (t, a) such that a · x $% t, $%∈ {=, �=, <,≤} occurs in
Q. Furthermore let Q−∞ and Q+∞ be the formulae resulting after replacing the
atoms in Q as in the table below, then Theorem 1 holds.

Atom Q−∞ Q+∞
a · x = t a = t = 0 a = t = 0
a · x �= t a �= 0 ∨ t �= 0 a �= 0 ∨ t �= 0
a · x < t a > 0 ∨ a = 0 ∧ t > 0 a < 0 ∨ a = 0 ∧ t > 0
a · x ≤ t a > 0 ∨ a = 0 ∧ t ≥ 0 a < 0 ∨ a = 0 ∧ t ≥ 0

Theorem 1. For x, P and Q as above, the formula ∃x.P (x) holds if and only
if Q−∞ ∨Q+∞ ∨

∨
(a,t)∈UQ,(a′,t′)∈UQ

Q(( t
a + t′

a′ )/2) holds.

Proof. First note that P and Q are equivalent. Moreover let Q(UQ) abbreviate
∨

(a,t)∈UQ,(a′,t′)∈UQ
Q(( t

a + t′

a′ )/2). It is trivial that if Q(UQ) holds then ∃x.Q(x)
holds. To finish the proof of the only if direction we need to show that Q−∞
and Q+∞ respectively imply ∃x.Q(x). This is a simple consequence of the fact
that Q−∞ and Q+∞ are equivalent to Q for arguments that are arbitrarily
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large negative and positive respectively, i.e. they mimic Q near −∞ and +∞.
Concretely the properties (a) and (b), easy to prove by induction on Q, hold.

∃z.∀x < z.Q(x) ↔ Q−∞ (a)
∃z.∀x > z.Q(x) ↔ Q+∞ (b)

Now for the if direction of Theorem 1, assume Q(x) for some x and that
neither Q−∞ nor Q+∞ hold, i.e. x is a neither too large nor too small witness
for Q. From (a) and (b) it easy to see that l ≤ x ≤ u holds for some l and u.
In fact, a simple proof by induction on the structure of Q yields that l and u
are t

c and t′

c′ for some t, c, t′, c′ such that (t, c) ∈ UQ and (t, c) ∈ UQ. Hence x is
either equal to s

d , where (s, d) ∈ UQ, in which case we are done, or l < x < u
for l and u as above, but such that for no (s, d) ∈ UQ we have l < s

d < u. The
existence of such smallest interval is easy to show, since UQ is finite and F is
ordered. Now we show that Q actually holds over the whole interval ]l, u[ and
hence in particular for l+u

2 . The proof is by induction on the structure of Q, and
is interesting only for atoms. The case where Q is a · x = r is trivial since it
contradicts the assumptions. Assume that Q is a · x < r. If a = 0 the statement
is trivial. Otherwise assume a > 0, then x < r

a . Consider an arbitrary y such
that l < y < y, we must show that a · y < r holds. First note that y �= r

a , since
(r, a) ∈ UQ. Assume for contradiction that y > r

a , then l < x < r
a < y < u, i.e.

l < r
a < u which contradicts the assumptions, since (r, a) ∈ UQ. Hence Q holds

for every y ∈]l, u[. The case a < 0 is analogous. The cases a · x �= r and a · x ≤ r
are analogous to the a · x < r case. #�
In order to obtain qe. for F

ρ
+, we just need to argue that we can encode the

substitution of “informal fractions” t
c into a formula using our simple language

L of rings, i.e. Q( t
c ) indeed represents a L-formula. This is easy using standard

techniques [18,23,4]. We formalize two variants in detail in § 5.

Corollary 1. The theory F
ρ
+ admits qe. by terms. Moreover, for purely existen-

tial statements, the procedure above computes concrete witnesses for the existen-
tial quantifiers.

This concludes the general description of the algorithm. In the following we
present our formalization of polynomials in § 3, formulae and generic qe. in § 4
and finally the qep. in § 5.

3 Formalized Polynomials

Our formalizations of polynomials have a strong algorithmic flavor, since we want
to compute and prove with them. In § 3.1 we formalize univariate polynomials as
“functions”: given a list of coefficients c0, . . . , cn, they describe a function x �→∑n

i=0 ci ·xi. This approach was successfully used quite early in HOL, but due to
the lack of classes or equivalent specification mechanisms, the formalizations are
duplicated for R and C. Our formalization is based on locales [17,1], and hence
carries over to several instances including Z,Q,R,C and the non-standard reals.
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In § 3.2, we present a formalization of multivariate polynomials with rational
coefficients using axiomatic type classes [24]. The theorems we present were
proved in locales or classes with as few axioms as possible. We do not present
the exact requirements for space and clarity reasons. The reader can simply
assume that the theorems hold in any ordered field. See [5] for more details. An
interesting alternative to our completely verified approach is presented in [3,22]
using the FOC language.

Notation. The rest of the paper has a different status than the previous section:
it has been formalized in Isabelle/HOL. In particular all statement numbered
and all figures correspond to formal definitions or statements formally proved in
Isabelle/HOL. The notation of HOL conforms to usual mathematical one. We
use B,Z,N,Q,R to denote the types of truth values, integers, natural, rational
and real numbers respectively. The space of total functions is denoted by ⇒. The
notation t :: τ means that the term t has type τ . Datatypes are defined using
the keyword datatype and HOL allows the definition of recursive functions using
pattern matching. Lists are built up from the empty list [] and consing x · xs .
Multiplication and consing are both denoted by ·, but the meaning should be
clear from the context. For a list xs we denote the set of its elements by {{xs}}.

3.1 Univariate Polynomials as Functions

We formalize univariate polynomials as functions. Given a list of coefficients
[c0, . . . , cn], then [c0, . . . , cn] = λx.

∑n
i=0 ci · xi.

[] x = 0 | c · cs x = (cs x) · x+ c (1)

This formalization is very appealing to switch views: a) view polynomials
syntactically as a list of coefficients and b) view a list of coefficients p as a
polynomial function p. The zero polynomial is []. Note that the list representation
is not unique, since we can always append zeros and p = p@[0].

The first step is to implement algorithms for the usual operations on the
syntax and prove them correct. The formalization includes addition +, multipli-
cation ·, exponentiation λp, n.pn, subtraction and negation both denoted by −
and normalization norm to remove superfluous zero coefficients. It also includes
other notions we do not use here, such as the degree, the multiplicity of a root
and square free conditions.

The definitions of addition and multiplication etc. over the syntax are straight-
forward. For instance addition is defined in (2). We prove all these operations
correct, e.g. (3) for addition, multiplication and subtraction.

[] + q = q | p+[] = p | (c · cs)+(d · ds) = (c + d) · (cs+ ds) (2)

p $% q x = (p x) $% (q x) for $%∈ {+, ·,−} (3)

We present here only a few interesting theorems just to give a rough idea
about the formalization. Like in algebra texts, stronger properties hold in classes
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with more axioms. The key property (4) for roots-factorization holds e.g. in
commutative rings with unity. Moreover in an integral domain of characteristic
zero, every polynomial has finitely many roots exactly when it is not the zero
polynomial (cf. (5)) and the entirety property (6) holds. Here another strong and
interesting property holds: a polynomial (as a function) is zero exactly when all
its coefficients are zero (cf. (7)). This last property plays a central role in the
implementation and also for the uniqueness property of multivariate polynomials
in § 3.2. Let a polynomial p be normal (isnorm p) if norm p = p holds. Polynomials
in normal form in integral domains are unique, cf. (8)

p a = 0 ↔ p = [] ∨ ∃q.p = [−a, 1] · q (4)
p �= [] ↔ finite{x|p x = 0} (5)
p · q = [] ↔ p = [] ∨ q = [] (6)
p = [] ↔ ∀c ∈ {{p}}.c = 0 (7)

isnorm p ∧ isnorm q → p = q ↔ p = q (8)

The formalization in (1) is very suitable for abstract reasoning about univari-
ate polynomials. We can also generate code if the underlying (semi)ring allows it.
Note the ability of the code-generator framework [10] to deal with classes using
dictionaries. The generated code depends on the implementation of the opera-
tions and hence cannot be used to compute abstractly. The main drawback of
this formalization is that it does not “naturally” carry over to multivariate poly-
nomials. The type corresponding to R[x1, . . . , xn] would be [. . . [α] . . . ], nested
n times, which can not be expressed in HOL.

3.2 Reflected Multivariate Polynomial Utilities

We present here an executable formalization of multivariate polynomials over
fields. As in § 3.1 stronger theorems only hold in classes with more axioms. To
generate code running for all instances, we restrict the coefficients to the sub-field
{i/j | i, j ∈ Z}, i.e. rational numbers.

Rational numbers. We implement rational numbers by pairs of integers i : j
interpreted as field elements by �i : j�r = i/j. This representation is not unique
in general, but it is for those in normal form (i.e. satisfying isnormr, see (9)):

isnormr (i : j) = if i = 0 then j = 0 else b > 0 ∧ gcd i j = 1
isnormr a ∧ isnormr b → �a�r = �b�r ↔ a = b (9)

We implement the usual arithmetical operations (+r, ·r,−r,/r) and ordering
relations (<r,≤r) and prove them correct:

isnormr a ∧ isnormr b →
�a ◦ b�r = �a�r ◦ �b�r ∧ (a �� b ↔ �a�r $% �b�r) ∧ isnormr (a ◦ b), (10)

for (◦, ◦) ∈ {(+r,+), (·r, ·), (−r,−), (/r, /)}
and (��, $%) ∈ {(<r, <), (≤r,≤)}.
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datatype ρ = Ẑ : Z|vN| − ρ|ρ + ρ|ρ − ρ|ρ ∗ ρ|ρN

�ĉ�e
ρ = �c�r

�vn�e
ρ = e[n]

�− p�e
ρ = −�p�e

ρ

�p + q�e
ρ = �p�e

ρ + �q�e
ρ

�p − q�e
ρ = �p�e

ρ − �q�e
ρ

�p ∗ q�e
ρ = �p�e

ρ · �q�e
ρ

�pn�e
ρ = (�p�e

ρ)n

Fig. 1. Syntax and semantics of polynomial expressions

The implementation does not raise an exception but correctly returns 0 as a
result for x/0. This reflects Isabelle/HOL’s behavior correctly. We also provide
a function normr to normalize any i : j and prove it correct. In the following ir

denotes i : 1 for any integer i �= 0 and 0r denotes 0 : 0.

Polynomial expressions. The syntax (datatype ρ) and its semantics in Fig. 1
reflect multivariate polynomial expressions. The semantics �.�.

ρ is parameterized
by an environment e (a list of “field-elements”). We represent variables by de
Bruijn indices: vn represents the bound variable with index n :: N. Note that
�vn�e

ρ = e[n] is the nth element of e. The bold symbols +,∗ etc. are constructors
and reflect their counterparts +, · etc. in the logic. We reflect a rational number
i/j by î : j, i.e.̂ is a constructor of ρ.

The normal form defined by ishorn imposes a Horner scheme for multivariate
polynomials where the ordering on variables is induced by their indices.

ishornh ĉ n = True
ishornh (c + vm ∗ p) n = p �= 0ρ ∧m ≥ n ∧ ishornh c (m + 1) ∧ ishornh p m
ishorn p = ishornh p 0

For example 5 · y · x2 + y · (x+ 2) is reflected by �q�
[x,y]
ρ and �r�

[x,y]
ρ , for q = 5̂ ∗

v1 ∗ v0
2 + v1 ∗ (v0 + 2̂) and r = (0̂ + v1 ∗ 2̂) + v0 ∗ ((0̂ + v1 ∗ 1̂) + v0 ∗

(0̂ + v1 ∗ 5̂)). Only r is in normal form.
Ultimately we would like to compute the normal form of any ρ-polynomial.

It is legitimate to write the normal form, since we show uniqueness in a certain
sense: two ρ-polynomials in normal form are syntactically equal if and only
if their interpretations are equal in all possible environments. We present a
function normρ to normalize any ρ-polynomial. For this, it applies algorithms for
addition �, multiplication �, negation and subtraction � and power λp, n.p↓n,
with the additional property that they preserve the normal form. See Fig. 2
for the definitions. Subtraction and negation are straightforward. Taking p to
the power of n repeatedly applies � depending on the binary scheme of n.
All these operations preserve normal form, cf. (11), and semantics, cf. (12).
Now the definition of normρ is simple and mainly replaces the constructors with
the definitions above. The main property of normρ in (13) uses (11) and (12)
and is proved by structural induction. For � there is a syntactical property,
cf. (14).
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ĉ � d̂ = ĉ +r d
ĉ �(d + vk ∗ q) = (ĉ � d) + vk ∗ q

(c + vn ∗ p)� d̂ = (c � d̂) + vn ∗ p
(c + vn ∗ p)�(d + vk ∗ q) = if n < k then (c �(d + vk ∗ q)) + vn ∗ p

else if k < n then ((c + vn ∗ p)� d) + vk ∗ q
else let cd = c � d; pq = p � q

in if pq = 0ρ then cd else cd + vn ∗ pq
a� b = a + b

ĉ � d̂ = ĉ ·r d
ĉ �(d + vk ∗ q) = if c = 0 then 0ρ else (ĉ � d) + vk ∗ (ĉ � q)

(c + vn ∗ p)� d̂ = if d = 0 then 0ρ else (d̂ � c) + vn ∗ (d̂� p)
(c + vn ∗ p)�(d + vk ∗ q) = if n < k then

(c �(d + vk ∗ q)) + vn ∗ (p �(d + vk ∗ q))
else if k < n then

((c + vn ∗ p)� d) + vk ∗ ((c + vn ∗ p)� q)
else ((c + vn ∗ p) � d) �(0ρ + vn ∗ ((c + vn ∗ p)� q))

a� b = a ∗ b

p↓0 = 1ρ

p↓n = let q = p↓ n
2 ; d = q � q

in if even n if d else p � d

Fig. 2. Addition, multiplication and power for ρ-polynomials

ishorn p → ishorn p↓n ∧ (ishorn q → ishorn p� q ∧ ishorn p� q) (11)
�p� q�e

ρ = �p + q�e
ρ ∧ �p� q�e

ρ = �p ∗ q�e
ρ ∧ �p↓n�e

ρ = �pn�e
ρ (12)

ishorn (normρ p) ∧ �normρ p�e
ρ = �p�e

ρ (13)
ishorn p ∧ ishorn q → p� q = 0ρ ↔ p = q (14)

Using (13) we obtain an incomplete method to prove equality of two polynomials.
We show completeness in the following.

The uniqueness property. We show in the following that ρ-polynomials in
normal form are unique by using the uniqueness property of univariate polyno-
mials in § 3.1. Given an environment e, then function λp.[p]e in (15) connects
ρ-polynomials to the univariate ones of § 3.1. Obviously it satisfies (16). This
simple connection transfers properties from § 3.1 to ρ-polynomials.

[p]e = map (λq.�decrρ q�e
ρ) (coeffs p) (15)

ishornh p n0 → �p�x·e
ρ = [p]e x (16)

Let maxv
p denote the maximal n, where vn occurs in p. Property (17) is the

analog of (7) and states that a normalized polynomial is 0ρ exactly when it
evaluates to 0 for any reasonable environment e. The proof of (17) is by complete
induction on maxv

p where (7) is applied to the coefficients of [p]e. This corresponds
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to an induction over the number of variables n of the multivariate polynomial
ring R[x1, . . . , xn]. From (14) and (17) we derive the uniqueness property (18).

ishorn p → (∀e.|e| ≥ maxv
p → �p�e

ρ = 0) ↔ p = 0ρ (17)
ishorn p ∧ ishorn q → (∀e.�p�e

ρ = �q�e
ρ) ↔ p = q (18)

An important impact of (18) is that all interesting algebraic properties about
+, ·, etc. ultimately carry over to �,�, etc. on the syntactical level, e.g. distribu-
tivity and commutativity hold for � and �. The only drawback we must accept
is that the properties proved in this manner, although purely syntactical, hold
only under the axioms of ordered fields.

4 Formalized Generic Quantifier Elimination

We formalize terms and formulae by datatypes τ and φ and their semantics
in Fig. 3, which are parameterized with two environments: π is a list of field
elements considered as parameters and used to interpret the polynomial coeffi-
cients, whereas e is a list of field elements interpreted as variables which can be
bound by quantifiers. We use de Bruijn indices for variables and hence quanti-
fiers need not carry names. When bound by a quantifier, the new bound variable
is inserted into the environment e of variables, cf. Fig. 3, so we can refer to it
by u0.

Due to the bad complexity of the qe. problem [23], we must constantly care
about efficiency in our implementation. In our experience, maintaining suitable
normal forms for terms and formulae and using optimized versions of the con-
structors is invaluable. It is an easy exercise (see e.g. [6,7]) to implement and
verify a normalizer for τ -terms to have the form ai1 ∗ ui1 + . . . aik

∗ uik
+ ã : b,

where for all j ∈ {1 . . . k} aij is ρ-normalized, aij �= 0ρ and i1 < · · · < ik. More-
over, we implement a simplifying version of every constructor of φ, e.g. for ∧:

p∧ q = if p = F ∨ q = F then F
else if p = T then q else if q = T then p else p∧ q

datatype τ = ρ̃ | uN |− τ | τ + τ | τ − τ | ρ ∗ τ
datatype φ = T | F | τ = τ | τ �= τ | τ < τ | τ ≤ τ

| ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ↔ φ | ∃ φ | ∀ φ

�c̃�e
π = �c�π

ρ

�un�e
π = e[n]

�− t�e
π = −�t�e

π

�t + s�e
π = �t�e

π + �s�e
π

�t − s�e
π = �t�e

π − �s�e
π

�c ∗ t�e
π = �c�π

ρ · �t�e
π

�T �e
π = True

�F �e
π = False

�t �� s�e
π = (�t�e

π �� �s�e
π)

�¬p�e
π = (¬�p�e

π)
�p ♦♦♦ q�e

π = (�p�e
π ♦�q�e

π)
�∃ p�e

π = (∃x.�p�x·e
π )

�∀ p�e
π = (∀x.�p�x·e

π )

Fig. 3. Semantics of parametric linear arithmetic formulae
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lift qe (∀ p) = ¬qe(lift qe (¬p))
lift qe (∃ p) = qe(lift qe p)
lift qe (¬p) = ¬(lift qe p)
lift qe (p �� q) = (lift qe p) �� (lift qe p) for ��∈ {∧, ∨, →, ↔}
lift qe p = simpφ p

Fig. 4. Generic quantifier elimination for φ-formulae

To avoid cumbersome notation, every occurrence of any constructor in the rest
of the paper, except in pattern matching, represents its optimized version. This
means that e.g. (4̃ : 3< 0̃ρ) = F and (p∨T ) = T hold. Using the simplifying
constructors we obtain a simple simplification procedure simpφ (not shown).

Now that we have the syntax of formulae at hand, we define a recursive
predicate qfree :: φ ⇒ B which holds for p exactly when p contains neither ∃ nor
∀. The definition is very simple and omitted. Let isqeφ qe for any qe :: φ ⇒ φ
be a shorthand for ∀e, π, p.qfree(qe p) ∧ �qe p�e

π ↔ �p�e
π , i.e. qe is a qep. for

φ-formulae. Our goal is to define a function fr such that isqeφ fr holds.
To formalize the argument that in order to eliminate all quantifiers, we only

need qe a qep. for ∃ p where p is qf., we define lift in Fig. 4 to apply qe recursively
to all quantifiers from innermost to outermost. Thereby, we reduce ∀ p to ¬ ∃¬p.
Let isqe∃ qe formalize that qe is a qep. for ∃ p, where p is qf., i.e. its is shorthand
for ∀e, π, p.qfree p → qfree(qe p)∧ �qe p�e

π ↔ �p�e
π . We prove (19) automatically.

In § 5 we formalize fr∃ and prove isqe∃ fr∃.

isqe∃ qe → isqeφ (lift qe) (19)

Given qe satisfying isqe∃ qe, it is crucial for efficiency to apply it to formulae
as small as possible, using the following rules for the existential quantifier:

(∃x.P x ∨Q x) ↔ ((∃x.P x) ∨ (∃x.Q x)) (20)
(∃x.Q ∧ P x) ↔ (Q ∧ ∃x.P x) (21)

For this purpose, we introduce functions split∧ and split∨ to return all con-
juncts and disjuncts of a formula, respectively. Similarly, list∧ and list∨ turn a list
of formulae into their conjunction and disjunction, respectively. Given f :: φ ⇒ φ
and formulae p1, . . . pn, then eval∨ f [p1, . . . , pn] returns f p1 ∨ . . . f pn evalu-
ated lazily. If f is a qep. for one ∃, then λp.eval∨ f (split∨ p) distributes f over
disjunctions, and is therefore a qep. for one ∃. Let p :: φ be qf. and ps = split∧ p.
Function eval∧ first partitions ps into two list: as consist of all formulae not in-
volving the bound variable and bs consists of the rest. The call eval∧ f p then
returns decrφ (list∧ as)∧ f (list∧ bs). If f is a qep. as above, then eval∧ f applies
f only to the conjuncts not involving the bound variable. Summed up, given a
qep. qe, then eval∨ (eval∧ qe) is an optimized qep. satisfying our purpose. By
defining qelim = λqe.lift (eval∨ (eval∧ qe)) we obtain an optimized version of lift.
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Concretely, we prove the following:

isqe∃ qe → isqe∃ (eval∨ qe) (22)
isqe∃ qe → isqe∃ (eval∧ qe) (23)
isqe∃ qe → isqeφ (qelim qe) (24)

5 The Formalized Procedure

In this section we formalize the algorithm in § 2. In the following we write 0τ as
a shorthand for 0̃ρ. Let unboundτ t (resp. unboundφ p) formalize that the τ -term
t (resp. φ-formula p) does not contain u0 and decrφ p be p with all de Bruijn
indices un decremented. These are simple recursive functions that satisfy:

unboundτ t → ∀x, y.�t�x·e
π = �t�y·e

π (25)
unboundφ p → ∀x, y.�p�x·e

π ↔ �p�y·e
π ∧ ∀x.�decrφ p�e

π ↔ �p�x·e
π (26)

Let a φ-formula p be linear (islinφ p) if it does not involve u0 (unboundφ p) or
has the form f ♦♦♦ g, for linear f and g and ♦♦♦ ∈ {∧,∨}, or c ∗ u0 + r �� 0τ , for
��∈ {<,≤,=, �=}, a normalized polynomial c �= 0ρ and r :: τ not involving u0.
Any qf. φ-formula is transformed into an equivalent linear φ-formula by linφ.
We do not present this in detail, but see [4,7]. The important property is

qfree p → islinφ (linφ p) ∧ �linφ p�e
π ↔ �p�e

π (27)

Fig. 5 defines p−, p+, and Up for a linear φ-formula p. They are analogs of
P−∞, P+∞ and UP in § 2 for P = λx.�p�x·e

π , but encode the implicit dependency
on the polynomial parameters into the resulting formula by explicit case distinc-
tion. Here we abuse notation and write a ��1 b ��2 c for a ��1 b∧ b ��2 c, for
��i∈ {=, �=,<,≤}.

It is very easy to verify that p− and p+ do not depend on u0 and that they
mimic p for values small (resp. large) enough in the underlying ordered field.

islinφ p → unboundφ p− ∧ unboundφ p+ (28)
islinφ p → ∃z.∀x < z.�p−�x·e

π ↔ �p�x·e
π (29)

islinφ p → ∃z.∀x > z.�p+�x·e
π ↔ �p�x·e

π (30)
islinφ p → ∀(t, c) ∈ {{Up}}.unboundτ t ∧ ishorn c ∧ c �= 0ρ (31)

p Up p− p+

q ♦♦♦ r Uq @ Ur q− ♦♦♦ r− q+ ♦♦♦ r+

c ∗ u0 + t=0ρ [(t, c)] c= t=0ρ c= t=0ρ

c ∗ u0 + t �=0ρ [(t, c)] c=0ρ �= t ∨ c �=0ρ c=0ρ �= t ∨ c �=0ρ

c ∗ u0 + t< 0ρ [(t, c)] t< 0ρ = c ∨ 0ρ < c t < 0ρ = c ∨ c < 0ρ

c ∗ u0 + t≤ 0ρ [(t, c)] t≤ 0ρ = c ∨ 0ρ ≤ c t ≤ 0ρ = c ∨ c ≤ 0ρ

[] p p

Fig. 5. Definition of Up, p− and p+
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A proof similar to § 2 yields the reflection of Theorem 1:

islinφ p→∃x.�p�x·eπ↔�p− ∨ p+�x·e
π ∨∃((t, c), (s, d))∈{{Up}}2.�p�

(
�t�

y·e
π

−2·�c�π
ρ

+
�s�

y·e
π

−2·�d�π
ρ

)·e
π

(32)

5.1 A First Naive Implementation

For a full implementation only a modified substitution p[−t
2·c + −s

2·d ] of the “ex-
pression” t

−2·c + s
−2·d for u0 in p satisfying (33) is missing. We use the same

technique as for p− and p+ and encode case splits on parameters into the result,
see Fig. 6. Recall that p− and p+ are modified substitutions of very large values.

islinφ p ∧ unboundτ t ∧ unboundτ s →

�p[
− t

2 · c +
− s

2 · d ]�x·e
π ↔ �p�

(
�t�x·e

π
−2·�c�π

ρ
+

�s�x·e
π

−2·�d�π
ρ

)·e
π ∧ unboundφ p[

− t

2 · c +
− s

2 · d ]
(33)

The proof of (33) is only interesting for atoms and we show only the case
of (a ∗ u0 + r< 0τ )[−t

2·c + −s
2·d ]. The ≤-case is analogous and the = and �=

are even simpler. For this, fix x and environments e and π. Clearly there are 9
disjoint cases depending on the strict sign of �c�π

ρ and �d�π
ρ. These are exactly

the cases encoded in Fig. 6. Assume �c� d�π
ρ > 0, then �c�π

ρ �= 0 ∧ �d�π
ρ �= 0

and hence �t�x·e
π

−2·�c�π
ρ

+ �s�x·e
π

−2·�d�π
ρ

= − �d∗t+c∗s�x·
π

�2̂r � c � d�π
ρ

. The claim now follows using the

property ∀a, b, c.b > 0 → a
b < c ↔ a < c · b and simple algebraic manipulations.

The other cases are similar.
Finally, we implement fr∃ to eliminate one ∃, and fr the full qep. below. The

function call eval∨ f [x1, .., xn] returns the disjunction f x1 ∨ . . .∨ f xn lazily
evaluated. We prove the main qe. theorem in (40)

fr∃ q = let p = linφ q ; U = allpairs(remdups (Up))
in decrφ(p− ∨ p+ ∨ eval∨ (λ((t, c), (s, d)).q[−t

2·c + −s
2·d ]) U)

fr = qelim fr∃

qfree (fr p) ∧ �fr p�e
π ↔ �p�e

π (34)

5.2 Drawbacks and a Better Solution

By inspecting Fig. 6, we predict fr yields huge formulae and is not practical.
Our tests corroborate this prediction. Fig. 6 shows many duplications of case
splits. Keeping in mind that we substitute the same “fraction”, the conditions
on the coefficients involved in that fraction must not be encoded at the atoms
level but rather globally. We present in the following an alternative substitution
and procedure to achieve this goal.

Let us first reconsider the qe. theorem (32) and in particular the substitution
of the fraction on the RHS. Let p be linear and let (t, c) and (s, d) be two
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p p[−t
2·c + −s

2·d ]
p ∧ q p[−t

2·c + −s
2·d ]∧ q[−t

2·c + −s
2·d ]

p ∨ q p[−t
2·c + −s

2·d ]∨ q[−t
2·c + −s

2·d ]
a ∗ u0 + r =0τ c̃= s= r =0τ ∨

c̃ �=0τ = d̃∧ a ∗ t=(2̂r � c) ∗ r ∨
d̃ �=0τ = c̃ ∧ a ∗ s=(2̂r � d) ∗ r ∨

c̃ � d �= 0τ ∧ a ∗ (d ∗ t + c ∗ s)=(2̂r � c � d) ∗ r

a ∗ u0 + r < 0τ c̃= d̃= r =0τ ∨
d̃ < 0τ = c ∧ a ∗ s <(2̂r � d) ∗ r ∨
c=0τ < d̃ ∧(2̂r � d) ∗ r < a ∗ s ∨
c̃ < 0τ = d∧ a ∗ t<(2̂r � c) ∗ r ∨
d=0τ < c̃ ∧(2̂r � c) ∗ r < a ∗ t ∨

0τ < c̃ � d∧(2̂r � c � d) ∗ r < a ∗ (d ∗ t + c ∗ s)∨
c̃ � d< 0τ ∧ a ∗ (d ∗ t + c ∗ s) <(2̂r � c � d) ∗ r

a ∗ u0 + r ≤ 0τ . . .
a ∗ u0 + r �=0τ . . .

p p

Fig. 6. Modified substitution in φ-formulae

elements of Up. Furthermore fix environments e and π and let P = λx.�p�x·e
π

and t, s, c and d denote �t�y·e
π , �s�y·e

π , �c�π
ρ and �d�π

ρ respectively. Our goal is to
construct a φ-formula semantically equivalent to P ( t

−2·c + s
−2·d) but without

case splits on c and d at the atoms-level. For that consider all sign combinations
of c and d. If both are zero then we have P (0). If exactly one is zero, say d,
then we have P ( t

−2·c ) and the whole disjunction (for only such cases) reduces

to ∃(t, c) ∈ {{Up}}.c �= 0 ∧ P ( t
−2·c ). For the last case we have c �= 0 �= d and

hence t
−2·c + s

−2·d = d·t+c·s
−2·c·d . Hence only two case splits on the strict sign of

the denominator are necessary to obtain a simpler substitution. Summed up, we
prove the following qe. theorem, where p[a]φ denotes the “normal” substitution
of term a for u0 in p:

islinφ p→�∃ p�e
π ↔ �p− ∨ p+ ∨ p[0τ ]φ�y·e

π ∨ ∃(t, c)∈{{Up}}.�c�π
ρ �= 0∧ �p�

�t�
y·e
π

−2·�c�π
ρ
·e

π ∨

∃((t, c), (s, d)) ∈ {{Up}}2.�c�π
ρ �= 0 ∧ �d�π

ρ �= 0 ∧ �p�

�d∗t+c∗s�
y·e
π

−2·�c∗d�π
ρ

·e
π

(35)

Now we only need to find a substitution p[ t
c ]

�=
φ of a “fraction” t

c with “non-
zero” denominator. Our substitution first splits over the strict sign of c and then
performs two modified substitutions of t

c : the first p[ t
c ]

>
φ assumes c > 0, and the

second p[ t
c ]

<
φ assumes c < 0. The definition of p[ t

c ]
�=
φ (cf. (36)) and that of p[ t

c ]
>
φ

for atoms (cf. (37)) are simple. The definition of p[ t
c ]

<
φ is analogous and omitted.

It is not hard to prove the main properties in (38).
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p[
t

c
] �=φ = c<0τ ∧ p[

t

c
]<φ ∨ c>0τ ∧ p[

t

c
]>φ (36)

(a ∗ u0 + b �� 0τ )[
t

c
]>φ = a ∗ t + c ∗ b �� 0τ for ��∈ {=,<,≤} (37)

islinφ p ∧ �c�π
ρ $% 0 → �p[

t

c
]��φ �x·e

π ↔ �p�

�t�x·e
π

�c�π
ρ

·e
π for $%∈ {>,<, �=}. (38)

Now we implement a new version of fr∃ and define fr = qelim fr∃. We prove
(39) and (40) using the previous properties and (35).

fr∃ q = let p = linφ q ;U = remdups (Up); U2 = allpairs U
in decrφ(p− ∨ p+ ∨ p[0τ ]φ ∨ eval∨ (λ(t, c).q[ t

−2ρ � c ]φ) U
∨ eval∨ (λ((t, c), (s, d)).q[ d∗t+c∗s

−2ρ � c � d ]φ) U2)

qfree q → qfree (fr∃ q) ∧ (�fr∃ q�e
π ↔ �∃ q�e

π) (39)
qfree (fr p) ∧ (�fr p�e

π ↔ �p�e
π) (40)

6 Integration

So far we can apply fr to any p :: φ to obtain its qf.-equivalent. For the evaluation
of fr p we can use Isabelle’s rewriting facility, but thus is intractable in practice.
Alternatively we can use fast evaluation techniques based on normalization by
evaluation (cf. [16]) or extract an implementation into an external programming
language. The framework in [10] allows extraction into SML, Haskell and OCaml.
SML is more appealing for us, since it is the implementation language of Isabelle.
Furthermore, we want to apply fr to HOL formulae, i.e. of type B and not φ.
For this we must transform HOL formulae into their φ-representation. This is
called reification and is performed in SML. Given P :: B, we compute p :: φ and
environments e and π and then prove that P ↔ �p�e

π holds. This ensures that we
have guessed p properly. Using (40) we replace �p�e

π by �fr p�e
π and evaluate fr p

efficiently to say q. Now, and this is a non-trivial step, we assume that fr p = q
holds in HOL, i.e. our evaluation have simulated a proof inside HOL. This is the
only proof-step which is not performed by means of the logic but rather by meta-
theory. In Coq for instance, such a reasoning could indeed be performed without
leaving the logic, using e.g. the ι-reduction rule. Now that we have fr p = q its
is easy to obtain a qf.-equivalent formula to P , i.e. �q�e

π.
Consider for instance the HOL formula P which states ∀x, y.(1 − t) · x ≤

(1 + t) · y ∧ (1 − t) · y ≤ (1 + t) · x → 0 ≤ y. Reification finds that p, e and π
should be ∀ ∀(1ρ − v0) ∗ u1 ≤(1ρ + v0) ∗ u0 ∧(1ρ − v0) · u0 ≤(1ρ + v0) ∗
u1 → 0τ ≤u0, [] and [t], respectively. We prove that P ↔ �p�

[]
[t] holds and com-

pute fr p, which is quite large to be included here. This whole computation takes
0.17 seconds. The computation of qe. equivalent to the Collins/Jones problem
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(cf. (*)) takes 2.1 seconds. All timings are take on a PowerPC G4 1.67 GHz
running OS X with 1.5 GB of memory.

∃r.0 < r < 1 ∧ 0 < (2 − 3 · r) · (a2 + b2) + 2 · a · r
∧(2 − 3 · r) · (a2 + b2) + 4 · a · r − 2 · a− r < 0

(*)

7 Conclusion

We have presented a formalized qep. for F
ρ
+ in Isabelle/HOL, based on type

classes [24]. It is hence generic since it applies to e.g. Q,R and the nonstandard
reals without extra effort. The integration using reflection reduces deduction to
computation. Our formalization in § 3.1 needed 1000 lines and that in § 3.2 1700
lines of Isabelle Proofs. The full qep. needed further 3000 lines of proofs and
round 140 lines of SML code for the reification and the tactic.
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1 Introduction

Stand-alone Artificial Intelligence systems for performing specific types of reasoning
– such as automated theorem proving and symbolic manipulation in computer algebra
systems – are numerous, highly capable and constantly improving. Moreover, systems
which combine various forms of reasoning have repeatedly been shown to be more
effective than stand-alone systems. For example, the ICARUS system for reformulating
constraint satisfaction problems [1] and the HOMER system for conjecture making
in number theory [2]. However, in general, such combinations have been ad-hoc in
nature and designed with a specific task in mind. With little general design consideration
or a suitable framework for combining reasoning, in general every new combination
has to be built from scratch and the resulting system is often inflexible and difficult to
manage. We believe it is imperative that generic frameworks are developed if the field
of combining reasoning systems is to progress. Such generic frameworks would provide
standardised rule sets and toolkits to simplify the development of combined systems.

We describe here a generic framework based on the cognitive science theory of the
Global Workspace Architecture [3]. In our framework, the individual reasoning tech-
niques are each encapsulated within specialist processes attached to a blackboard-style
global workspace, which is visible to all processes. We achieve relative simplicity in
the framework by requiring fairly severe restrictions upon the behaviour of the attached
processes. In particular, there is no inter-process communication other than what is
broadcast on the global workspace. These restrictions help ensure that the resulting sys-
tem is simple to understand. Furthermore, the encapsulation of reasoning techniques
within discrete individual processes adds clarity and flexibility. We explain our frame-
work, and how it is used, in §2. To demonstrate the capability of the framework, we have
implemented combined systems incorporating Prover9 [4], Maple [5] and SICStus Pro-
log. In §3, we describe applications to mathematical theorem discovery and conjecture
making which produce results comparable to the ICARUS and HOMER systems, re-
spectively. This demonstrates that while the framework is easy to use, it is as powerful
as the ad-hoc systems.

2 A Framework for Combining Reasoning Systems

The architecture defined by our framework is inspired by the Global Workspace Ar-
chitecture [3]. Each of the processes attached to the global workspace performs either
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some type of reasoning (e.g., by encapsulating a theorem prover or a computer algebra
system) or a useful administrative task such as checking for redundancy in outputs. The
framework defines how processing takes place on a round-by-round basis. In addition, it
outlines rules which all attached processes must follow. A round starts with the broad-
cast of some reasoning artefact (e.g., a conjecture, proof, example, etc.) which each
attached process may ignore or may react to in various ways. Specifically, a process
may do one or more of the following:

– Construct a proposal for broadcast, consisting of a reasoning artefact and a numer-
ical (heuristic) value of importance that the process ascribes to that artefact.

– Detach itself from the framework.
– Attach new processes to the framework.

At the end of each round, various processes will have been added to and removed from
the global workspace, and a set of broadcast proposals will have been submitted to the
framework. At the start of the next round, the framework chooses the proposal with
the highest importance value, and broadcasts the reasoning artefact from that proposal.
In the case where multiple proposals have equal heuristic value, one is chosen from
them randomly. All non-broadcast proposals are discarded and will not be considered
for broadcast later unless they are re-proposed.

To create a combined system, a developer must create a configuration of the frame-
work, by defining:

– The reasoning artefacts that may be broadcast on the workspace.
– The processes that may be attached to the workspace and their behaviour, which

must conform to the framework rules. In particular, how each process reacts to
broadcasts, the processing or reasoning they perform, the proposals they can make
and the method they use in determining the heuristic rating of importance.

– The starting state, i.e. the initially attached processes.

We have developed the GC toolkit which enables developers to easily configure com-
binations of reasoning systems for particular tasks within the framework. GC, which
takes its name from global-workspace and combining, allows users to develop their
configurations into full system implementations. It includes the core code for the round-
by-round processing and a number of pre-coded processes which encapsulate specific
reasoning tasks. For example, the toolkit currently provides a process which appeals
to the Prover9 theorem prover in attempts to prove broadcast conjectures. Users can
choose and adapt processes from GC’s pre-coded selection for use in their configura-
tions or they can develop their own processes by with the aid of libraries provided in
the toolkit.

3 Applications and Results

Our first configuration demonstrates how the framework can combine machine learning,
example construction and theorem proving processes to perform automated theory for-
mation, similar to that performed by the HR system [6]. In overview, the configuration
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is required to invent new concepts (built from a set of user-supplied background con-
cepts), make empirical conjectures which relate the concepts and then prove that some
of the conjectures follow from a set of user-supplied axioms. We specified four types of
broadcast artefacts, as follows:

1. Definition, in the form def(D), where D is a prolog-readable definition of a concept.

2. Concept, in the form conc(D|E), with D as above and E being a list of examples
which satisfy that concept definition.

3. Conjecture, in the form conj([D1,D2]|K), where D1 and D2 are concept definitions
and K is a keyword indicating the type of conjecture; either im, which denotes that D1

is conjectured to imply D2; or eq, denoting D1 is conjectured to be equivalent to D2.

4. Explanation, in the form exp([D1,D2]|K|P), where D1, D2 and K represent a con-
jecture, as above, and P is a proof of that conjecture.

Our initial configuration uses the following processes:

1. DefinitionFormer processes propose new Definitions. They each encapsulate a dif-
ferent concept formation method, akin to production rules in HR. They react to Concept
broadcasts, conc(D|E). Some formation methods involve modifying a single concept
definition, where they attempt to create a new definition from D. Others combine two
definitions, in which case they remember D, by spawning a clone process that reacts to
Concept broadcast, conc(D’|E’|C’), by attempting to combine D and D’.

2. DefinitionReviewer, which reacts to Definition broadcasts, def(D), removes redun-
dancy by checking whether D has been seen before. If not, it proposes for broadcast
conc(D|∅), i.e. a concept with that definition and an empty example set.

3. ExampleFinder, encapsulates a Prolog database containing examples for the ini-
tial background concepts. All concept definitions are Prolog terms and ExampleFinder
can generate example sets for new concepts by querying Prolog with the definition.
ExampleFinder reacts to Concept broadcasts with empty example sets, conc(D|∅), by
generating an example set E. If E is non-empty it proposes conc(D|E).

4. ConjectureMaker, compares the example sets of two Concept broadcasts. It reacts
to the first Concept broadcast, conc(D1|E1), (where E1 �= ∅), by spawning a clone
process, P, which itself reacts to future Concept broadcasts conc(D2|E2). In particular,
if P finds that E1 = E2 it proposes conj([D1, D2],eq). Alternatively, if E1 ⊂ E2, it
proposes conj([D1, D2],im) (or conj([D2, D1],im) if E2 ⊂ E1).

5. Prover processes encapsulate the Prover9 theorem prover with axioms for the do-
main under investigation. It attempts to prove conjectures in any Conjecture broadcast,
conj([D1, D2],K), and proposes exp([D1, D2],K)|P), whenever a proof, P, is found.

In addition for this configuration, we specified a process which proposes the back-
ground concepts at the start of the session. Moreover, we specified a simple rating
scheme which assigns a rating of 1 to Definitions, 2 to Concepts, 3 to Conjectures and
4 to Explanations. We enhanced this configuration by preventing the dual development
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of empirically equivalent concepts (i.e. if conj([D1, D2],eq) is broadcast, then D2 is no
longer considered) which reduces duplication of effort. We implemented the
configuration using GC and used it to find implied constraints about QG-quasigroups
similar to those found by HR embedded in the ICARUS [1] combined system. Working
with QG3, QG4 and QG5 quasigroups, the configuration generated the same theorems
as ICARUS. For example, it found the same three theorems, ∀ a b (a∗a = b ↔ b∗ b =
a), ∀ a b ((a ∗ b = b ∗ a) → a = b) and ∀ a b ((a ∗ a = b ∗ b) → a = b); which were all
used by ICARUS in reformulating QG3 constraint programs.

To demonstrate the flexibility of the framework, we extended this initial
configuration to applications in number theory similar to those performed by the
HOMER system [2]. We introduced new processes encapsulating Maple to provide
background solutions to number theory functions and used several prover processes,
each with different axiom sets, to perform conjecture filtering. We used the back-
ground functions σ(n) (the sum of divisors of a number), τ(n) (the number of di-
visors) and isprime(n) (a boolean predicate indicating whether a number is prime),
together with the notion of equality. Our configuration achieved results very similar to
those produced by HOMER, in terms of the concepts and conjectures discovered. Like
HOMER, our system filtered out approximately 90% of all the conjectures it created,
by showing them to be simple consequences of the definitions and hence uninterest-
ing. Importantly, our system re-discovered the most interesting results from [2], includ-
ing e.g., isprime(σ(a)) → isprime(τ(a)). Moreover, our system highlighted poten-
tial weaknesses in HR, by showing that concepts had been repeated due to variable
ordering.

4 Conclusions and Future Work

Compared to building an ad-hoc combined system from scratch – which is currently
the norm – it is relatively straightforward to construct systems using our GWA-based
framework. Despite the framework’s restrictions, it can be configured to achieve re-
sults equivalent to previous bespoke ad-hoc systems. We will continue to develop the
GC toolkit, by adding additional reasoning processes for tasks such as model genera-
tion and SAT-solving. In addition, we aim to develop the user interface by providing
graphical tools for selecting and tuning processes and for specifying new processes
without having to write code explicitly. We will continue to improve our configurations
in efforts to improve upon previous system results, for example, by introducing more
sophisticated rating schemes. We intend to create new configurations for existing com-
bined reasoning tasks, such as correcting false conjectures [7] and algebra classification
[8], and to tackle new problems with the framework. Furthermore, the core-processing
of the toolkit will be enhanced to take advantage of the distributed parallel nature of the
underlying architecture, which should enhance performance. We hope to have demon-
strated the potential of our GW-based generic framework for combining reasoning sys-
tems and we hope in future to add to the weight of evidence that combining reasoning
systems is imperative for the advancement of Artificial Intelligence.
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Abstract. In previous work, we showed the importance of distinguish-
ing “I know that X �= Y ” from “I don’t know that X = Y ”. In this
paper we look at effective set membership, starting with Gröbner bases,
where the issues are well-expressed in algebra systems, and going on to
integration and other questions of ‘computer calculus’.

In particular, we claim that a better recognition of the role of set
membership would clarify some features of computer algebra systems,
such as ‘what does an integral mean as output’.

1 Introduction

In [7] we discussed the various ideas of equality that can be found in computer
algebra, and showed the importance of distinguishing “I know that X �= Y ”
from “I don’t know that X = Y ”. In this paper (a fuller version of which is in
[8]) we look at effective set membership. While sets can be defined in a variety
of ways, we will be interested in sets defined as

S := {x ∈ A | P (x)} (1)

where A is a set for which membership is “obvious”, e.g. by construction, and P
is some predicate, which will generally involve some existential quantifiers. The
problem of effective set membership, then, is the following problem.

Problem 1. Given some x ∈ A, produce

either an effective [5] proof of P (x)
or a proof of ¬P (x).

In general, it is the second part of the problem that is the hard one.

2 Ideals and Gröbner Bases

The classic definition of an ideal (p1, . . . , pm) in k[x1, . . . , xn] as

(p1, . . . , pm) =

{
m∑

i=1

fipi : fi ∈ k[x1, . . . , xn]

}

(2)

means that exhibiting the fi becomes a proof of either. But how to do so, and
how to prove or? So in this case problem 1 becomes the following.
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Problem 2. For given p1, . . . , pm and given f

either exhibit fi ∈ k[x1, . . . , xn] such that f =
∑m

i=1 fipi

or demonstrate that none such exist.

We have, of course, the process of polynomial reduction.

Algorithm 1 (Polynomial Reduction). [1, Algorithm REDPOL]
Input: f, p1, . . . , pm ∈ k[x1, . . . , xn], a monomial order >
Output: f̂ , f1, . . . , fm ∈ k[x1, . . . , xn]:
f̂ = f −

∑m
i=1 fipi: f̂ irreducible by the pi (with respect to >)

Clearly, if this process terminates with f̂ = 0, we have proved the either, and
we have the fi.

Theorem 1 (Buchberger [4]). If the pi are a Gröbner basis, then Algorithm
1 precisely solves problem 2, i.e. f̂ �= 0 is a proof that f /∈ (p1, . . . , pm).

Since being a Gröbner basis is algorithmically testable, we have a complete
process for solving problem 2 if we are given a Gröbner basis. Furthermore,
Buchberger’s algorithm lets us compute a Gröbner basis for any polynomial
ideal starting from any finite set of generators. We have come to expect this of
computer algebra systems, and would be rather surprised to see a system take
a set of polynomial equations and just say “I can’t solve these”.

3 Integration in Elementary Terms

The problem of (indefinite) integration is not normally viewed as a set member-
ship problem, but it can be. We refer the reader to [3] for the standard definitions,
and we let I be some class of functions (elementary, Liouvillian, EL [14] etc.).
When we say “given an I function”, we mean that it is given effectively, i.e. it is
given as a member of an effective field of I functions. Then the set of I-integrable
functions is

{f | ∃g ∈ I g′ = f}

and the I-integration problem (as perceived since [11,13]) becomes

Problem 3. For given f (normally f ∈ I)

either exhibit g ∈ I such that f = g′

or demonstrate that no such g exists.

It was not always thus: [15] essentially perceived the problem as

Problem 4. For given f

either exhibit g ∈ I such that f = g′

or return failed (g might exist, but hadn’t been found),
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and a successful program was one which did not return failed when a freshman
could see the answer.

The shift from problem 4 to problem 3 was essentially due to the rediscovery
of Liouville’s Theorem [10], which, in the case I=“elementary”, reduced problem
3 to the following.

Problem 5. For given f in a differential field K

either exhibit f as v′0 +
n∑

i=1

ci
v′i
vi
, with v0 ∈ K, ci ∈ C = {g ∈ K | g′ = 0},

vi ∈ CK;
or prove that no such decomposition exists.

When K is purely transcendental over its field of constants, this problem is
soluble [13] and generally implemented1. Hence, when such a system returns an
unevaluated integral, this should be a proof that no such elementary integral
exists. However, the documentation may not say so: for example Maple 11 says
merely

If Maple cannot find a closed form expression for the integral, the func-
tion call is returned.

When K is algebraic, the problem is solved in principle [2], but not completely
implemented. Hence, when such a system returns an unevaluated integral, this
can mean any of:

1. there is no elementary integral, i.e. the [or] of problem 5;
2. the implementation is fundamentally inadequate, e.g. Reduce’s integrator

uses [6], which only works for quadratic algebraic functions of x;
3. the implementation has attempted to address the question, but has failed,

which may be reported as “implementation incomplete”; ([9] reports this of
Axiom), or just as an unevaluated integral;

4. the implementation may be of some (theoretically2) weaker algorithm, with-
out a proof of completeness.

In general, the user does not know which of these applies, and the standard
notation of computer algebra provides no convenient way of telling the user,
though a warning (on the lines of the error reported in case (3) above) would at
least be useful.

4 Other Areas

There are other areas in which set membership problems are, at least in principle,
decidable. One obvious example is the solution of differential equations in terms
of Liouvilian functions [16]. Again, it is not clear how these decision procedures
can be effectively ‘sold’ to the user.
1 Subject to undecidability problems over constants [12]. This is an important caveat

in principle, but less so in practice, and we shall ignore it from now on.
2 It may be stronger in practice, however, as reported in [9].
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5 Conclusions

In one area of computer algebra (polynomial ideals) we are now used to the fact
that we have a decision procedure for set membership, and would be surprised if
anything other than a clear-cut answer were obtained. Elsewhere, e.g. integration,
we have decision procedures,but the user community is apparently willing to settle
for not knowing whether a decision procedure has been applied or not. Put bluntly,
the user, no matter how expert, has no way of knowing what an unevaluated inte-
gral means, and in many ways the situation has gone back to the user expectations
of [15], where we are merely asking “can the software find any answer”.

References

1. Becker, T., Weispfenning, V., Kredel, H.: Groebner Bases. A Computational Ap-
proach to Commutative Algebra. Springer, Heidelberg (1993)

2. Bronstein, M.: Integration of elementary function. J. Symbolic Comp. 9, 117–173
(1990)

3. Bronstein, M.: Symbolic Integration I, 2nd edn. Springer, Heidelberg (2005)
4. Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restklassen-

ringes nach einem nulldimensionalen Polynomideal. PhD thesis, Math. Inst. Uni-
versität Innsbruck (1965)

5. Davenport, J.H.: Effective Mathematics — the Computer Algebra viewpoint.
In: Richman, F. (ed.) Proceedings Constructive Mathematics Conference 1980
[Springer Lecture Notes in Mathematics 873], pp. 31–43. Springer, Heidelberg (1981)

6. Davenport, J.H.: On the Integration of Algebraic Functions. Springer Lecture Notes
in Computer Science vol.102 (1981)

7. Davenport, J.H.: Equality in computer algebra and beyond. J. Symbolic Comp. 34,
259–270 (2002)

8. Davenport, J.H.: Effective Set Membership in Computer Algebra and Beyond.
Technical Report CSBU–2008–03, Dept. Computer Science, University of Bath
(2008),
http://www.cs.bath.ac.uk/department/technical-report-series/
technical-report-series/index.php

9. Kauers, M.: Integration of Algebraic Functions: A Simple Heuristic for Finding
the Logarithmic Part(2008),
http://www.risc.uni-linz.ac.at/publications/download/risc 3390/main.pdf
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Departamento de Matemáticas y Computación, Universidad de La Rioja
Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain)

cesar.dominguez@unirioja.es

Abstract. This work is an attempt to formalize, using the Coq proof
assistant, the algebraic specification of the data structures appearing in
two symbolic computation systems for algebraic topology called EAT
and Kenzo. The specification of these structures have been obtained
through an operation, called imp operation, between different specifi-
cation frameworks as standard algebraic specifications and hidden spec-
ifications. Reusing previous Coq implementations of universal algebra
and category theory we have proposed a Coq formalization of the imp
operation, extending the representation to the particular hidden algebras
which take part in this operation.

Keywords: Coq proof assistant, hidden algebras, symbolic computation.

1 Introduction

The formal description of a computation system can be tackled from different
points of view depending on the various approaches in the formal methods area.
Two of the most important methods on this area are algebraic specification and
type theory. On the one hand, algebraic specification [14] models programs as
many sorted algebras consisting in a collection of sets of data values together with
functions over those sets. At this level of abstraction, mathematical theorems can
be applied in order to obtain some mathematical properties of the programs. On
the other hand, type theory [16] emphases the program syntax and some formal
systems of rules are used in order to obtain theorems in this formal context.

Our interest focuses on the formalization of two symbolic computation sys-
tems called EAT and Kenzo [19,8]. These systems were designed by Sergeraert
implementing his ideas on Constructive Algebraic Topology [20]. Different for-
mal methods have been applied to the specification of these systems. On the one
hand, techniques of algebraic specification have been used in order to obtain the
formalization of the data structures of the systems [13,7,6]. On the other hand,
a project for representing the systems in type theory is ongoing [5]. Moreover,
important lemmas of algebraic topology used in the systems have been already
formalized and checked with the help of proof assistants as Isabelle [2] and Coq
[5] or theorem provers as ACL2 [1].
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This work deals with the relationship between the two previous issues. In
particular, we try to apply the techniques of type theory to the mathematical
theorems obtained in algebraic specification. This could be interesting because
it will increase the reliability of the mathematical results obtained and open
bridges between both formal methods.

More concretely, in [13] an operation between specification frameworks, called
imp operation, is used to obtain the formalization of the data structures appear-
ing in the systems under study. These frameworks include hidden specifications
[10] which are used in the literature to model object oriented programming lan-
guages [10,11]. In this context the data structures can be nicely modeled as a
final object in a particular hidden category. In our approach, this object is built
in a very natural way, which could contrast with the “magical formula” used in a
general hidden category [10]. It is worth noting that the first version of this final
object [10] contained a subtle error which was corrected in subsequent versions
[11,17].

In this work, a formalization of our particular category of hidden algebras and
a final object in it are specified using the Coq proof assistant [15]. Appreciable
work can be found in the literature related to this line. For instance [3] or
[12] tried to represent in type theory universal algebra and category theory
respectively (notions which are intensively used in algebraic specification). Both
works implemented their developments in the Coq proof assistant. In this work
we will try to reuse as far as possible these previous developments.

The paper is organized as follows. Section 2 introduces some preliminaries on
algebraic specification and Section 3 describes the imp operation. In Section 4
a Coq implementation of notions in algebraic specification and category theory
is briefly explained. This code is reused to obtain some first categorical results
in algebraic specification in Section 5. Section 6 includes a Coq formalization
of the imp construction in a standard algebraic specification. In Section 7, the
formalization of the hidden context in which this operation should be placed is
performed, and in Section 8, a description of the final object in this category is
proposed. The paper ends with a conclusions and future work section. The files of
the implementation are available at www.unirioja.es/cu/cedomin/fcha.html.

2 Preliminaries on Algebraic Specification

In this section, we will briefly introduce some basic notions on algebraic specifi-
cation; see [14] for a systematic presentation.

In Mathematics, when dealing with an algebraic structure, such as for in-
stance a group, we refer to a set G together with some operations on G,
+:G × G → G, −:G → G, e:→ G. This way of working is abstracted in
the field of universal algebra, where structured-sets in this sense are studied in
a generic way. Roughly speaking, algebraic specifications can be understood as
universal algebra enriched with some syntactic constructs that establish a link
between programming languages (through the notion of programming type) and
mathematical structures.

www.unirioja.es/cu/cedomin/fcha.html
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More precisely, a signature Σ is a pair (S,Ω) of sets of symbols, whose ele-
ments are called sorts and operations, respectively. Each operation ω ∈ Ω has
associated a (n + 1)-tuple (s1, . . . , sn, s) of elements in S with n ≥ 0, called
the arity of the operation. The sorts (s1, . . . , sn) are called argument sorts of
the operation and the sort s its target sort. An operation is often denoted by
ω: s1 . . . sn → s. In the case n = 0, the operation is called a constant of sort s.
In the example of a group, the convenient signature, denoted by GRP, has one
sort g and three operations prd: g g → g, inv: g → g, unt:→ g.

Then, the structures of universal algebra are retrieved by means of the notion
of Σ-algebra. Let Σ = (S,Ω) be a signature. An algebra for Σ (or Σ-algebra)
assigns a set As to each sort s ∈ S, called the carrier set of the sort s, and a
function ωA:As1 × . . . × Asn → As to each operation ω: s1 . . . sn → s ∈ Ω. In
the example, we can define a Σ-algebra A taking Ag = G, prdA = +, invA = −
and untA = e.

An important algebra for a signature is the term algebra. The carrier sets of
such an algebra are the terms freely generated by the operation symbols of the
signature. Then, the functions in the algebra are defined in a natural way.

The Σ-algebras can be organized as a category Alg(Σ) using the follow-
ing notion of morphism. Let A, B be two Σ-algebras, with Σ = (S,Ω). A
Σ-homomorphism h:A → B from A to B is a family {hs:As → Bs}s∈S of func-
tions which verifies the following homomorphism condition: hs(ωA(a1, . . . , an)) =
ωB(hs1(a1), . . . , hsn(an)) for any operation ω: s1 . . . sn → s ∈ Ω and for all
ai ∈ Asi , i = 1, . . . , n.

The category of algebras for a signature has an initial algebra: the term algebra
associated to this signature.

In our previous work, we were interested in a particular case of algebraic
specifications, known as hidden specifications (see [10] for details). These spec-
ifications have been useful in the formalization of some characteristics in the
object oriented paradigm [10,11].

Let V Σ = (V S, V Ω) be a signature and let us fix a V Σ-algebra D. The ele-
ments of V S are called visible sorts and those of V Ω are called visible operations.
The V Σ-algebra D is called data domain. Then a hidden signature, on V Σ and
D, is a signature HΣ = (S,Ω) such that:

– S = HS � V S; the elements of HS are called hidden sorts of HΣ.
– Ω = HΩ � V Ω and for each operation ω: s1 . . . sn → s in HΩ the following

property holds: in s1, . . . , sn there is at most one hidden sort.

(The � symbol denotes the disjoint union.)
A hidden algebra A for a hidden signature HΣ, on V Σ and D, is a HΣ-

algebra such that AV Σ = D (in other words, the restriction of A to the visible
part is equal to the data domain D). A hidden morphism between two hidden
algebras is a HΣ-homomorphism h such that hV S is the identity on D.

The hidden algebras for a hidden signature HΣ, on V Σ and D, together with
the hidden morphisms, define a category denoted by HAlgD(HΣ). Besides, a
forgetful functor can be defined between HAlgD(HΣ) and Alg(HΣ).
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In hidden categories, final semantics are more important than initial ones
[10,11]. But in this context, a final object does not always exist and some ad-
ditional restrictions must be imposed in the category in order to guarantee its
definition. Under these conditions a final object is defined through a “magical
formula” in [10]. It is worth noting that the definition of this object contained
a subtle error which was corrected in [11,17,18]. In the following section, we are
going to introduce a particular category of hidden algebras which allow us to
define this object in a natural way. These hidden algebras are relevant for the
specification of symbolic computation systems [13,6,7].

3 The imp Construction

In this section, we will explain an operation between specification frameworks
which was used for modeling the structures of data implementing in two symbolic
computation systems called Kenzo and EAT [8,19]. In these systems, and in
general in any symbolic computation system, you do not work only with a unique
data structure, a group for example; in contrast, you deal at runtime with families
of this data structure. So, we can identify two layers of data structures. In the
first layer, one finds the usual data structures as integer numbers or (finite)
lists of symbols. In the second layer, one must deal with algebraic structures
as groups or chain complexes whose elements are data belonging to the first
layer. To model this situation, in [13] an operation between specification frames,
called imp operation, was defined (this name was chosen because this kind of
specifications are related to implementations of structures rather than to the
structures themselves, i.e., the treatment at low level that EAT makes of them).

The following simple example is used to explain the syntactic aspects of this
construction. Let GRP be the signature included in the previous section. This
signature is obviously the basis of the algebraic specification for a group, whose
underlying set is abstracted by the sort g. But if, as it is usual in symbolic com-
putation systems, it is necessary to handle several groups on the same underlying
data set, a new sort, which remains hidden in the signature GRP, has to be con-
sidered: the type of groups represented on g. If we make explicit this invisible
(or hidden) type, we obtain a new signature denoted by GRPimp, with a new sort
imp GRP, and operations: imp prd: imp GRP g g → g, imp inv: imp GRP g → g,
imp unt: imp GRP → g.

In general, given a signatureΣ = (S,Ω), a new signatureΣimp = (Simp, Ωimp)
can be defined as follows:

– Simp = S ∪ {imp Σ} with imp Σ /∈ S,
– for each operation ω: s1 . . . sn → s in Ω, an operation
imp ω: imp Σ s1 . . . sn → s is included in Ωimp.

The Σimp-algebras satisfy the property that each element of the carrier set
for the distinguished sort allows to retrieve a Σ-algebra.

Proposition 1. Let Σ = (S,Ω) be a signature and A =
〈Aimp Σ, (As)s∈S , {imp ωA : Aimp Σ × As1 × . . . × Asn → As}ω∈Σ〉 be
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a Σimp-algebra, each element a ∈ Aimp Σ defines a Σ-algebra Aa in the
following way: Aa = 〈(As)s∈S , {imp ωA(a, ) : As1 × . . .×Asn → As}ω∈Σ〉.

In [13], the imp construction was studied considering that a signature and its
corresponding “imp signature” belong to two different specification frameworks:
the standard algebraic specification for the former and the hidden specification
framework for the latter. From a programming point of view, when you are deal-
ing with implementations of algebraic structures (groups, for instance), usually
you are only interested in structures whose elements share the same syntactic
pattern (it is useful to identify the ground elements of some sort with a unique
programming type). This restriction leads, at the model level, to the need of
fixing a data family D = {Ds}s∈S for a signature Σ = (S,Ω) and to consider
only the Σ-algebras with carrier sets on D.

When you include this restriction in the imp construction, the signature Σimp

can be considered as a hidden signature with one hidden sort: the new sort, and
data domain D. Then, we are interested in the category of hidden algebras
HAlgD(Σimp). In that context, we can identify the two layers of data structures
in the algebra. The visible sorts represent the first layer: fixed data that are
used to build the algebraic structures of the second layer which is represented
by the hidden sort. This hidden sort will be used as an index of these structures,
i.e. each element of the distinguished sort can be understood as a parameter
allowing to retrieve a structure.

Under these conditions, the category HAlgD(Σimp) has a canonical ob-
ject denoted by Acan. This object can be presented as a set of functional
tuples in the carrier set for the hidden sort. More concretely, Acan

imp Σ :=
{(fω)ω∈Ω | 〈D, (fω)ω∈Ω〉 ∈ Alg(Σ)}. Then, the functions of this algebra are
defined by the application of the corresponding function in the tuple to the
rest of the arguments: imp ωAcan((fδ)δ∈Ω , d1, . . . , dn) := fω(d1, . . . , dn), for
each imp ω: imp Σ s1 . . . sn → s ∈ Ω, each (fδ)δ∈Ω ∈ Acan

imp Σ and each tu-
ple (d1, . . . , dn) ∈ (D1 . . . , Dn). Besides, this canonical object is a final object in
HAlgD(Σimp). This result is reflected in the following theorem.

Theorem 1. The canonical object Acan is a final object in HAlgD(Σimp).

Proof. For each object B ∈ HAlgD(Σimp), it is possible to define a hidden
Σimp-homomorphism, hcan, which has as component for the distinguished sort
the function hcan

imp Σ :Bimp Σ → Acan
imp Σ , such that hcan

imp Σ(a) := (δBa)δ∈Ω for
each a ∈ Bimp Σ . The homomorphism condition can be directly proved know-
ing that imp ωAcan((δBa )δ∈Ω, d1, . . . , dn) = ωBa(d1, . . . , dn), for each operation
imp ω: imp Σ s1 . . . sn → s ∈ Ω and each a ∈ Bimp Σ , di ∈ Di, i = 1, . . . , n.
Besides, it is easy to prove that this homomorphism is unique by definition of
the canonical object.

The description of this final object nicely corresponds with the implementation
of the data structures chosen in Kenzo and EAT (see [13] for a more detailed
explanation).
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4 Reusing Coq Code

An important objective of this work consists in reusing previous Coq develop-
ments instead of beginning from scratch. Obviously, we do not refer here to the
Coq standard library [15] which is widely required by Coq users, but other useful
codes included in the literature. In this line, we are going to cite two important
works for us. The first one is an attempt to formalize concepts in universal al-
gebra developed by Capretta [3]. The second one includes the representation of
notions in category theory developed by Huet and Säıbi [12]. In the following
subsections, we will briefly explain some fragments of these works that we are
going to reuse.

4.1 Coq Formalization of Concepts in Universal Algebra

In [3], Capretta presented a description of concepts in universal algebra inside
Type Theory that was formalized using the Coq proof assistant. The version 6.2.3
of Coq was used in that work. So, in order to reuse the proposed development, a
previous conversion of the code to the current version 8.1 was required. This code
translation was carried out with the help of semi-automatic transformation tools
implemented by the Coq Development Team [15]. In this section, we will focus
on the formalization of the concepts of signature, algebra and homomorphism
included in this paper.

An essential idea incorporated into [3] consists in formalizing the intuitive
notion of set as a setoid. A setoid is defined as a pair formed by a set and an
equivalence relation over it. The formal definition of a setoid in Coq is:

Record Setoid: Type:= setoid
{s_el:> Set; s_eq: s_el -> s_el -> Prop; s_proof: equiv s_eq}.

where (equiv s eq) is the proposition stating that s eq is an equivalence rela-
tion over s el. The implicit coercion included in the definition allows to identify
a setoid S with its first element (s el S). We usually indicate the relation s eq
by the infix operator [=]. The setoid of functions from a setoid S 1 to a setoid
S 2, S 1[->]S 2, is defined as the setoid on the type of functions S 1->S 2 with
the extensional equality relation.

The notion of signature is formalized in the following way. A natural number
n: nat is chosen to indicate the number of sorts of a signature (only signatures
with a finite number of sorts are considered, but this is enough for our purposes).
Then, the sorts are represented by elements of the finite set with n elements
defined by a type Finite n. An operation is represented by its arity, which is
formalized as a pair of a list of argument sorts and a target sort:

Definition Function_type: Set:= (list(Finite n) * (Finite n)).

Finally, a signature is a pair < n, l > where n is the number of sorts and l is
a list of function types:

Record Signature: Set:= signature
{sorts_num: nat; function_types: list(Function_type sorts_num)}.
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For instance, the group signature defined in Section 2 is represented by
(signature 1 [<[o,o],o>,<[o],o>,<[],o>]), where o represents the unique
element in Finite 1.

An algebra for a signature can be formalized as a structure that assigns a se-
toid to every sort in the signature and a setoid function to every operation. More
precisely, given a signature sigma: Signature with n:= sorts num sigma, the
carrier sets of an algebra for this signature are represented as a family of n
setoids Sorts interpretation:= Finite n -> Setoid. Then, the interpreta-
tion of a function type consists in a setoid function with just one argument (all
the argument sorts indexed on a finite type):

Definition Function_type_interpretation (f: Function_type n): Setoid:=
Fun_arg_function _ (fun i: Finite(length(function_type_arguments f)) =>

sorts(fin_proj(Finite n) _ i))
(sorts(function_type_result f)).

where sorts is a variable of type Sorts interpretation, function type
arguments and function type result obtain the argument and target sorts
of a function type, fin proj is a projection function on finite sets and
Fun arg function is an auxiliary definition for building a setoid function.

Finally, using a type for lists of function type interpretations defined in a
natural way, we can obtain a type for algebras:

Record Algebra (sigma: Signature): Type:= algebra
{sorts:> Sorts_interpretation (sorts_num sigma);
functions: Function_list_interpretation sorts (function_types sigma)}.

The representation of a homomorphism is obtained as follows. Given a
signature sigma:Signature and two algebras A B:Algebra sigma, let n:=
sorts num sigma and m:= fun num sigma be the number of sorts and func-
tions of sigma. First of all, a homomorphism is a family of setoid func-
tions phi: forall i: Finite n, (sorts A) i[->](sorts B) i. Then, this
family must verify the homomorphism condition. To this aim, fixed the i-
th function of the signature i: Finite m, fi:= nth function i, the follow-
ing auxiliary components are defined: r:= function type arity fi is the
number of arguments of fi, a:= function type arg fi (j: Finite r) a
projection of the j-th argument of fi, and h:= function type result fi
the target sort of this function. Assuming generic arguments for this i-th
function in A, argsA:(Fun arg arguments A i) (where Fun arg arguments
is the setoid extension of the function Function arguments sorts A i (j:
Finite r):= sorts (a j)), the needed arguments in B are obtained by
an application of phi, argsB: Fun arg arguments B i:= fun j: Finite r
=> phi (a j) (argsA j). Then, the homomorphism condition can be de-
fined by the property (functions B i) argsB[=]phi h ((functions A i)
argsA), called Is homomorphism phi. With this property, the type of homo-
morphism can be defined by the record:

Record Homomorphism: Set:= homomorphism
{hom_function:> forall i:Finite n, (sorts A) i[->](sorts B) i;
hom_proof: Is_homomorphism hom_function}.
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The term algebra for a signature and a homomorphism from this algebra to
any other algebra of the signature are defined as examples in [3].

4.2 Category Theory in Coq

Constructive type theory has been shown to be adequate for formalizing category
reasoning [12,5]. For instance, we will remark the representation in Coq of notions
in category theory by Huet and Säıbi [12]. The code produced is available on the
Coq web [15] and is compatible with version 8.1 of Coq.

In this work, a category is formalized as a record type called Category
which includes types for objects and morphisms Ob:> Type, Hom: Ob -> Ob
-> Setoid together with slots for identity morphisms Id, composition maps
Op comp and category laws. In the same way, a functor between two categories
C D: Category is formalized also as a record type with includes slots for the
functions between objects FOb:> C -> D and morphisms FMap: forall a b :
C, Hom a b -> Hom (FOb a) (FOb b) and for the functor laws.

Categorical notions that are useful for us are the initial or final ob-
jects of a category. For instance, given a category C: Category, an ini-
tial object of the category is represented by a record with an object
of the category Initial ob:> C and a morphism for each object in the
category MorI: forall b: C, Hom Initial ob b which verify the follow-
ing initial law Definition Initial (a: C) (h: forall b: C, Hom a b):=
forall (b: C) (f: Hom a b), f [=] h b.

Another categorical concept that we are going to use is the full subcategory
of a category. Given a category C: Category and two variables I: Type, a: I
-> C, it is possible to restrict the morphisms in C: Category to those obtained
from objects of I, FSC mor setoid (i j: I):= Hom (a i) (a j). Then, if the
identity and composition morphisms are defined from the corresponding ones
in the category, it is possible to prove the category laws which define a full
subcategory.

5 First Categorical Results in Algebraic Specification

Using the formalization of notions in algebraic specification and category the-
ory presented in the previous section, some first category results in algebraic
specification can be proposed. For instance, algebras and homomorphisms for
a signature build a category or the term algebra associated to this signature is
initial in this category.

A problem arises when different Coq developments are brought together: a
single concept can be formalized in different ways. In our case, this problem
appears in the representation of the constructions related to setoids. Both devel-
opments are essentially equal but different labels are assigned to same concepts.
In our case, this problem can be solved by simply renaming some components
in one of the versions. We have chosen to rename the category theory version.
A possible better alternative consists in using the setoid formalization proposed
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in the standard library of Coq [15]. This version includes advanced features for
working with setoids which should be probably useful in our developments, but
modifications beyond a simple renaming operation would be necessary in both
files in order to take advantage of these features. This option needs further work.

Given a signature sigma: Signature with n:= sorts num sigma, a cate-
gory of algebras and homomorphisms for this signature can be defined in the
following way. Firstly, for each A: Algebra(sigma) the identity morphism is
built using the identity setoid function id sf(i: Finite n):=(s id (sorts
A i)). This morphism is defined as an example in [3]. Secondly, given three
algebras A B C: Algebra sigma and two homomorphisms g: Homomorphism
A B, h: Homomorphism B C, the composition morphism is defined through the
composition of the homomorphism setoid functions comp sf (i: Finite n):=
(s fun comp (h i) (g i)). Finally, in order to prove the category laws, it is
necessary to establish when two homomorphism are equal. To this aim, a setoid
for homomorphisms is defined using as equality the setoid equality of all the
functions in hom function. In this setoid it is not difficult to prove the category
laws. This completes a Category structure called Algebra Category(sigma)
which formalizes Alg(Σ) where sigma represents Σ.

In order to prove that the term algebra for sigma is initial in
Algebra Category(sigma), it is only necessary to prove the initial law for the
term evaluation homomorphism defined in [3]. This proof is easy by construction
of this homomorphism.

6 Coq Formalization of the imp Construction

In this section we derive a Coq formalization for the imp construction explained
in Section 3. The first step in this construction consists in building the imp
signature for a given signature sigma: Signature. This signature is defined by
adding one new sort to the sorts of sigma which must be included as the first
argument in each operation of sigma:

Definition imp_sigma(sigma:Signature):=signature
(S (sorts_num sigma)) (imp_functions (function_types sigma)).

The imp functions operation maps the following definition to all function types
of the list:

Definition imp_function_type: Function_type (S n):=
(imp_sort::(trans_list_n_Sn (fst f)),(trans_n_Sn (snd f))).

where imp sort renames the n+1-th element of Finite(S n), trans n Sn is in-
tended to transform the i-th element of Finite n in the i-th element of Finite(S
n) and trans list n Sn maps the previous function to a list of elements of
Finite n.

It is worth noting that, due to the chosen formalization, the representation of
each sort in sigma is different from the representation of the corresponding one
in imp sigma(sigma). Indeed, they have a different type. The technique used
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to solve the type conflict between a component of a signature which is intended
to be equal to a component in the another signature consists in the definition
of transformation type functions. In the previous case, the transformation is
guided by the property that establishes that both sorts are in the same position
in different finite sets. This problem did not appear in [3]. Indeed, this work
did not include any relation between signatures such as for instance signature
morphisms [14].

Now, algebras for this imp signature are directly defined as
Algebra(imp sigma(sigma)).

Proposition 1 establishes that an imp algebra imp A:
Algebra(imp sigma(sigma)) defines a family of algebras for sigma where the
indices of this family are the elements of the distinguished sort. This result
can be formalized in the following way in our context. When fixing an element
e: (sorts imp A imp sort), it is possible to define an algebra, which will be
called A, in Algebra(sigma). The interpretation of the sorts for A is defined
by the corresponding interpretation in imp A: sorts A interpretation(i:
Finite n): Setoid:= (sorts imp A (trans n Sn i)).

The interpretation of the operations for A corresponds to the interpretation
of the operations for imp A with the element e fixed. This definition needs a
more elaborated process. Firstly, the following auxiliary function which appends
the fixed element to a generic argument for an operation is needed. Let fi :=
nth function i be the i-th operation of sigma (with m:= fun num sigma and
i: Finite m) and let B0 be the type of the arguments for this function in A.
More concretely, B0 is the type of the setoid extension of the function fun c:
Finite r => (sorts A interpretation (a c)) with r and a representing the
number of arguments of fi and a projection of the j-th argument as above. Then,
the required function is defined as:

Definition append_e(ai:B0):B0imp:=
fun i0:Finite r_imp => match zerop(fin_extr i0) with
|left h1 => trans_Oargument h1 e
|right h2 => trans_Sargument h2 (ai(fin_pred h2))
end.

where B0imp corresponds to the type of the setoid extension of the function
fun c: Finite r imp => (sorts imp A (a imp c)), being r imp and a imp
the corresponding components for the i-th operation of imp sigma(sigma).
The function fin extr defined in [3] extracts the natural number which cor-
responds to the position (minus one) of an element in a finite type, zerop
has type forall n:nat, {n=0} + {0<n} and fin pred is the predecessor func-
tion for finite sets. Besides, two transformation type functions are needed. The
functions trans Oargument and trans Sargument change the type of e and of
ai(fin pred h2) to the required type (sorts imp A (a imp i0)) respectively.
It should be observed that the first argument sort of an imp operation is the
new sort and another argument is the one situated in a predecessor position in
the arguments of the initial operation.

Then, the definition which allows us to build the i-th function of the algebra
A is the following:
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Definition function_A (ai:B0):=
trans_result (functions imp_A (trans_pos_func i) (append_e ai)).

This function appends to ai the element e in the first position which defines
an argument in B0imp for the i-th function of imp A. Then, the corresponding
function in the algebra imp A is applied. In the process, some transformation type
functions are needed again. Finally, it is necessary to prove that this function is
indeed a setoid function. This completes the definition of an algebra A for sigma.

When the previous construction is generalized, we obtain a proof of Proposi-
tion 1 in Coq:

Definition family_algebra_A (e: (sorts imp_A imp_sort)):= (A e).

7 Coq Formalization of Hidden Algebras

In this section, we will propose a Coq formalization of the hidden algebras which
appear in the hidden specification of the imp construction. As it is explained
in Section 3, when we include our imp signatures in a hidden context, only
the new sort is considered as hidden. In this case, a hidden algebra for this
signature can be formalized in the following way. Given a signature sigma:
Signature with n:= sorts num sigma and a fixed data domain D: (Finite
n) -> Setoid for the visible sorts, the sort interpretation of a hidden algebra
for imp sigma(sigma) only needs a setoid IMP for the distinguished sort. Then,
an auxiliary function can be built which assigns the IMP setoid to the n+1-th
sort of the signature and the corresponding D setoid to other visible sorts:

Definition sorts_interpretation_D (j: Finite (S n)): Setoid:=
match (Finite_dec j) with
(left h1 ) => (D (trans_Sn_n h1))

|(right h2) => IMP
end.

where Finite dec establishes the following decidable property on finite
sets: forall (j: Finite (S n)), {n>fin extr j} + {fin extr j=n} and
trans Sn n defines the transformation function type between the elements in
Finite (S n) different from the n+1-th element to elements in Finite n which
is inverse to trans n Sn. With the help of this function, a hidden algebra for
imp sigma(sigma) can be formalized by:

Record Imp_Algebra_D:= imp_algebra_D
{IMP:>Setoid;
functions_D: Function_list_interpretation(sorts_interpretation_D D IMP)

(function_types(imp_sigma sigma))}.

It should be noted that an Imp Algebra D(sigma D) structure is not an
Algebra(imp sigma(sigma)) structure, but it can be directly transformed into
one by considering as sorts slot the sorts interpretation D function. This
operation, called inclusion Algebra D in Algebra, allows us to represent the
Imp Algebra D(sigma D) structures as a full subcategory of the category of
algebras Algebra Category(imp sigma(sigma)).
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However, the category of hidden algebras is not a full subcategory be-
cause we are only are interested in the homomorphisms with identity com-
ponents in the visible sorts. For our particular imp hidden algebras, only
a setoid function for the distinguished sort is necessary for defining a hid-
den homomorphism. In this way, given a signature sigma: Signature with
n:= sorts num sigma, a data domain D: (Finite n) -> Setoid and two
structures IMP A IMP B: Imp Algebra D(sigma D) with As IMP:= IMP IMP A
and imp A:= (inclusion Algebra D in Algebra IMP A) (with similar com-
ponents for IMP B), it is possible to define a hidden homomorphism for
Imp Algebra D(sigma D) structures in the following way:

Record Imp_Homomorphism_D:Type:= imp_homomorphism
{IMP_function: As_IMP [->] Bs_IMP;
IMP_hom_proof: Is_homomorphism (A:=imp_A)(B:=imp_B)

(phi_imp IMP_function)}.

where phi imp, defined in a way similar to sorts interpretation D, assigns
the setoid function IMP function to the n+1-th sort and the identity setoid
function in the other case.

Again, an Imp Homomorphism D(sigma D) structure
between Imp Algebra D(sigma D) structures is not a
Homomorphism(imp sigma(sigma)) structure, but it can be easily trans-
formed into one between the corresponding Algebra(imp sigma(sigma))
structures.

Finally, it is possible to prove that Imp Algebra D(sigma D) and
Imp Homomorphism D(sigma D) structures defines a Category structure called
Imp Algebra Category D(sigma D) which formalizes HAlgD(Σimp) where
imp sigma(sigma) and D represents Σimp and D respectively. Besides,
the two transformations defined on objects and morphisms allow us to
build a functor between this category and the category of algebras
Algebra Category(imp sigma(sigma)) which corresponds to the forgetful
functor between hidden algebras and standard algebras.

8 Defining the Final Object in Imp Algebra Category D

In Section 3 it has been explained that a canonical object can be defined in the
category of hidden algebras for an imp signature with a fixed domain. Besides,
Theorem 1 establishes that this object is final in the category. In this section we
will propose a formalization of this object in Imp Algebra Category D.

Basically, the canonical object has as carrier set for the distinguished sort a
collection of tuples of functions, one function for each operation in the signa-
ture. So, given a signature sigma: Signature with n:= sorts num sigma and
a fixed data domain D: (Finite n) -> Setoid, a family of functions for sigma
with this domain can be directly defined by IMPSort functions: Setoid:=
Function list interpretation D (function types sigma).

Then, for each operation, the assigned function in this canonical object is de-
fined through the application of the corresponding function in the tuple to the
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rest of visible arguments. So, given impai: B0imp a generic argument for the i-th
function of the canonical object (in this case B0imp represents the setoid corres-
ponding to the function fun c: Finite r imp =>((sorts interpretation D
D IMPSort functions) (a imp c)), with r imp and a imp defined as above),
it is possible to define auxiliary functions which extract the first element
extract IMP component and the rest of elements extract D component of this
argument. For instance, this second function is defined as follows:

Let extract_D_components (impai: B0imp): B0:=
fun i0:Finite r => trans_result_D(impai(trans_imp_arity(fin_succ i0))).

being fin succ the successor function for finite sets. Again, in this function some
transformation type functions are needed. Then, the following function applies
the i-th function of the tuple in the distinguished sort (first argument) to the
rest of the arguments:

Let apply_f(impai: B0imp):=
trans_result_imp((extract_IMP_component impai i)

(extract_D_components impai)).

The proof that this function is indeed a setoid function allows to complete the
definition of the canonical object called Final Algebra(sigma D).

In order to prove that this canonical object is fi-
nal in Imp Algebra Category D(sigma D), a homomorphism
Imp Homomorphism D(sigma D) must be defined for every object in
Imp Algebra Category D(sigma D) to Final Algebra(sigma D). The crucial
point in the proof of the homomorphism condition (see Section 3) consists in
the application of the appropriated function in the family of functions (which
corresponds to the hidden argument) to some arguments (which correspond to
the rest of visible arguments). So, essentially, it consists in one step of reduction
in a simplification process.

We can illustrate the previous comments with a very simple example: a signa-
ture with one sort and one unary operation. In this case, a prefixed data domain
consists in a setoid D:Setoid, and an algebra could be represented by a function
setoid f: D[->]D. Then, a structure in Imp Algebra D is formalized by a setoid
imp: Setoid and a setoid function f imp: imp[->]D[->]D. Obviously, given an
algebra A imp: Imp Algebra D, each element of the distinguished sort e:(imp
A imp) defines an algebra for the initial signature through the setoid function
((f imp A imp) e).

Now, the final object has, as distinguished set, lists of setoid functions
with one function (D[->]D). The definition of this final object, named
final object, is completed by assigning the setoid function defined by
apply function D(f D:D[->]D)(d:D):=(f D d) to the unique imp operation.

Now, given an algebra A imp: Imp Algebra D, the setoid function of an
Imp Homomorphism D between A imp and final object, is defined through the
function which assigns, to every element of the distinguished sort, the algebra
of the family defined by this element. More precisely, it can be defined in the
following way:
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Definition h_final:(imp A_imp)->(imp final_object):=
fun a: (imp A_imp)=> ((f_imp A_imp) a).

Finally, since the visible component in the homomorphism is an identity, the
homomorphism condition is expressed as follows:

Theorem hom_proof_final: forall (a:imp A_imp)(d:D),
(((f_imp A_imp) a) d) [=] (((f_imp final_object) (h_final a)) d).

This theorem is easily proved in Coq. It is also not difficult to prove that this
homomorphism is unique. To this aim, the equality defined between homomor-
phisms is needed.

The very natural proof in this simplified case illustrates the soundness of our
approach. Nevertheless, the Coq proof in the general case is not finished yet, and
we are reconsidering some of the definitions and decisions taken in early stages
of our formalization. These aspects are commented in the following (and last
section).

9 Conclusions and Further Work

In this paper we have formalized, using the Coq proof assistant, an algebraic
specification of the data structures appearing in two symbolic computation sys-
tems for algebraic topology called EAT and Kenzo. In particular, hidden algebras
play an important role in that specification. So, trying to reuse previous Coq
developments in universal algebra and category theory, a Coq description for
hidden algebras corresponding to these structures is proposed.

With respect to the continuation of the work, to finish in Coq the proof of
Theorem 1 seems to us rather tedious, since a lot of technical lemmas would
be needed in order to simplify the intricate syntactical constructions raised by
our initial definitions. Thus, we are considering some alternative approaches.
On the one hand, it would be possible to design other structures with an easier
processing. For instance, the inclusion of the setoid formalization defined in the
available standard library of Coq [15] could provide new helpful tools. It is also
possible to try to generalize our transformation type functions which are defined
in this work in an ad hoc manner. On the other hand, we could change our initial
formalization of the algebraic concepts included in [3] using, for instance, a more
abstract point of view. For example, our results can be set in a more general
context provided by the concept of institution [6].

This idea of using institutions (a notion which tries to abstract the concept
of specification framework; see [9]), could give another research line to continue
our work. For that, it could be necessary to complete the Coq implementation of
standard algebraic specifications (including equational reasoning and signature
morphisms, a work that was partiality carried out in [4]), and hidden specifica-
tions (including behavioral reasoning).
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Abstract. We present three examples of the composition of Computer
Algebra Systems to illustrate the progress on a composability infras-
tructure as part of the SCIEnce (Symbolic Computation Infrastructure
for Europe) project1. One of the major results of the project so far is
an OpenMath based protocol called SCSCP (Symbolic Computation
Software Composability Protocol). SCSCP enables the various software
packages for example to exchange mathematical objects, request calcula-
tions, and store and retrieve remote objects, either locally or accross the
internet. The three examples show the current state of the GAP, KANT,
and MuPAD software packages, and give a demonstration of exposing
Macaulay using a newly developed framework.

1 Introduction

The SCIEnce project (Symbolic Computation Infrastructure for Europe) [25]
brings together the developers of four powerful symbolic computation software
packages (GAP [8], KANT [14], Maple [17], and MuPAD [19]), a major symbolic
computation research institute (RISC-Linz [21]), and research groups expert in
essential underpinning technologies (CNRS Palaiseau (France) [4], TU Eind-
hoven (Netherlands) [6], IeAT (Romania) [13] and Heriot-Watt University (UK)
[5]). The aim is to unite the European community of researchers in, and users
of, symbolic computation.

In this paper we report on one of the activities the SCIEnce project consists of,
namely NA3: Software Composability. This activity focuses on the development
and implementation of standards in order for the various Computer Algebra
Systems (CASes) to communicate. The main goal of this activity is to allow
these systems to be efficiently composed to solve complex problems.
1 The project 026133 “SCIEnce—Symbolic Computation Infrastructure for Europe”

is supported by the EU FP6 Programme.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 285–295, 2008.
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This part of the project has some common concerns with the well known
SAGE project [22], as both projects try to unite several mathematical soft-
ware packages. There are, however, important differences. SAGE presents itself
as an integrated system in which users interact with the SAGE frontend and
the contributing CASes are used as backend servers. Our goal in the SCIEnce
project is to create a framework that will allow services to be both provided
and consumed by any CAS. An important technical difference is that we use
an existing language for representing mathematical objects, namely OpenMath
[20], whereas SAGE uses a custom internal representation. We expect the use
of OpenMath to facilitate third party developers to expose their software using
SCSCP – although the conversion to and from the XML-based OpenMath for-
mat is potentially more time-consuming, we obtain a stable system-independent
representation.

We illustrate the progress made in this activity by means of three examples.
First, we introduce the Computer Algebra Systems involved in Section 2, and
the OpenMath standard in Section 3. We give an overview of the newly designed
protocol for the composition of symbolic computation software, SCSCP, in Sec-
tion 4. The first example is the factorization in KANT of polynomials created in
MuPAD (Section 5). In the second example (Section 6) we show a Gröbner basis
computation executed in Macaulay on polynomials created in GAP. The third
example (Section 7) demonstrates cross-platform use of GAP using SCSCP.
Comments on the current status and intended future research can be found in
Section 8.

2 The Computer Algebra Systems Involved

In this section, we briefly describe the four computer algebra systems involved
in the SCIEnce project.

GAP [8] is a free, open and extendable system for computational discrete
algebra, with particular emphasis on Computational Group Theory. GAP pro-
vides a programming language, a library of thousands of functions implementing
algebraic algorithms written in the GAP language as well as large data libraries
of algebraic objects. GAP is developed by international cooperation of many
contributors, and coordinated by the four GAP centers: Aachen (Germany),
Braunschweig (Germany), Fort Collins (USA), and St Andrews (UK).

KANT [14] is a computer algebra system for sophisticated computations in
algebraic number fields that has been developed at Technische Universität Berlin.
The KANT functions are accessible through a user-friendly shell named KASH
(KAnt SHell) that is freely available.

Maple [17] is the general purpose computer algebra system developed in Wa-
terloo, Canada. Its latest features include an intuitive smart document environ-
ment and embedded GUI components such as buttons and sliders.

MuPAD Pro [19] is a general purpose computer algebra system for exact
symbolic and numeric computing with arbitrary precision. It provides a Pascal-
like programming language allowing imperative, functional, and object-oriented
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Fig. 1. OpenMath structure Fig. 2. CAS implementations

programming. MuPAD is developed by the SciFace company, based in Pader-
born, Germany. The SCIEnce development with respect to MuPAD is performed
at the University of Kassel, Germany [26].

3 OpenMath

The OpenMath standard is made for the representation of mathematics in such
a way that mathematical objects can easily be exchanged between computer
programs by way of rich semantics. A rough overview of this standard can be
found in Figure 1. The 3 layers are explained as follows:

Language. The OpenMath language defines the grammar, i.e., notions such as
Variables, Errors, Applications, Integers, etc.

Content Dictionary. A Content Dictionary (CD) is a document describing
mathematical notions for some area of Mathematics. At the moment of writ-
ing about 180 content dictionaries are provided on the OpenMath homepage,
both official and experimental. They cover not only general areas, such as ba-
sic arithmetic (for example the ‘arith1’ CD describes ‘minus’, ‘plus’, ‘power’,
etc) or polynomials, but also more specific areas such as permutation groups,
planar geometry, finite fields, and much more.

Software. This third layer consists of all software built using the basic language
and content dictionaries, commonly referred to as “Phrasebooks”. In Figure
2 the two most common approaches in our setting are described.
First the piece of translator software separate from the CAS: this software
(commonly written by a third party) takes care of the translation from Open-
Math into the CAS proprietary language, and back. Especially the transla-
tion back can be highly non-trivial, as the semantics of the CAS output
cannot always be read off from the output itself.

The second option is a piece of translator software that is built into the
CAS. The disadvantage is that one needs to have access to the source code,
which is not always possible. On the other hand, the major advantage of
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this approach is that generally the translation can be done using the internal
representation of mathematical objects in the CAS.

The most common representation for OpenMath is the XML-representation.
For example, 3 − 4

5 could be represented as follows:

<OMA ><OMS cd="arith1" name="minus"/>
<OMI >3</OMI >
<OMA ><OMS cd="nums1" name="rational "/>

<OMI >4</OMI >
<OMI >5</OMI >

</OMA >
</OMA >

4 SCSCP

To simplify the communication between the various CASes, we have developed
a protocol called “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP. The protocol is XML-based; in particular, the protocol
messages are in the OpenMath language, and its TCP-sockets-based implemen-
tation uses XML processing instructions to delimit these messages and indicate
major failures that may arise during the processing of a request. Communica-
tion takes place using port 26133, reserved for SCSCP by the Internet Assigned
Numbers Authority (IANA).

We have developed two Content Dictionaries for SCSCP, called scscp1 and
scscp2. The protocol supports calling functions with mathematical objects as
arguments, on either a local or remote system, and sending back successful results
or failure reports. It also supports basic options such as limits on memory or CPU
and information such as memory or CPU time used.

Moreover, SCSCP has support for remote objects. The client may indicate
a preference for the reply to either contain a full mathematical object, or a
reference to that same object. We envisage a scenario where a client can let
almost all computations be performed remotely, possibly in another CAS, and
where details of mathematical objects are not transmitted unless necessary.

An example of a call to a CAS and a response follows:

<OMOBJ >
<OMATTR >

<OMATP >
<OMS cd="scscp1" name="call_ID"/>
<OMSTR >a1d0c6e83f027327d8461063f4ac58a6 </ OMSTR >
<OMS cd="scscp1" name="option_max_memory "/>
<OMI >100000 </OMI >
<OMS cd="scscp1" name="option_return_object "/>
<OMSTR/>

</OMATP >
<OMA >

<OMS cd="scscp1" name="procedure_call "/>
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<OMSTR >Evaluate </OMSTR >
<OMA >

<OMS cd="arith1" name="plus"/>
<OMI >16603777328095411 </OMI >
<OMI >9529248804930722 </OMI >

</OMA >
</OMA >

</OMATTR >
</OMOBJ >

with response

<OMOBJ >
<OMATTR >

<OMATP >
<OMS cd="scscp1" name="call_ID"/>
<OMSTR >a1d0c6e83f027327d8461063f4ac58a6 </ OMSTR >
<OMS cd="scscp1" name="info_runtime "/>
<OMI >3</OMI >
<OMS cd="scscp1" name="info_memory "/>
<OMI >2876</ OMI >

</OMATP >
<OMA >

<OMS cd="scscp1" name="procedure_completed "/>
<OMI >26133026133026133 </ OMI >

</OMA >
</OMATTR >

</OMOBJ >

More details and examples can be found in the specification [15] and the two
Content Dictionaries [23], [24].

Basic SCSCP support, both as server and as client, is now available for devel-
opment versions of GAP, KANT, and MuPAD. This means that a user of one of
these software packages can invoke one of the other systems (or the same system
on a different machine) without leaving the software packages he is working in
himself. In particular, one uses GAP syntax to use SCSCP from within GAP,
for example, even though one may be calling out to KANT.

We have also created a Java implementation of SCSCP, intended as a frame-
work to enable third party developers to expose their software easily to e.g. users
of one of the systems involved.

Furthermore, as SCSCP is a specialized protocol, it would have to be im-
plemented in a each software package to allow access to the capabilities of the
systems involved. In order to offer access by means of a more widely used proto-
col than SCSCP, we have developed a WebProxy that connects to an arbitrary
number of SCSCP-compliant systems and offers a SOAP-interface as well as a
simplistic html-interface to these systems.

One of the other parallel activities in the SCIEnce project is JRA1: Symbolic
Computing on the Grid, which focuses on developing a suitable framework for
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Fig. 3. SCSCP Overview

symbolic computing on computational grids. In this activity SCSCP is used for
the communication between the server and the various systems.

5 Using KANT from MuPAD

As a first example, we consider factoring of polynomials defined similarly to
Swinnerton-Dyer polynomials, but without the requirement that the primes are
consecutive: for a set of distinct prime numbers p1, p2, . . . , pn, we define the
polynomial Pn(x) as

Pn(x) =
∏(

x±√
p1 ±

√
p2 . . .±

√
pn

)
,

where the product runs over all possible combinations of plus and minus signs,
yielding 2n factors in total. Hence the degree of such a polynomial is 2n.

This polynomial is easily seen to be irreducible over Z. On the other hand,
suppose F is a finite field; then Pn splits into linear factors over a quadratic
extension of F, so it will only have linear and quadratic factors over F itself. In
particular, Pn (n > 1) is reducible over every finite field.

These polynomials are worst-case inputs for the Berlekamp-Zassenhaus algo-
rithm for the factoring of polynomials over Z. See [9, Section 15.3] for more
information.
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>> package("OpenMath"):
>> swindyer := proc(plist) <some details omitted > :
>> R := Dom:: UnivariatePolynomial (x, Dom:: Rational ):
>> p1 := R(expand(swindyer ([2,3,5,7 ,11]))):
>> p2 := R(expand(subs(swindyer ([2,3,5,7,13,17])), x=3*x -2)):
>> p := p1 * p2:
>> degree(p), nterms(p)
96, 49

So at this point we have constructed a univariate polynomial p, the product
of two of these Swinnerton-Dyer like polynomials, with an affine transformation
applied to the argument of the second one. It has 49 terms and degree 96 =
25 + 26.

>> st := time (): F1 := factor(p): time()-st
38431

So factoring it in MuPAD takes 38 seconds.
On the other hand, KANT has one of the fastest univariate polynomial fac-

torizers available. If we convert the polynomial into OpenMath, transmit it to a
machine running KANT almost 400 kilometers away, convert it to KANT syn-
tax, factor it, convert it back into OpenMath, transmit it back to the original
machine, and finally convert it back into MuPAD syntax:

>> kant := SCSCP("scscp.math.tu-berlin.de", 26133):
>> st:= rtime(): F2:= kant :: compute(hold(factor)(p)): rtime()-st
1221

So factoring in KANT only takes 1.2 seconds. To verify that the two results have
the same factors:

>> FS1 := {op(Factored :: factors(F1 ))}:
>> FS2 := {op(map(F2, X -> R(subs(expr ((X[1])), ‘#1‘=x))))}:
>> bool(FS1=FS2)
TRUE

The two-line conversion of the object KANT returns is necessary because one
needs to explicitly state that this object FS2 is to be in the same polynomial
ring that the original polynomial p was in.

The OpenMath objects are transmitted in uncompressed XML syntax, a few
kilobytes for polynomials of this order of magnitude. Moreover, even though at
this stage of the project no particular effort has been put into optimizing the
conversions between CAS syntax and OpenMath, in our case these translations
take only about 20 milliseconds each.

6 Using Macaulay from GAP

Using the framework mentioned earlier, we have created an SCSCP interface to
Macaulay 2 [10]. We use this interface to perform a Gröbner basis computation
on polynomials created in GAP. These polynomials can be used to create an
automatic proof of the circle theorem of Apollonius.
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gap > R := PolynomialRing (Rationals ,
> ["a","b","s","y","m1","m2","p1","p2"]);;
gap > a := R.1;; b := R.2;; s := R.3;; y := R.4;;
gap > m1 := R.5;; m2 := R.6;; p1 := R.7;; p2 := R.8;;
gap > pols := [
> (m1-a)^2 + m2^2 - s^2,
> m1^2 + (m2-b)^2 - s^2,
> (m1-a)^2 + (m2-b)^2 - s^2,
> -2*a*p1+2*b*p2,
> -2*a*p2 -2*b*p1+2*a*2*b,
> a*b*y-1
> ];;

We have created a polynomial ring in 8 variables over Q, and a list of 6 poly-
nomials. We can try to compute a Gröbner Basis (with respect to the graded
reverse lexicographic ordering) in GAP:

gap > B := GroebnerBasis (pols , MonomialGrevlexOrdering());

but the computation does not end within 30 minutes. We can also use the
Macaulay 2 interface we created:

gap > I := Ideal(R, pols );;
gap > B2 := EvaluateBySCSCP ("Macaulay2 -Groebner", [I],
> "scscp.win.tue.nl", 26133);;
#I Creating a socket ...
#I Connecting to a remote socket via TCP/IP ...
#I Got connection initiation message
#I Request sent ...
#I Waiting for reply ...
gap > B2.object;
[ b-2*m2, a-2*m1, -4*m2*p2+p1^2+p2^2, m1*p1-m2*p2,

4*m1*m2-m1*p2-m2*p1, s^2-m1^2-m2^2, y*m1*p2+y*m2*p1-1,
4*y*m2^2*p2-p1, 4*y*m1^2*p2 -4*m1+p1 ]

This calculation took only a few seconds. Moreover, the majority of the time is
actually spent in the conversion of OpenMath to Macaulay syntax and back, so
an even larger improvement could be obtained by optimization of this translation.

7 Further GAP Examples

The previous section demonstrated GAP as an SCSCP client. Here we would
like to give one more example of the use of GAP as an SCSCP server with the
development version of the GAP package SCSCP [16]. We will outline simple
steps needed for the design and provision of the SCSCP service within the
framework provided by SCSCP.

The GAP Small Groups Library [2] contains all groups of orders up to 2000,
except groups of order 1024. The GAP command SmallGroup(n,i) returns the
i-th group of order n. Moreover, for any group G of order 1 ≤ |G| ≤ 2000 where
|G| �∈ {512, 1024}, GAP can determine its library number : the pair [n,i] such
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that G is isomorphic to SmallGroup(n,i). This is in particular the most efficient
way to check whether two groups of “small” order are isomorphic or not.

For groups of order 512 the Small Groups Library contains all 10494213 non-
isomorphic groups of this order and allows the user to retrieve any group by its
library number, but it does not provide an identification facility. However, the
GAP package ANUPQ [7] provides a function IdStandardPresented512Group
that performs the latter task. Because the ANUPQ package only works in a
UNIX environment it is useful to design an SCSCP service for identification of
groups of order 512 that can be called from within GAP sessions running on
other platforms (note that the client version of the SCSCP package for GAP
does work under Windows).

First we need to decide how the client should transmit a group to the server:
How should the group be encoded in OpenMath? Should it be converted into a
permutation representation, which can be encoded using existing content dictio-
naries? Or should we develop new content dictionaries for other kinds of groups?
Luckily, the SCSCP protocol provides enough freedom for the user to select
his own data representation, and since we are interfacing between two copies of
the GAP system, we are free to use a GAP-specific data format, namely the
pcgs code: an integer, describing the polycyclic generating sequence (pcgs) of the
group, to pass the data to the server. See the GAP manual and [1] for more
details about the pcgs code.

First we create a function that takes the pcgs code of a group of order 512
and returns the number of this group in the GAP Small Groups library:

gap > IdGroup512ByCode := function( code )
> local G, F, H;
> G := PcGroupCode ( code , 512 );
> F := PqStandardPresentation( G );
> H := PcGroupFpGroup ( F );
> return IdStandardPresented512Group( H );
> end;;

After such a function was created on the server, we need to make it “visible” as
an SCSCP procedure under the name IdGroup512:

gap > InstallSCSCPprocedure ("IdGroup512 ", IdGroup512ByCode );
InstallSCSCPprocedure : procedure IdGroup512 installed .

For the convenience of the user, we provide the client’s counterpart for this
service, carrying all technical details (server, port) and also checking that the
group is of order 512:

gap > IdGroup512 := function ( G )
> local code , result;
> if Size( G ) <> 512 then
> Error( "|G|<>512\ n" );
> fi;
> code := CodePcGroup ( G );
> result := EvaluateBySCSCP ("IdGroup512ByCode ", [ code ],
> "scscp.st-and.ac.uk", 26133);
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> return result.object;
> end;;

Now when the client calls the function IdGroup512, it looks almost like the stan-
dard GAP function IdGroup (the user may switch off intermediate information
messages):

gap > IdGroup512 ( DihedralGroup ( 512 ) );
#I Creating a socket ...
#I Connecting to a remote socket via TCP/IP ...
#I Got connection initiation message
#I Request sent ...
#I Waiting for reply ...
[ 512, 2042 ]

The GAP package SCSCP also offers functionality for parallel computations
that may be used for example on a multi-core machine. It provides convenient
functions for the user to parallelize computation by sending out two or more
requests, and then collect either all results or (in the case when several methods
are used for the same computation and it is not a priori clear which one will be
fastest) get the first available result. More higher-level examples are contained
in the package’s manual which is available upon request and will be a part of
the official release of the package.

8 Status and Future Research

At the moment of writing (March 2008) we implemented support for communica-
tions using SCSCP, both as servers and as clients, for the development versions
of GAP, KANT, and MuPAD. Also, progress is being made with respect to
OpenMath and SCSCP support in Maple. A part of ongoing work is to extend
the range of mathematical objects that are understood by our systems, i.e., to
enable translations from and to OpenMath for a wider set of OpenMath con-
tent dictionaries. We expect OpenMath support to be improved over the year
2008, greatly increasing the possibilities for exchanging mathematics between
the various computer algebra systems.

As demonstrated, currently we expose the systems involved as SCSCP ser-
vices. Future research includes using SCSCP to expose these systems as proper
Web services, i.e. extending the WebProxy. We may also look into experience
accumulated in the MONET project [18] and other existing technologies such as
MathServe [11] and MathBroker II [12].

Furthermore, while developing this protocol we discovered that we have some
need for representing mathematical objects in OpenMath that are not met by the
current set of content dictionaries. This includes, for example, finitely presented
groups, character tables of finite groups, and efficient representation of large
matrices over finite fields. We plan to investigate these difficulties and create
new content dictionaries where necessary.
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Abstract. In this paper we describe our experiences applying formal
software verification in a real-world distributed Video-on-Demand server.
As the application of formal methods to large systems is extremely dif-
ficult, relevant properties of a particular subsystem have been identified
and then verified separately. Conclusions on the whole system can be
drawn later. The development consists of two parts: first, the definition
of the algorithm in the Coq proof assistant; second, codification of the
theorems with the help of some new tactics derived from the abstraction
of verification patterns common to different proofs.

Keywords: Formalmethods, software verification, theoremprovers, func-
tional programming, real-world applications.

1 Introduction

Once a system has been developed, correcting remaining bugs represents one of
the highest costs in software production [1]. In as much as testing does not guar-
antee software correction due to incompleteness in input testing data [2], formal
verification of software properties is a mandatory alternative to assure quality of
critical systems. This work proposes the verification of properties of a real-world
application: a distributed video-on-demand server [3] which has been developed
in the concurrent functional language Erlang. Functional languages [4] have
often been suggested as a suitable tool for writing programs which can later
be formally analysed. This is due to their referential transparency, a powerful
mathematical property of the functional paradigm that assures that equational
reasoning makes sense.

As the application of formal methods to large systems is difficult, we propose
a method [5,6] to separately verify relevant properties of part of the system, so
that when other partial results are combined later on, conclusions on the whole
system can be drawn. This method starts with building a model of the system in
the Coq proof assistant [7], and then checks the properties against the model.

This paper is structured as follows: first, an overview of the VoDKA project is
shown. Section 3 highlights a relevant sample of code to be verified, and presents
a Coq model used to describe the algorithm; then, we sketch the certification
process of the algorithm model. Finally, we present our conclusions.
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2 Building a Functional Video-on-Demand Server

A Video-on-Demand (VoD) server is a system that provides video services to
multiple clients simultaneously. A VoD user can request a particular video at
any time, with no pre-established temporal constraints. VoDKA (VoD Kernel
Architecture, http://vodka.madsgroup.org) is a project supported by a local
cable operator to provide video-on-demand services to its clients. A functional
language, Erlang, was chosen for the development.

Erlang is a notable successful exception of a functional language applied to
real-world problems [8]. Clusters built from cheap off-the-shelf components are
proposed as an affordable solution for the huge amount of resources required
by the VoD system. Cluster resources are organised as a hierarchical storage
system with three levels: (a) Repository level, to store all the available media;
(b) Cache level, responsible for storing videos requested from the repository level,
before being streamed; and (c) Streaming level, a front end in charge of protocol
adaption and media streaming to the final client.

3 Verification of Properties Using the Model

A sample piece of interesting software to be verified is part of the cache subsystem
of the Video-on-Demand server: the block allocation algorithm. If a media object
must be fetched to cache (because of a cache miss), enough space must be booked
to load the object from the storage. If it was necessary to release some blocks,
we have to assure that these blocks are not in use by other pending tasks. As
locality in cache is important for performance, blocks of the same media object
are in close proximity and we can speak of block intervals. A block interval is
modeled as a triple (a, b, x): the interval between blocks a and b (inclusive) has
x pending tasks. A list is used to store the whole sequence of block intervals.

Inductive interval: Set:= tuple: nat -> nat -> nat -> interval.
Inductive seq: Set:= Nil: seq | Cons: interval -> seq -> seq.

The function add sums up a request over a block. In order to certify the
correctness of the algorithm implementation (or at least increase our confidence
about it), we write a model of the implementation in the Coq proof assistant
(figure 1). Due to the use of a functional language such Erlang, the translation
to Coq is quite straightforward.

At any moment each block has a particular number of ongoing requests. The
key property that function add has to satisfy is that after adding up a request
to a block, the number of requests over that particular block is incremented by
one while all the other blocks remain unchanged. This property is split into two
theorems provided that i equals n or not. So, add is certified by the proof of
both laws. To certify the correctness of add, we need an auxiliary function nth
that returns the ongoing requests for the nth block.

Theorem nth_add_1: (l:seq;n,i:nat) i=n -> nth n (add i l) = S (nth n l).
Theorem nth_add_2: (l:seq;n,i:nat) ~i=n -> nth n (add i l) = nth n l.

http://vodka.madsgroup.org
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Fixpoint add [n:nat; l: seq]: seq := Cases l of
| Nil => (Cons (tuple n n (S O)) Nil)
| (Cons (tuple a b x) l’) => Cases (le_lt_dec a n) of
| (left _) => Cases (le_lt_dec n b) of

| (left _) => Cases (eq_nat_dec a n) of
| (left _) => Cases (eq_nat_dec n b) of

| (left _) => (Cons (tuple a b (S x)) l’) (*a=n, n=b*)
| (right _) => (Cons (tuple a a (S x)) (Cons (tuple (S a) b x) l’)) (*a=n, n<b*)
end

| (right _) => Cases (eq_nat_dec n b) of
| (left _) => (Cons (tuple a (pred b) x) (Cons (tuple b b (S x)) l’)) (*a<n, n=b*)
| (right _) => (Cons (tuple a (pred n) x) (*a<n, n<b*)

(Cons (tuple n n (S x)) (Cons (tuple (S n) b x) l’)))
end

end
| (right _) => (Cons (tuple a b x) (add n l’)) (*b<n*)
end

| (right _) => (Cons (tuple n n (S O)) l) (*n<a*)
end

end.

Fig. 1. Definition of add in the Coq system

The Coq proof system provides us with predefined tactics. Those can be
extended with new ad-hoc tactics that define new proof patterns that prevent
us from repeating steps when proving laws. The definition of new ad-hoc tactics,
resulting from the abstraction of recurrent proof strategies applied at different
proofs, helps us to avoid repetitive steps in the process.

3.1 Enforcing Canonical Representation of Interval Sequences

We enforce the use of a canonical representation of sequences, so that two differ-
ent representations always correspond to two different objects. To improve effi-
ciency, sequences [(a1, b1, x1), . . . , (an, bn, xn)] are kept sorted ∀i, ai ≤ bi ∧ bi <
ai+1. What is more, to save space, the sequence is kept compact or packed, i.e.
∀i, xi �= 0, and (xi �= xi+1)∨ ((xi = xi+1)∧ (bi + 1 < ai+1)). The canonical form
assumes that a sequence of intervals is both sorted and compact, thus achieving
algorithms with better space and time behaviour.

First, we demonstrate that the application of add to a sequence of intervals in
canonical representation delivers another sequence in canonical form. The output
of add holds the predicate ascend but it does not hold packed; hence we need
a new function pack which when applied to an ascendant sequence returns an
equivalent packed one.

Lemma nth_pack: (l:seq;n:nat) ascend l -> nth n l = nth n (pack l).

Moreover, the result of add is a sequence sorted in ascendant order. And the
result of pack on an ascendant sequence delivers a packed one.

Lemma ascend_add: (l:seq; i:nat) ascend l -> ascend (add i l).
Lemma packed_pack: (l: seq) ascend l -> packed (pack l).

Finally, we state and prove the law which establishes that given a canonical
sequence, adding a request to any block with add, and applying pack after that,
acquires a new canonical sequence.
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4 Conclusions

In this work, we prove critical properties of software by modeling the relevant
pieces of code using Coq, and then formally stating and proving those properties.
A real-world system has been studied: a distributed Video-on-Demand server,
built using the functional paradigm and used in several actual deployments with
demanding real-world requirements.

The use of a functional language as implementation platform eases the con-
struction of a Coq model and makes it conceivable to think of an (at least
partially) automatic translation. Being a model, especially a hand-made one, it
can not guarantee the full correctness of the actual implementation; however,
the process helps to increase the reliability of the system.

Since we deal with a real-world case study, it is necessary to take into ac-
count the additional complexity involved in efficient (both in space and time)
implementation of algorithms. In this case study, formalising the canonical rep-
resentation of block interval sequences is not too complex, but the algorithms
that handle those canonical intervals are harder and, thus, proving properties on
their implementations becomes more complex and tedious. One of the key points
to highlight is the identification, abstraction and reuse of verification patterns
in the proof process.

Even though Coq has been used to address this case study, similar application
of the method presented can be performed using other theorem provers.
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Abstract. Assumptions about the domains of partial functions are nec-
essary in state-of-the-art proof assistants. On the other hand when math-
ematicians write about partial functions they tend not to explicitly write
the side conditions. We present an approach to formalizing partiality in
real and complex analysis in total frameworks that allows keeping the
side conditions hidden from the user as long as they can be computed and
simplified automatically. This framework simplifies defining and operat-
ing on partial functions in formalized real analysis in HOL LIGHT. Our
framework allows simplifying expressions under partiality conditions in
a proof assistant in a manner that resembles computer algebra systems.

1 Introduction

1.1 Motivation

When mathematicians write partial function they tend not to explicitly write
assumptions about their domains. It is common for mathematical texts to include
expressions like:

. . .
1
x
. . .

without specifying the type of the variable x and without giving any assumptions
about it.

On the other hand these assumptions are necessary in proof assistants. Since
most proof assistants are total frameworks, a similar formula expressed there
looks like:

∀x ∈ C.x �= 0 ⇒ . . .
1
x
. . .

The assumptions about the domain are obvious for any mathematician, in fact
they can be generated by an algorithm. All names that have not been defined pre-
viously are considered to be universally quantified variables and all applications
of partial functions give raise to conditions about their arguments. Inferring the
types of variables is something that proof assistants are already good at. Giving
the type of just one of the terms in an expression is often enough for a proof
assistant to infer the types of the other. Mathematicians often work in a par-
ticular setting, where arithmetic operations and constants are assumed to be of

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 300–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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particular types. Some proof assistants have mechanisms that allow to achieve
a similar effect, eg. prioritizing a type in HOL LIGHT or using a local scope in
Coq [5].

There are many examples of statements in libraries of theorems for proof
assistants that include assumptions which are often omitted in mathematical
practice. In particular the HOL LIGHT library part concerning real analysis in-
cludes statements like EXP LN:

∀x.0 < x ⇒ exp(ln(x)) = x

Here the type of x is inferred automatically as real from the type of applied
functions (the complex versions of the exponent and logarithm functions have
different names in the library), but the domain conditions are not taken care
of. The real logarithm is defined only for positive numbers, but the positivity
assumption is not only in the statement of the theorems that include it, but also
appears many times in the proofs that use this fact.

Computer algebra systems allow applying partial functions to terms and some
of them have assumptions about variables computed automatically. This might
be one of the reasons why for mathematicians computer algebra systems are usu-
ally more appealing than proof assistants. Unfortunately the way assumptions
are handled in those systems is often approximate, and this is one of the rea-
sons computer algebra systems sometimes give erroneous answers [2]. Therefore
handling assumptions cannot be done in the same way in theorem proving.

In [11] we show, that it is possible to implement a prototype computer algebra
system in HOL LIGHT and that proof assistants are already able to perform many
simplification operations that one would expect from computer algebra. The
prototype is able to perform many computations that involve total functions1,
but even simplest operations that require understanding partiality fail, since
HOL LIGHT is a total framework:

In1 := diff (diff (\x. &3 * sin (&2 * x) + &7 + exp (exp x)))
Out1 := \x. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x)
In2 := diff (\x. &1 / x)
Out2 := diff (\x. &1 / x)

The problem with the above example is that the function 1
x is mathematically

a partial function that is not defined in zero. Still computer algebra systems
asked for the derivative of it reply with − 1

x2 . This answer is correct since the
original function is differentiable on the whole domain where it is defined, and its
derivative has the same domain. The proposed approach will let the framework
correctly compute this kind of expressions.

We would also like to check whether approach for handling partiality in an
automated way can be useful not only in formalizing partiality but might gener-
alize to formalizing functions that operate on more complicated data structures,
like when formalizing multivaluedness.
1 The & operator is the coercion from natural numbers.
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1.2 Approach

The domain of the function can be often inferred from the function itself. For
example the domain of 1 + 1

x can be computed to be λx.x �= 0. In such circum-
stances the domain can be represented by the function itself relieving the user
from typing unnecessary expressions. This is not always the case. For example if
the function λx. 1x − 1

x is simplified to λx.0 deriving the domain λx.x �= 0 is not
possible. When a singularity point is not removed from the domain, the domain
can be recomputed from the expression itself. Expressions in which singularity
points are removed occur rarely in practical examples.

When we apply an operation in a CAS system2 to a function f in a domain
D, a function f ′ and its domain D′ are returned. If the system can prove that
D′ represents the same domain as the one which we can compute from f ′ we
can discard D′. We will be able to recompute it whenever it will be needed.

Our approach is to let the user input the partial functions as values from and to
the option type and show them to the user as such, but to perform all operations
on a total function of the underlying proof assistant with keeping the domain
predicate alongside with the function. To do this we have two representations for
functions and convert between them. The first representation is functions that
operate on values in the option type and the second is pairs of total functions
and domain predicates. We show how higher order functions (differentiation)
can be defined in this framework and how terms involving it can be treated
automatically.

1.3 Related Work

There are multiple approaches and frameworks for formalizing partial recursive
functions. Ana Bove and Venanzio Capretta [4] introduce an approach to for-
malizing partial recursive functions and show how to apply it in the Coq proof
assistant. Normally recursive functions are defined directly using Fixpoint, but
that allows only primitive recursion. They propose to create an inductive defini-
tion that has a constructor for every recursive definition and create a Fixpoint
that recurses over this definition. Alexander Krauss [12] has developed a frame-
work for defining partial recursive functions in Isabelle/Hol, that formally
proves termination by searching for lexicographic combinations of size measures.
William Farmer [9] proposes a scheme for defining partial recursive functions and
implements it in IMPS. The main difference is that those approaches and frame-
works compute the domains of partial recursive functions whereas we concentrate
on functions in analysis which cannot be obtained by recursion and where the
domain is limited because there are no values of the functions that would match
their intuitive definition or that would allow properties like continuity.

The existing libraries for proof assistants contain formalized properties of
functions in real and complex analysis. There are common approaches to par-
tiality in existing libraries. It is common to define every function total. This is
the case for the HOL LIGHT [10] library. Division is defined to return zero when
2 We refer to the computer algebra functionality embedded in HOL as the CAS system.
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dividing by zero. The resulting theory is consistent, but to make some standard
theorems true assumptions are required. For example REAL DIV REFL:

∀x.x �= 0 ⇒ x

x
= 1.

Another common approach is to require proofs that arguments applied to
partial functions are in their domains. This is the case for the CoRN library
[7] of formalized real and complex analysis for Coq. There division takes three
arguments, the third one is a proof that the second argument is different from
zero.

There are approaches to include partiality in the logic of the proof assistant.
Those unfortunately complicate the logic and are already complicated for first
order logics [16]. Some proof assistants are based on logics that support partial
functions. An example is PVS [15] where partial functions are obtained by sub-
typing and IMPS [8] where there is a built-in notion of definedness of objects in
the logic.

Olaf Müller and Konrad Slind [14] present an approach for lifting functions
with the option monad that is closest to the one presented here. Their approach
is aimed at partial recursive functions where computation of the domains of
functions is not possible. Our approach is similar to applying the option monad
to the real and complex values, but since particular functions need to have their
domains reduced, we explicitly compute and keep the domains of functions and
be able to transform these values back to original ones.

Finally computer algebra systems have their own approaches to partiality,
eg “provisos” [6]. The main difference is they are intended to obtain maximum
usability, sometimes at the cost of correctness. This is why those approaches
cannot be used in a theorem proving environment.

1.4 Contents

This paper is organized as follows: in Section 2 we give the basic definitions of
the two representations of partial functions and we define the operations used to
convert between those representations. We also show a simplified example of a
computation with partial functions. In Section 3 we present the design decisions
and the details of our formalization. We show how does the automation work and
show its limitations. Finally in Section 4 we present a conclusion and possible
future work.

2 Proposed Approach

2.1 Basic Definitions

Our approach involves two representations of partial functions. The first repre-
sentation is: as pair of a total extension of the original function and a domain
predicate. The second representation is: a function from an option type to an
option type. The first representation will be used in all automated calculations
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and the latter will be used in the user input and if possible in the output since
it resembles better mathematical notation.

An option type is a type built on another type. The option type has two
constructors. One denoting that the variable has a value and one used for no
value. In proof assistants they are usually written as SOME α and NONE. We will
denote those with α and −. To simplify reading of the types, variables of the
option type will be denoted as z and real variables as x both in the paper and in
the shown examples from the system. The approach works for partial values of
different types, but since HOL LIGHT does not have dependent types we cannot
generalize over types, so we present our approach for a single type of partial
values. We chose real numbers and not complex numbers since there are more
decision procedures available in HOL LIGHT for real numbers and we make use
of them.

We define two operations to convert between the two representations. Creat-
ing operations that work on the option type from the operations on the under-
lying proof assistant type is similar to applying the option monad operations
bind composed with return to the functions in the proof assistant. In fact this
is equivalent to the presented approach for functions that are really total. For
functions that are undefined on a part of their original domain we additionally
require the desired domain predicate so we create an operation that will addi-
tionally require the domain predicate and check it in the definition. We define
@ that converts functions from the pair representation to the option representa-
tion (written as papp in the HOL LIGHT formalization) and @−1 that converts
a function in the option type to a pair (punapp in HOL LIGHT). The definition
of @ is straightforward:

(f,D)@z =
{
fx if z = x ∧D(x)
− otherwise

The inverse operation can be defined using the Hilbert operator (which we
will denote as ε). This operator takes a property and returns an element that
satisfies this property if such an element exists. It returns an undefined value
when applied to a property that is not satisfied for any element. The inverse
operation is defined as:

@−1f = (λx.εv.f(x) = v, λx.∃v.f(x) = v)

The @−1 function is the left inverse of @, (in fact we prove this in our formal-
ization that for any F , D and z)3:

@−1(λz.(f,D)@z) = (f,D)

With the two operations definitions of the translations of the standard arith-
metic operations are simple. The @ operator will check that the arguments ap-
plied to plus are defined. Note that in HOL LIGHT the syntax and semantics
3 The @−1 function is not the right inverse of @. This would require that for any

function f and any z, (@−1f)@z = f(z). But this equality is not true for z = NONE
and f(NONE) = SOME(0).
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of expressions are very close, namely when syntactic expressions are applied to
values they can be reduced to its syntax. This is why we will not distinguish
between syntax and semantics in the paper:

a+ b =def @(λxy.(x+ y), λxy.�)

We can also define higher order functions that operate on partial functions
by embedding the existing higher order operators from the proof assistant, first
in the pair representation:

(f,D)′ =def (f ′, λx.D(x) ∧ f is differentiable in x)
f ′(z) =def (@−1(f)′)@z

2.2 Example in Mathematical Notation

With the definitions from the previous section it is possible to automatically
simplify the side conditions in partial functions, we will first show it in the
example and then show the full HOL LIGHT definitions and the algorithm for
simplification in Section 3.2.

We will show a simplified example of automatically computing a derivative of
a partial function in our framework. We will denote the derivative of a function
f(x) as f(x)′. The user types an expression:

(λz.πz2 + cz +
2
z
)′

The expression that the user sees is written with standard mathematical
operators. All the operator symbols are overloaded, and they are understood
as the operations on partial functions, that is functions of type (R)option →
(R)option → . . . → (R)option. In the above expression z is the only variable of
the (R)option type. All the other constants and expressions are their transla-
tions from the underlying total functions or constants. The only functions that
are really partial (that is undefined on a part of the proof assistant domain) are
division and differentiation and they are defined by providing their domain. The
system unfolds the translation of all operators and constants, and computes a
total function and its domain4:

(λz.〈λx.πx2 + cx+
2
x
, λx.x �= 0〉@z)′

We finally translate the derivative. For the obtained function we add the re-
quirement that the derivative of the original function exists in the given point,
otherwise a function defined in one point would always be differentiable there.

4 In some proof assistants all computation is really simplification done by rewrite rules.
This is the case in HOL LIGHT in which we will be formalizing this example, but we
will refer to those simplifications as computation in the text.
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This domain condition will be often combined with the assumptions about the
domain of the original function:

λz.(〈(λx.πx2 + cx+
2
x

)′, λx.x �= 0∧ (λx.πx2 + cx+
2
x

) is differentiable in x)〉@z)

We can then apply the decision procedure for computing derivatives of total
functions in the underlying proof assistant. It was not possible earlier, since the
result of the procedure is a predicate with additional assumptions. It is possible
with the use of the papp operator, since its definition ensures that the result
does not depend on the function outside its desired domain. Since we also know
the set on which the reciprocal is differentiable the domain can be simplified:

λz.(〈(λx.2πx + c− 2
x2

), λx.x �= 0〉@z)

Finally we try to return to the partial representation. This is done by recon-
structing a partial function with the same symbols and recomputing its domain.

λz.2πz + c− 2
z2

= λz.(〈(λx.2πx + c− 2
x2

), λx.x �= 0〉@z)

Since the domains agree we can convert back and display the left hand side of
the above equation as the final result to the user.

Returning from the representation of the function as a total function and its
domain to the option type representation is not always possible, since a partial
expression does not need to have an original form (can be expressed in the option
representation). On the other hand the simplification is often possible and when
it is possible it is desirable since it allows for greater readability. An example
where it is not possible is:

λz.
1
z
− 1
z

= λz.(〈λx.0, λx.x �= 0〉@z)

The value is not equal to the constant function zero, since the expression does
not have a value when x is zero. Furthermore for values of the option type even
the term z−z is not equal to zero if z = NULL, therefore even after simplification
to zero its value will depend on the variable z.

There are two approaches of treating this kind of terms. One can either sim-
plify it to zero while leave the domain condition or not simplify the expression
at all. We currently do not simplify expressions for which we cannot find a valid
partial representation to return to. This is to avoid showing the user the com-
plicated representation with the domain conditions. A possible approach that
allows those simplifications and displays results in the option representation will
be mentioned in Section 4.1.

3 The Implementation

3.1 Design Decisions

For our formalization we chose HOL LIGHT. The factors that influenced our
choice were: a good library of real and complex analysis, as well as the possibility
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to write conversions in the same language as the language of the prover itself.
HOL LIGHT is written in OCaml and is provided as an extension of it. This is
very convenient for developing since it allows generating definitions and simpli-
fication rules by a programs and immediately using them in the prover.

In the representation with option types we use the vector type Rn → R instead
of the curried types R → R → . . . → R to represent functions. One can convert
between these two representations and the latter representation is often preferred
since it allows partial application. The reason why we chose to work with the
vector representation is that HOL LIGHT does not have general dependent types.
Instead it has a bit less powerful mechanism that only allows proving theorems
that reason about An for any n. We will use this to prove theorems about n-
ary functions. With this approach some definitions (papp mentioned below and
its properties) will have to be defined for multiple arities. On the other hand
the theorems that are hard to prove will be only be needed to be proved once.
Otherwise they would be needed for all versions of curried functions.

3.2 HOL LIGHT Implementation Details

In this section we will give the formalization details. To understand them knowl-
edge of HOL LIGHT [10] is required. We will show an example of automatically
computing the derivative of the partial function

f(z) = πz2 + cz +
2
z
.

When the user inputs this function in the correct syntax in the main loop of the
CAS, the system responds with the correct answer:

In1 := pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z)
Out1 := \z. & 2 * SOME pi * z + SOME c + --& 2 / (z * z)

The system computed this derivative automatically, but we will look at the
conversions performed step by step. First lets examine the types in the en-
tered expression. The variable z used in the function definitions is of the type
(real)option. We overload all the standard arithmetic operators to their ver-
sions that take arguments of the (real)option type and produce results of this
type. The coercion from naturals operator & creates values of this type. We de-
cided not to overload the & operator to the coercion from real numbers (SOME),
since this would lead to typing ambiguity and would require some types to be
explicitly given in expressions.

The semantics of the standard arithmetic operations is to return a value if
all arguments have a value and NONE if any of the arguments is NONE. For real
partial functions we define an operation (called papp) that will create a partial
function of type (real)option → (real)option → . . . → (real)option from
a pair of a HOL LIGHT total function realn → real and a predicate expressing
its domain realn → bool. We show below the definitions of papp for one and
two variables. In the formalization we see them as papp1, papp2, . . . , but in the
text we will refer to all those definitions together as papp:
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new_definition ‘(papp1 (f, d) (SOME x) = if (d (lambda i.x)) then
(SOME (f (lambda i.x))) else NONE) /\
(papp1 ((f:A^1->A), (d:A^1->bool)) NONE = NONE)‘

new_definition ‘(papp2 ((f:A^2->A), (d:A^2->bool)) (SOME x) (SOME y) =
if (d (lambda i.if i = 1 then x else y)) then

(SOME (f (lambda i.if i = 1 then x else y))) else NONE) /\
(papp2 (f, d) NONE v = NONE) /\ (papp2 (f, d) v NONE = NONE)‘;;

In the above definitions we see the usage of lambda and below we see the usage
of $. Those are used to create vectors and refer to vector elements. The reasons
for using the vector types instead of curried type for functions was discussed in
Section 3.1.

The total binary operations can be defined by applying a common operator,
that defines binary operators in terms of papp for two variables. The types of all
defined binary operations is (real)option→ (real)option→ (real)option.
We show only the definition of addition on partial values:

new_definition ‘pbinop (f:A->A->A) x y =
papp2 ((\x:A^2. (f:A->A->A) (x$1) (x$2)),(\x:A^2.T)) x y‘;;

new_definition ‘padd = pbinop real_add‘;;

The first partial function is division defined in terms of the reciprocal.

new_definition ‘pinv = papp1 (partial ((\x:real^1. inv (x$1)),
\x:real^1. ~((x$1) = &0)))‘;;

new_definition ‘pdiv x y = pmul x (pinv y)‘;;

pdiff is the unary differentiation operator. It takes partial functions of the
type (real)option→(real)option and returns functions of the same type.
Since the derivative may not always exist it is defined using the Hilbert opera-
tor. Given a (partial) function it returns a partial function being a derivative of
the given one on the intersection of its domain and the set on which it is differ-
entiable. We will again define it in terms of papp applied to a total function and
its domain. Since we are given a function and need to find its underlying total
function and domain to apply the original differentiation predicate we will define
punapp that returns this pair. For our definition it returns a pair of real→real
and real→bool:

new_definition ‘punapp1 f = ((\x:real^1. @v:real. (f(SOME (x$1))) =
(SOME v)), (\x:real^1. ?v. (f (SOME (x$1))) = (SOME v)))‘;;

new_definition ‘pdiff_proto (f:real^1->real, d:real^1->bool) =
( (\x:real^1. if d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)
then @v. ((\x. f (lambda i. x)) diffl v) (x$1) else &0) ,
(\x:real^1. d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)) )‘;;

new_definition ‘pdiff f = papp1 (pdiff_proto (punapp1 f))‘;;
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The partial differentiation
conversion pdiff_conv

Other Simplif ications
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Fig. 1. A schematic view of the simplification performed by the partial differentiation
conversion

The simplification of the term will be performed by a partial differentiation
conversion pdiff_conv (Fig. 1). This conversion is a part of the knowledge base
of the CAS and will be called by the CAS framework when the term has a
pdiff term in it. To simplify the implementation of the partial differentiation
conversion it will recursively call the CAS conversion with a modified database
to simplify terms. The first step is a simplification performed by the main CAS
conversion with the database of theorems for extended to include the above
definitions of the partial operators and some basic facts, that will be described
below. The conversion proves:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =
papp1 ((\x. @v. ((\x. x pow 2 * pi + c * x + &2 * inv x) diffl v) (x$1)),
(\x. ~(x$1 = &0) /\ (?v. ((\x. if ~(x = &0)
then x pow 2 * pi + c * x + &2 * inv x else @v. F) diffl v) (x$1))))

All the partial operators and the pdiff operator were unfolded to their defini-
tions. We notice that the partiality included in division (reciprocal) and differen-
tiation have been propagated to the term. All occurrences of variables are pulled
inside the papp terms and consecutive papp applications are combined by a set
of reduction rules. This set includes a number of theorems, for the categories we
give only single examples for one variable:

– rewrite rules that reduce the number of papp applications for SOME terms for
arbitrary numbers of variables. An example for the second of two variables:

# papp2_beta_right;;
val it : thm = |- papp2 (f, d) (a:(A)option) (SOME b) =
papp1 ((\x. f (lambda i. if i = 1 then x$1 else b)),
(\x. d (lambda i. if i = 1 then x$1 else b))) a
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– rewrite rules that combine multiple occurrences of the same variable:

# papp2_same;;
val it : thm =
|- papp2 (f, d) x x = papp1 ((\x:real^1. f ((lambda i. x$1):real^2)),
\x:real^1. d ((lambda i. x$1):real^2)) x

– rewrite rules that combine consecutive applications of papp possibly with
different numbers of abstracted variables:

# papp1_papp1;;
val it : thm = |- papp1 (f1, d1) (papp1 (f2, d2) (x:(A)option)) =

papp1 ((\x. f1 (lambda i.(f2 x))),
(\x. d2 x /\ d1 (lambda i.(f2 x)))) x

The next step performed by the partial differentiation conversion extracts the
function to which the diffl term is applied. The HOL LIGHT DIFF_CONV is
applied to this term. For total functions it produces a diffl theorem with no
additional assumptions. For partial functions DIFF_CONV produces conditional
theorems that have additional assumptions about the domain. For our example:

# DIFF_CONV ‘(\x. x pow 2 * pi + x * &c + &2 * inv x)‘;;
val it : thm = |- !x. ~(x = &0) ==>
((\x. x pow 2 * pi + x * &c + &2 * inv x) diffl
(((&2 * x pow (2 - 1)) * &1) * pi + &0 * x pow 2) +
(&1 * &c + &0 * x) + &0 * inv x + --(&1 / x pow 2) * &2) x

Our formalization includes certain theorems about derivatives of partial func-
tions where the derivative exists depending on some condition. For the example
case the used theorem is about derivatives of functions that are not differentiable
in a single point. We provide some similar theorems for inequalities which may
arise in differentiating more complicated functions. The exact statement of the
theorem used here is:

# pdiff_but_for_point;;
val it : thm = |- (!x. ~(x = w) ==> (f diffl (g x)) x) ==>
papp1((\(x:real^1). @v. ((\x:real. f x) diffl v) (x$1)),

(\(x:real^1). (~(x$1 = w) /\ d (x$1)) /\
?v. ((\x:real. if ~(x = w) then f x else @v. F) diffl v) (x$1))) =

papp1((\(x:real^1). g (x$1)), \(x:real^1). ~(x$1 = w) /\ d (x$1))

The partial differentiation conversion combines the above facts to prove:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =
papp1 ((\x. (((&2 * x$1 pow (2 - 1)) * &1) * pi + &0 * x$1 pow 2) +
(&0 * x$1 + &1 * c) + &0 * inv (x$1) + --(&1 / x$1 pow 2) * &2),
(\x. ~(x$1 = &0)))
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The above function can be easily simplified, and this simplification is per-
formed by recursively calling the CAS conversion both on the function and on
the domain. For our example only the function can be reduced. For the recur-
sive call to the CAS conversion we do not include the facts about partiality to
prevent looping. The conversion proves:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =
papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 * x$1)),
(\x. ~(x$1 = &0)))

The last part of pdiff_conv tries to convert the term back to the original
representation. As described is Section 3.1 this is not always possible, but it will
be possible in our case. The algorithm for computing the original form examines
the tree structure of the total function and reconstructs a partial function with
the same structure. In our case:

# pconvert ‘(&2 * pi * (x:real^1)$1 + c + -- &2 * inv (x$1 * x$1))‘;;
val it : term = ‘& 2 * SOME pi * x + SOME c + --& 2 * pinv (x * x)‘

We now check if the domain of the guessed partial function is the same as the
original real one. To do this we apply the CAS conversion to the guessed term
with the partial function definitions and facts about them again:

# cas_conv it;;
val it : thm = |- & 2 * SOME pi * z + SOME c + --& 2 * pinv (z * z) =
papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 pow 2)),
(\x. ~(x$1 pow 2 = &0))) z

The domain of the converted function is the same as the domain of the func-
tion we that was computed by differentiation5. Therefore we can compose this
theorem with the previous result arriving at the final proved theorem:

|- pdiff (\z. SOME pi * z * z + SOME c * z + & 2 / z) =
(\z. & 2 * SOME pi * z + SOME c + --& 2 / (z * z))

And the user is presented with the right hand side of the equation.

3.3 How to Extend the System

In this section we will show examples that the system cannot handle automati-
cally. We will then show how the user can add theorems to the knowledge base to
add automation for simplification of those terms. Consider adding a new partial
function being the real square root:

new_definition ‘psqrt = papp1 ((\x. sqrt (x$1)), (\x. (x$1) >= &0))‘;;

5 The two domains can be expressed in a slightly different way, thus there may be
some theorem proving involved to show that they are equal. In our implementation
the only thing performed is the CAS conversion, that internally tries HOL LIGHT

decision procedures for reals and tautology solving.
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The original HOL LIGHT differentiation conversion DIFF_CONV is able to differ-
entiate the real square root producing a differentiation predicate with a
condition:

# DIFF_CONV ‘\x. sqrt x‘;;
val it : thm =
|- !x. &0 < x ==> ((\x. sqrt x) diffl inv (&2 * sqrt x) * &1) x

The partial differentiation conversion can not simplify the derivative of the
partial square root automatically without additional facts in its knowledge base.
This is because the result of the original differentiation conversion is only a con-
dition for the function to be differentiable. It does not prove that the function is
not differentiable elsewhere (namely in zero). To be able to simplify this function
the user needs to prove an additional theorem that would show that the function
is differentiable if and only if the variable is greater than zero. Namely:

|- (?v. ((\x. if x >= &0 then sqrt x else @v. F) diffl v) ((x:real^1)$1))
= x$1 > &0

Adding this to the knowledge base allows the partial differentiation conversion
to handle automatically the partial square root function.

4 Conclusion

The presented approach and formalized framework allow the automation of side-
conditions. Simple expressions with partial functions can be simplified transpar-
ently to the user. More complicated partiality conditions still appear in the
expressions.

The approach allows mathematical expressions in proof assistants to resemble
those seen in computer algebra. The language for writing equations and for
calculations (rewriting in HOL LIGHT) becomes simpler.

It can be useful for formalizing partial functions that we encounter in engi-
neering books, for example in Abramowitz and Stegun [1] or in the NIST DLMF
project [13].

4.1 Future Work

Our primary goal is to check how easily our approach can be extended to more
complicated partial operations. For example with integration it is hard to check
whether the objects are defined. Of course even then our approach gives a re-
sponse, but the existential expression in the result may be hard to simplify.

It is important to note, that the standard HOL LIGHT equality does not take
into account the option type, so any objects that do not exist will be equal.
Defining an equality that is not true for NONE is possible, and this is what has
been done in IMPS. On the other hand it leads to two separate notions of
equality, which makes the expressions more complicated.
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We would like to add more automation. All the simplifications that we per-
form can be done with functions of arbitrary number of variables. Those can
be proved on the fly by special conversions. Our formalization currently has all
simplifications rules proved for functions with at most two optional variables.
Also the papp definitions for more variables and facts about them are analogous
to their simpler version and their definitions can be created automatically by a
ML function that calls HOL LIGHT’s definition primitives.

We are looking for a policy for simplifying expressions. Currently when an ex-
pression is simplified in the total representation, but we cannot find an original
partial representation, the whole conversion fails and the expression is returned
unchanged. The same conversions would succeed with assumptions about the
domains of variables present in the CAS environment. It would be therefore
desirable to suggest assumptions about variables that would allow further sim-
plification of terms [3].

It would be most interesting to see if the presented approach can be extended
to address multivaluedness. Multivalued functions are rarely treated in proof
assistants. On the other hand multivalued expressions tend to be one of the
common sources of mistakes performed by computer algebra systems. There are
not too many theorems in prover libraries that concern multivalued functions.
The representation of multivalued functions could be done in a similar way as
partiality is done in our approach.
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Abstract. We present the Prover’s Palette, a framework for combining
mathematical tools, and describe an integration of the theorem prover
Isabelle with the computer algebra system QEPCAD-B following this
approach. Examples are used to show how results from QEPCAD can
be used in a variety of ways, with and without trust. We include new
functionality for instantiating witnesses automatically and auto-running
where applicable. We conclude that user-centric design yields systems
integrations which are extremely versatile and easy to use.

1 Introduction

Reasoning about real nonlinear polynomials is generally difficult in interactive
theorem provers. There is little automation, and the user must typically apply
large numbers of inference rules manually. This is a tedious and time-consuming
process. We had first hand experience of this while verifying computational ge-
ometry algorithms in the theorem prover Isabelle [22]. Of course, we are not the
first or only ones to level this criticism: two major proof developments, the Fly-
speck project [13] and the Prime Number Theorem [4], also make this complaint.

This class of problems in real algebra was shown to be decidable by Tarski
[26], however, and several decision procedures exist. Most computer algebra sys-
tems (CAS) include at least one, with QEPCAD-B [6] and REDUCE [16] among
the most sophisticated. Generally speaking though, the formal methods commu-
nity has been less inclined to implement such algorithms directly inside the-
orem provers. Of course, there are exceptions: notably the Cohen-Hörmander
algorithm has been implemented in HOL Light [14] and a related algorithm has
been implemented in OCaml alongside the theorem prover Coq, with correctness
proofs and proof producing capabilities [21]. The main benefit of implementing
a decision procedure in a formal setting is the high degree of confidence in the
results, but this comes at a price: systems can be limited in the types of problems
they can address. Although the current CAS procedures also suffer from being
impractical in some situations, as noted by Dolzmann et al. [11], their power
greatly exceeds that of the theorem prover implementations. For this reason, we
decided to extend the capabilities of the theorem prover Isabelle by integrating
it with an existing CAS, namely QEPCAD-B.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 315–330, 2008.
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Our systems integration follows a user-centric framework that we call the
Prover’s Palette. The aim is to provide a flexible environment for formal verifi-
cation, whereby the user is provided with the option to interact easily and intel-
ligently with a suite of tools at the GUI level. The Prover’s Palette attempts to
satisfy the general criteria for an Open Mechanised Mathematics Environment,
whereby the framework should be easily extensible and provide interfaces to ex-
isting CAS and theorem provers [5]. We have put these principles into action by
adopting the recently developed Eclipse Proof General Kit (PG Kit) [3] as the
foundations of the Prover’s Palette. We believe the Prover’s Palette architecture
enables especially powerful and versatile integrations, where the user can cus-
tomise how the external tool is used and how the result is applied in the theorem
prover. We demonstrate this by combining Isabelle with QEPCAD: with a single
click of a button, the external tool (QEPCAD) can be used to test the validity
of a subgoal and to produce witnesses or counter-examples. This can all be done
without introducing a proof dependency on the external tool. Where a user is
willing to trust the external tool and the translations, after inspecting the out-
put, the integration can be used in “oracle” mode to apply any simplified result
to the current proof simply with another click. The framework offers support
for both automated and interactive usage, and by adjusting other settings in the
GUI, the framework can provide further proof guidance and even loop invariant
discovery (see §6.3).

The paper is organised as follows: Section §2 gives brief descriptions of Isabelle,
QEPCAD-B and Eclipse PG Kit. The architecture of our Prover’s Palette is then
introduced in Section §3, followed by a section on our QEPCAD widget. Sec-
tions §5 and 6 present some illustrative examples on how the Isabelle/QEPCAD
framework can be used. An overview of related work is given in Section §7 and
we conclude by describing our plans for future work.

2 Preliminaries

2.1 Isabelle

Isabelle is a generic, interactive theorem prover, written in ML, which can be used
as a specification and verification system [25]. It is based on the LCF architecture,
which means proofs are constructed form a small, trusted kernel that defines
the basic inference rules. Soundness is enforced by using type-checking of the
underlying programming language. Isabelle’s built-in logic, the meta-logic, is
intended only for the formalisation of other logics, known as the object-logics.
There are a number of object logics in which Isabelle allows the user to encode
particular problems. Of specific interest to our work is the capacity for proofs
in higher order logic (HOL). This provides a framework powerful enough to
reason about algorithms and sophisticated mathematical notions. Isabelle also
provides an extensive library of theories and some automatic proof methods
which combine simplification and classical reasoning. These tools greatly help
mechanisation. Despite this, the power to reason automatically and efficiently
about non-linear arithmetic is still lacking.
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2.2 QEPCAD-B

QEPCAD-B is a tool for performing quantifier elimination over real closed fields
[6]. It is based on the technique of partial cylindrical algebraic decomposition
(CAD), which was originally implemented by Hong [17]. It is written in C and
uses the SACLIB library [7]. QEPCAD1 runs as a command-line tool, interac-
tively prompting for the variables and bindings, the problem, and a wide array
of configuration and operating parameters. It takes problems of the form

(Qkxk)(Qk+1xk+1). . .(Qrxr)φ(x1,. . .,xr)

where Qk,. . .,Qr are quantifiers, x1,. . .,xr are real variables and φ is a quantifier-
free formula consisting of a boolean combination of equalities and inequalities
of polynomials with integer coefficients. It is not guaranteed to handle all such
formulae, but in our experience it will handle most problems with the right con-
figuration choices; when successful, it produces an equivalent formula in which
no quantified variables occur.

2.3 Eclipse Proof General Kit

Eclipse Proof General Kit is a generic front-end for interactive theorem provers [3],
based on the Eclipse integrated development environment [12]. It offers a user-
friendy GUI, integrated with a powerful and extensible suite of editing, browsing
and debugging tools. The two main widgets for theorem proving in the IDE are
the proof script editor and the prover output view.

Eclipse PG Kit also provides a communications protocol and broker middle-
ware which manages proofs-in-progress and mediates between components. The
API follows the design principle of separating the prover from the user interface
(UI) and uses the message-passing Proof General Interaction Protocol (PGIP)
between the prover and the UI. The basic principle for representing proof scripts
in the PG Kit is to use the prover’s native language, and mark up the content
with PGIP commands which give the proof script the structure needed by the
interface. The format of the messages is defined by an XML schema. Any theo-
rem prover which wants to be compatible with Eclipse PG Kit must implement
certain XML markups to make the structure of the proof script explicit. To date,
this has only been done for the theorem prover Isabelle, but it is expected that
other provers will soon be compatible.

It should be noted that PG Kit is under active development, and Eclipse PG in
particular has usability issues at the date of this writing; however, with patience
we found it extremely powerful, and we expect a stable version imminently.

3 System Architecture

The Prover’s Palette is an approach which aims to combine theorem provers with
external tools at the level of the user interface. In the Eclipse PG
1 For readability we use “QEPCAD” to mean Brown’s QEPCAD-B v. 1.48.
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Fig. 1. Architecture of Prover’s Palette Systems Integration

Kit, our Prover’s Palette introduces a “View” (a graphical widget) for an exter-
nal tool: this widget is backed by code which handles communication between
the external tool and the PG Broker, and, more importantly, it presents de-
tails of the integration to the user interactively. The widget sits alongside the
proof script editor and is easy to use when needed, but unobtrusive when not.
It espouses the principle that, ultimately, the user knows how best to guide the
interactive proof development, but should be freed of the burden of tedious or
mundane details that might distract from the main proof effort.

Figure 1 shows the architecture of the integration. When a Prover’s Palette
widget starts, it registers a listener for changes to the proof state via the PG
broker. When a new goal is observed, it is translated to a representation suitable
for the external tool (QEPCAD, in this case), and presented to the user who
may customise it. If any pre-processing is needed, the user is given the option
to apply the appropriate prover commands (and the resulting proof state is
reflected in the widget). The problem is then sent to the external tool (a new
process is launched, in the case of QEPCAD, but other implementations could
access network services) and the output from the tool is monitored and displayed
to the user. When the final result is available, it is analysed and displayed along
with options for how to apply it in the proof script (as a trusted oracle, as a
subgoal, or any of the other modes presented in §6).

4 QEPCAD Widget

In Fig. 2, the “Start” tab in the QEPCAD widget shows the current subgoal
reported by the PG broker (see bottom box). Clicking the “Next” button takes
the user to the “Import” tab (Fig. 3). Here, the prover goal is dissected into
assumptions and conclusion and it is made explicit which parts can be safely
sent to QEPCAD. The variables and their bindings are also shown, and the user
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Fig. 2. Isabelle Eclipse Proof General with QEPCAD Widget

Fig. 3. QEPCAD Widget Import Tab

can choose whether to leave the variables bound or make them free. Clicking
“Next” then takes the user to the “Problem” Tab. This describes the problem as
it will be sent to QEPCAD and allows the user to edit any aspect of it. We note,
in passing, that the “Problem” tab can in fact be usd as a convenient front-end to
QEPCAD when it is running in stand-alone mode, i.e. without any associated
theorem prover. Configuration settings, such as memory and projection type,
can be adjusted in the “Config” tab.
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Finally, the “Preview” tab displays to the user the script which will be sent
to QEPCAD. As the QEPCAD process runs, this tab also displays QEPCAD’s
output. The process runs in the backgound so the user can work elsewhere and is
easily cancelled if desired. When the process completes, the “Finish” tab (Fig. 4)
is displayed: this shows key information from the QEPCAD output. The result
is translated back to the prover’s notation, and options for applying it to the
proof are presented to the user (see §4.2 for more details).

It is of course possible to skip some of the tabs, and, where needed, the widget
will attempt to make intelligent selections. In fact, if the original problem in the
“Start” tab seems amenable to proof by QEPCAD, the “Finish” button will be
enabled: QEPCAD can then be run with a single mouse click, making it very
easy for complete novices to use. In addition, the user can also choose to run
QEPCAD automatically in the background, alerting them only when a goal has
been reduced.

4.1 Translation and Pre-processing

Translation between Isabelle and QEPCAD notation is done by the Prover’s
Palette infrastructure, in Java. The current prover state output is parsed to give
a tree representation of the first subgoal2. For algebraic subterms — the parts of
the goal we are interested in — this is relatively straightforward. Special symbols
and uninterpreted functions are interpreted as prefix n-ary predicates. This may
not always be correct, but for our purposes we can safely ignore such sub-terms:
only the algebraic terms are relevant to QEPCAD in any case3.

The Prover’s Palette stresses flexibility, ease-of-use, and safety. To this end,
where types other than “real” are used, the QEPCAD widget allows the goal to
be sent to QEPCAD, but prevents the result from being used back in the Isabelle
proof. The widget does not prevent potentially useful computations. Where a
subterm is wholly incompatible with QEPCAD, the QEPCAD widget deselects
it, by default, and presents the user with a number of options: transforming
the subgoal to prenex normal form, expanding functions, reducing the subgoal
without that term, or editting the term manually. Where a subgoal is fully com-
patible with QEPCAD, the widget will set all variable bindings (inferring them
and their order where implicit or nested) and use QEPCAD to “solve” the prob-
lem. If a variable is used only in deselected terms, it is removed from the list
which will be sent to QEPCAD. However if a variable occurs both in a dese-
lected term and a selected term, the widget will initialize it as a free variable:
the reason for this is that the desired action in this instance is more likely to be
to attempt to “reduce” the problem in terms of that variable, i.e. using QEPCAD

2 Although PG Kit uses XML, it does not currently include sufficient structural in-
formation about the goal for us always to disambiguate. We are in talks with the
developers to provide this in future versions.

3 As will be discussed in §7, this approach to translation is sub-optimal in theory, but
expediant and reliable in practice. We have plans to adopt a more robust implemen-
tation as projects dedicated to this hard problem mature.
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to eliminate all variables for which it has all known information and returning a
result containing only those variables which have additional constraints.

4.2 Using the Result

The Prover’s Palette attempts to give much flexibility when it comes to using
the result of an external tool with a theorem prover. For QEPCAD, up to four
modes may be applicable and, thus, be available for use:

Oracle: the result and translation is to be believed by the prover (this
makes use of an oracle method that we have written in Isabelle, for taking
a statement and inserting it as a theorem)
Subgoal: when the result is a simplified form (not completely reduced
to “True” or “False”), a subgoal can be added asserting the equivalence of
the input to the output
Instantiate: if the result indicates an instantiation to use, this can au-
tomatically be applied
Thin: if subterms of the subgoal are sent and the result indicates that
certain assumptions and/or the conclusion are unnecessary, they can be
“thinned out” of the proof state

These modes are illustrated in examples later in the paper. The widget also
supports insertion of a comment in the proof script, containing details to re-run
the computation in QEPCAD at a later time.

5 QEPCAD as Automated Oracle

As a demonstration of the oracle mode in the Isabelle/QEPCAD integration,
we will focus on a theorem that we encountered while verifying Graham’s Scan
algorithm in Isabelle [22]. This algorithm is used to find the convex hull of a set
of points in two dimensions and relies heavily on the notion of a counter clockwise
(CC) system. In the book Axioms and Hulls, Knuth captures this CC system
through a succinct axiomatisation which defines properties of left turns [20].
It would have been possible to adopt Knuth’s axiomatic approach as a basis
to formally represent Graham’s Scan. However, we chose to follow Isabelle’s
methodology of maintaining consistency by developing new theories on top of
old ones through conservative extensions only. In our case we built upon a theory
of two dimensional vectors. The left turn property was then defined in terms of
the outer product which itself is defined in terms of Cartesian coordinates. We
write pqr to mean that the point r lies to the left of the directed line from p to
q, which is represented algebraically as:

pqr ≡ (qx - px)(ry - py) - (qy - py)(rx - px) > 0

Along with this definition, we used a development of Floyd-Hoare logic to for-
malise Graham’s Scan in Isabelle. This enabled the formal specification to closely
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resemble an implementation of the algorithm and also gave us a way of reasoning
mathematically about imperative constructs. Under this approach, verification
conditions (VCs) were automatically generated by Isabelle. By proving these
VCs, the correctness of the algorithm is established. However, validating the
VCs for Graham’s Scan required proving many difficult subgoals, including:

KnuthsAxiom5 : tsp ∧ tsq ∧ tsr ∧ tpq ∧ tqr −→ tpr

This is presented as Axiom 5 in Knuth’s book and is well known to be true.
Despite this, it is not easy to prove in Isabelle alone: the proof breaks down into
many case splits and took us several hours to complete, even when we set point t
to be the origin. With the Isabelle/QEPCAD integration, we can use QEPCAD
to solve this problem quickly.

In our system, the Isabelle problem appears automatically in the “Start” tab
of the QEPCAD widget. The widget first recommends that the left turn defini-
tion should be expanded, which translates the problem to algebraic form. The
“Finish” button is then enabled (see Fig. 2). Clicking the “Finish” button sends
the problem off to QEPCAD in solve mode, which requires all implicit variable
bindings to be made explicit. In this example, all bindings are automatically de-
duced to be universal. When a result is found—a matter of milliseconds in this
case—the “Finish” tab is displayed (see Fig. 4). Selecting the “Oracle” button will
generate the appropriate Isabelle command for the translated QEPCAD result
to be trusted in Isabelle. In this example, the Isabelle lemma is then proved.

6 Guiding Fully Formal Proofs

In many domains, formal correctness requirements disallow reliance on tools such
as QEPCAD. Nevertheless, there are many ways its results can be useful, from
simplifying the subgoal to finding witnesses and missing assumptions.

Fig. 4. QEPCAD Finish Tab
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6.1 Simplifying Problems

Removing Superfluous Assumptions. Consider the following problem taken
from our verification of Graham’s Scan:

stq ∧ str ∧ stp ∧ trp ∧ srq ∧ spr ∧ tpq ∧ ¬psq ∧ tqr −→ pqs

In this goal there are superfluous assumptions which obscure the relevant facts
needed in the proof. This is a common difficulty with interactive proof. However,
the “Import” tab of the QEPCAD widget provides a way for the user to easily
find a minimal set of assumptions which imply the conclusion. In this tab the user
can remove assumptions and test whether the resulting statement still holds. If
it does, the removed assumptions are not necessary in the proof. Following this
basic strategy, we can discover (within two minutes) that the Isabelle subgoal
above is equivalent to:

str ∧ tpq ∧ tqr ∧ srq ∧ spr −→ pqs

Whenever QEPCAD returns “True” with deselected assumptions, the widget
presents an option to “Thin” in the “Finish” tab. Clicking this causes the redun-
dant assumptions to be removed from the Isabelle goal automatically. Again, no
proof dependency on QEPCAD is introduced.

Discovering Inconsistent Assumptions. Another way in which QEPCAD
can simplify an Isabelle problem is by discovering if contradictory assumptions
exist within the goal. In Isabelle, proving that assumptions are inconsistent is
sometimes easier than trying to prove that the conclusion holds. In the verifica-
tion of Graham’s Scan, we found this to be a common situation, especially in
proofs that involved case splits. As an example, consider the problem:

str ∧ tpq ∧ tqr ∧ srq ∧ spr ∧ tsr −→ pqs

Using a similar procedure to that described in the previous section, we can easily
interact with the QEPCAD widget to discover if a contradiction is present in
the assumptions. This is achieved by deselecting the conclusion in the “Import”
tab so that only the assumptions of the goal are sent to QEPCAD. If QEPCAD
returns “False” then we know there must be a contradiction present. A simple,
interactive search can then be performed to deduce the minimal set of contra-
dicting assumptions. For the above example we easily discover that the first and
last assumptions contradict each other: str ∧ tsr −→ False. In this situation,
the “Thin” button appears again and provides the user with a fully formal, au-
tomatic way to alter the original Isabelle goal to this new one. Proving the new
goal in Isabelle is straightforward in this instance.

Reducing Number of Variables. Sending a formula to QEPCAD produces
one of three results: True, False, or a simplified formula. For the latter case,
this simplified formula is only in terms of the free variables. This can be useful
for reducing the number of variables in an Isabelle problem, thereby easing the
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formal reasoning process. To utilise this feature, one has to over-ride the de-
fault Isabelle/QEPCAD “solve” mode (where all variables are quantified). This
is achieved by going to the “Import” tab, which displays a table of variables and
their associated bindings, and altering the bindings accordingly.

We motivate this functionality further by considering a collision problem de-
scribed by Collins and Hong [17]. The problem is from robot motion planning
and queries whether two moving objects will ever collide. Consider a moving
circle (1) and a moving square (2), represented algebraically as:

(1) (x− t)2 + y2 ≤ 1
(2) −1 ≤ x − 17

16 t ≤ 1 ∧ −9 ≤ y − 17
16 t ≤ −7

We want to know if these objects will ever collide. This is asking whether:

∃ t x y. t ≥ 0 ∧ (1) ∧ (2)

QEPCAD quickly confirms that this is “True”, there will be a time when the circle
and square collide. In Isabelle alone, this is a difficult proof. If the user trusts
the Isabelle/QEPCAD integration, of course, they can simply move on; but even
when the user requires a fully formal proof, the integration can be of assistance.
The parametric query can be transformed into the implicit representation of the
problem, by keeping the variables x and y free and only binding t. Here, the
“Subgoal” option is offered in addition to the “Oracle” option. This introduces
a new subgoal in the proof which asserts that the original Isabelle subgoal is
equivalent to the reduced form found by QEPCAD (with t eliminated, in this
example). Proving this new subgoal formally in Isabelle allows the original goal
to be transformed into the reduced problem. Proving the equivalence may still
be challenging, but in many situations it is simpler than proving the original
goal.

6.2 Producing Witnesses

After some experimentation, we realised that it would be useful if QEPCAD
could give us witnesses to true formulae which are completely existentially quan-
tified. We discussed this with Chris Brown, the developer of QEPCAD-B, and
he has added this feature (in version 1.48). Our QEPCAD widget invokes this
feature when applicable and shows the witness in the “Finish” tab. The “Instan-
tiate” button is displayed in the “Finish” tab, and instantiations can be inserted
and processed in the proof script.

Consider again the collision problem of the previous section. QEPCAD tells
us that one possible solution is: t= 96

17 , x= 96
17 and y = −1. Instantiating these

variables in Isabelle completes the proof. In this example, the witness feature
is more useful than our reduction to implicit form, but, of course, there are
many instances where a reduced form is preferable (and it should be remem-
bered that witnesses can only be found for problems which are fully existentially
quantified).
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6.3 Discovering Missing Assumptions

For complex proof developments it is a fairly common scenario to discover that
the first attempt at formally specifying a problem is incorrect. This is espe-
cially true when verifying algorithms using Hoare logic. In this setting, the user
has to provide the correct loop invariant (i.e. the facts that do not change on
each iteration of the loop) in order to prove the correctness of the algorithm.
Discovering the correct loop invariant is a challenging task, which is generally
accepted as non-trivial. From our own experience in verifying Graham’s Scan,
we observed that our initial loop invariant needed refinement several times – a
process guided by failed proof attempts. Often, the root cause for failure was a
missing assumption, but identifying this was hard.

With our new Isabelle/QEPCAD integration, discovering the missing assump-
tions of invalid theorems is made easy. We provide two techniques: a counter-
example generator and a search strategy which explores the information gained
by altering the bindings of variables.

The counter-example feature is applicable when a false conjecture contains
only universally quantified variables. In these situations, the user can click a
button which automatically translates the negated original conjecture into the
equivalent existential form:

(¬ ∀ x1 ... xn. Ψ(x1,. . .,xn)) = (∃ x1 ... xn. ¬Ψ(x1,. . .,xn))

where Ψ(x1, ... ,xn) is a quantifier free formula. It then calls the witness func-
tion of QEPCAD to obtain a counterexample to the original conjecture. Let us
demonstrate this feature through an illustrative example taken from our verifi-
cation of Graham’s Scan:

bea ∧ abd ∧ cab ∧ ade −→ ace

Using our new framework, the QEPCAD widget quickly tells us this lemma is
false. In this particular case, we know from the context that a subgoal similar
to this is required. The counterexample generator tells us that the following
instantiations will falsify the original lemma:

a = (0, 0) b = (−1,−1) c = (−1,−3) d = (−1,− 5
2 ) e = (−1,− 23

8 )

By drawing this particular case we gain an insight into why the conjecture is
false. It is clear to see that all the assumptions hold, but the conclusion does not.
From the diagram we can see that we want c to lie in the dark grey region. The
extra assumption ¬adc would constrain the position of c and make the conjecture
true.

Despite the counter-example generator enabling us to understand why the
conjecture is false, it is a method that is not always applicable. Existential
quantifiers may be present in the conjecture or the number of variables and
assumptions may be so large that it would not be practical to draw the situation
and gain an appreciation of what is lacking in the assumptions.
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An alternative approach is to use the QEPCAD
widget interactively to alter the bindings of variables:
by keeping certain variables free and others bound
we can identify what is missing. There is some art in
selecting which variables should be free. In the pre-
vious example, variables a and b are used the most,
so we translate a to be the origin and heuristically
choose to keep b bound. With the other variables
free, QEPCAD then returns:

dycx - dxcy ≥ 0 ∨ dxey - dyex ≤ 0 ∨ eycx - excy > 0

The second and third disjuncts are unenlightening
(a negated assumption and the conclusion), but
the first disjunct, however, is a hitherto missing
condition to our Isabelle lemma. QEPCAD has told
us that the lemma can be proven given ¬adc with a

at the origin. This is the same missing assumption we discovered using the
counter-example generator. With this new fact, the framework has therefore led
us to the discovery of a missing component in the loop invariant.

7 Related Work

The idea of integrating systems is certainly not new. The design of environments
to combine several heterogeneous systems has been widely studied over the past
decade and there is even a conference (FroCos) dedicated for research in this
specific area. We do not attempt to survey the breadth of concepts and imple-
mentations here, but will instead focus on related work in the our domain, that
of combining theorem provers and CAS.

Calmet et al. distinguish three main approaches to how logical and symbolic
computations can be combined [9]: as an extension of a CAS to enable deduction
(e.g. the Theorema project [8]), by implementing a CAS inside a theorem prover
(e.g. the work of Harrison [14] and Kaliszyk et al. [18]), and finally through the
combination of existing systems. The first two approaches have the attractive
quality that they guarantee soundness, but also the major drawback that they
require re-implementing substantial amounts of code. The second approach also
tends to suffer from inefficiency, as mentioned in §1.

Our own work adopts the third methodology and takes advantage of the rich
variety of existing systems. One of the biggest challenges with this endeavour is
in translating between languages and representations. Our approach to transla-
tion, which uses syntactic conversions, ensures variables are of the correct type
(see §4.1), but does not ensure the semantics of the operators are identical. This
is a difficult problem and has been a concern of the computer algebra commu-
nity for some time. There are several ambitious projects aimed at producing
a standard for language and translation, notably OpenMath [24] and the OM-
SCS framework [9]. We hope to take advantage of such work as more systems
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become compatible with standards. For now, we note that where systems vary
and “Oracle” mode is used, results must be checked by the user of our Prover’s
Palette.

Systems integrations can be further classified on the basis of two questions:

1. How are different systems invoked?
2. How are results from different systems combined?

A common means of invoking systems is to introduce text commands in the proof
script, for example the HOL/Maple [15] and PVS/QEPCAD [27] integrations.
A drawback is that there can be a high barrier to entry as the user is required
to learn new commands. This is especially difficult when the commands offer
additional options to change operating parameters. Our approach differs in that
it supports novices by allowing problems to be sent using the click of a mouse.
The new Sledgehammer tool, which combines Isabelle with various automatic
theorem provers, also works on this principle [23]: the user clicks an option from
a scroll-down menu in the PG Emacs environment and, when a result is found,
the user is alerted and the appropriate Isabelle commands are made available for
cut-and-paste into the proof script. There are major differences between our work
and that of Sledgehammer: most notably, we allow configuration parameters and
translations to be adjusted, and we support multiple ways of using results (as
well as single-click insertion and processing). When interfacing with a highly
configurable tool such as QEPCAD, such flexibility is extremely useful, as we
have shown; this in particular distinguishes our integration from [27].

The alternative to invoking a system interactively is to detect when it should
be called automatically. Ballarin’s integration of Isabelle and Maple follows this
approach by extending Isabelle’s simplification rules [5]. The Prover’s Palette
offers similar functionality, but instead of interfacing at the level of the prover,
the widget is activated at the UI level: the user is then able to inspect the result
and choose how best to use it.

When it comes to the integration of CAS results into theorem provers, the
issue of trust becomes important. Having complete trust in a system and the
translations between systems allows the results to be used easily within a proof
(as shown with our “Oracle” mode). However, to maintain formally correct proofs
is harder. Two methods which can been used to do this are:

(a) Checking: the CAS is used to compute a result which is then
checked deductively (often in the prover)

(b) Discovering: a hierarchic proof plan is constructed using the re-
sults of the CAS and is then used to guide the formal proof

Our witness generator and “subgoal” option are examples of (a). In a similar
vein, Harrison’s so-called skeptic’s approach to combining systems uses Maple
to return simplifications and factorisations of polynomials which are then checked
in HOL and used to guide fully formal proofs [15]. This approach is only useful
when the verification of results is simpler than its discovery. We also employ
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an approach related to method (b) in our framework by aiding the discovery
of counter-examples and missing assumptions, thereby formulating a strategy
on how to fix failed proof attempts. Other work which has looked at how a
CAS can formulated proof plans is that of Kerber et. al [19]. They view the CAS
algorithms as methods which can give knowledge on how a result was found. This
is similar to the work where CALVIN, an experimental CAS, is used to generate
a trace along with the result [9]. This trace can then be used to reconstruct the
main reasoning steps in the theorem prover IMPS.

The biggest drawback of our Prover’s Palette approach, in our opinion, is
the limited granularity at which the integration applies: it helps with a goal in
the theorem prover; it does not combine proofs from different systems. Given
the state of the art of IDEs and verifiers, this is realistic, but with ongoing
developments in “Proof Engineering”, we expect the range of possibilities that
become available through integrations to be greatly extended. What is unique
about our integration is the flexibility on how to use a result: we provide the
functionality to trust, check and discover.

8 Future Work

Our main thrust of future work is to explore how our approach generalises.
However, there are certain issues with the QEPCAD integration that we want
to understand first, as we expect this will make our generalisation better. One
major criticism of QEPCAD is that its double-exponential complexity makes it
impractical in many situations. Performance can be improved by reducing the
number of variables, decreasing the degree of polynomials, and using QEPCAD’s
specialised quantifiers such as “almost all”. While users can transform problems
manually, as we did with Knuth’s Axiom 5, we believe there is scope for au-
tomating such transformations and we are working on ways of doing this in a
formally correct manner.

We also plan to increase the class of Isabelle problems which can automati-
cally be sent to QEPCAD. Some operators, including division, absolute value,
and rational powers, can be included by adding suitable preprocessing rules.
Permitting formulae which include exponentials, logarithms, and trigonometric
functions can be achieved by replacing occurrences of them with polynomial
upper and lower bounds. This approach is adopted by Akbarpour et al. [1].
They have integrated the theorem prover Metis with a formally proven deci-
sion procedure [14]. However, speed and coverage are issues with this particular
integration: two examples are presented which their decision procedure cannot
handle. QEPCAD returns false for these examples, indicating tighter bounds are
needed. It could be attractive to combine their “bounds” approach, for reasoning
about logarithms and exponentials, with our work, making QEPCAD available
for use with the bounds they supply.

We believe our approach will work well for integrating other systems and are
excited to test this hypothesis. We are currently exploring visualisation tools,
model checkers, and other CAS for inclusion in the Prover’s Palette. We note
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that, while QEPCAD is a good tool for the problems in §5 and §6, other tools
could perform the same computations, and the results from those tools could be
used in a proof integration in identical ways. The majority of the code for the
QEPCAD integration is actually independent of QEPCAD: many of the GUI
components, translation code, and other library routines are all applicable to
other CAS, so we anticipate that incorporating other systems into the Prover’s
Palette will not be unduly difficult.

As more theorem provers are linked with PG Kit, we would also like to ensure
they can be supported. In situations where theorem provers can communicate in
a standard form, such as OpenMath or OMSCS, the integration becomes much
easier. If the PGIP standard is extended to give richer structural details of proof
states in a standard form, then a PGIP-compatible prover could directly be used
with QEPCAD (or any Prover’s Palette widget). Prover-specific customisation is
needed only for the optional (though useful) preprocessing and result application
steps.

Once we begin to expand the suite of tools in the Prover’s Palette we will
undoubtedly have to consider the complexity of the cooperations. A number
of projects, including KOMET [9], PROSPER [10], Logic Broker [2], and PG
Kit, could assist in such multi-system integrations: the Prover’s Palette could
offer a “meta tool” widget, recommending systems to use at crucial points in
the proof development (and, where possible, automatically opening the corres-
ponding widget).

Acknowledgements. We would like to thank the reviewers for their useful
comments. This work was funded by the EPSRC grant EP/E005713/1.
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Abstract. The mathematicians’ Digital mathematics library (DML),
which is not to be confused with libraries of mathematical objects repre-
sented in some digital format, is the generous idea that all mathematics
ever published should end up in digital form so that it would be more
easily referenced, accessible, usable. This concept was formulated at the
very beginning of this century, and yielded a lot of international activ-
ity that culminated around years 2002–2005. While it is estimated that
a substantial part of the existing math literature is already available
in some digital format, nothing looking like one digital mathematics li-
brary has emerged, but a multiplicity of competing electronic offers, with
unique standards, features, business models, access policies, etc.—even
though the contents themselves overlap somewhat, while leaving wide ar-
eas untouched. The millenium’s appealing idea has become a new Tower
of Babel.

It is not obvious how much of the traditional library functions we
should give up while going digital. The point of view shared by many
mathematicians is that we should be able to find a reasonable archiving
policy fitting all stakeholders, allowing to translate the essential features
of the past library system—which is the central infrastructure of all math
departments worldwide—in the digital paradigm, while enhancing overall
performances thanks to dedicated information technology.

The vision of this library is rather straightforward: a third party to the
academic publishing system, preserving, indexing, and keeping current
its digital collections through a distributed network of partners curating
the physical holdings, and a centralised access facility making use of
innovative mining and interlinking techniques for easy navigation and
discovery.

However, the fragmentation level is so high that the hope of a unique
portal providing seamless access to everything relevant to mathemati-
cal research seems now completely out of reach. Nevertheless, we have
lessons to learn from each one of the already numerous projects running.
One of them is that there are too many items to deal with, and too many
different initial choices over metadata sets and formats: it won’t be pos-
sible to find a nontrivial greatest common divisor coping with everything
already available, and manual upgrading is highly improbable.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 331–332, 2008.
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This is where future management techniques for loosely formalised
mathematical knowledge could provide a new impetus by at last en-
abling a minimum set of features across projects borders through au-
tomated procedures. We can imagine e.g. math-aware OCR on scanned
pages, concurrently with interpreters of electronic sources of born digital
texts, both producing searchable full texts in a compatible semistruc-
tured format. The challenge is ultimately to take advantage of the high
formalisation of mathematical texts rather than merely ignoring it!

With these considerations in mind, the talk will focus on achievements,
limitations, and failures of existing digital mathematics libraries, taking
the NUMDAM1 and CEDRAM2 programs as principal examples, hence
the speaker himself as principal target. . .

1 http://www.numdam.org
2 http://www.cedram.org

http://www.numdam.org
http://www.cedram.org
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1 Introduction

The automation of reasoning as deduction in logical theories is well established.
Such logical theories are usually inherited from the literature or are built man-
ually for a particular reasoning task. They are then regarded as fixed. We will
argue that they should be regarded as fluid.

1. As Pólya and others have argued, appropriate representation is the key to
successful problem solving [Pólya, 1945]. It follows that a successful problem
solver must be able to choose or construct the representation best suited to
solving the current problem. Some of the most seminal episodes in human
problem solving required radical representational change.

2. Automated agents use logical theories called ontologies. For different agents
to communicate they must align their ontologies. When a large, diverse and
evolving community of autonomous agents are continually engaged in online
negotiations, it is not practical to manually pre-align the ontologies of all
agent pairs – it must be done dynamically and automatically.

3. Persistent agents must be able to cope with a changing world and changing
goals. This requires evolving their ontologies as their problem solving task
evolves. The W3C call this ontology evolution1.

Furthermore, in evolving a logical theory, it is not always enough just to add or
delete axioms, definitions, rules, etc. — a process usually called belief revision.
Sometimes it is necessary to change the underlying signature of the theory, e.g.,
to add, remove or alter the functions, predicates, types, etc. of the theory.

Below we present two projects to automate signature evolution in logic the-
ories: one in the domain of online agents and one in the domain of theories of
physics. Common themes emerge from these two projects that offer hope for a
general theory of signature evolution.
� The research reported in this paper was supported by EPSRC grant EP/E005713/1.

It will soon be supported by EPSRC grant EP/G000700/1 I would like to thank
Michael Chan, Lucas Dixon and Fiona McNeill for their feedback on this paper and
their contributions to the research referred to in it.

1 http://www.w3.org/TR/webont-req/#goal-evolution
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2 ors: Diagnosing and Repairing Agent Ontologies

We first investigated the automation of signature evolution in ors (Ontology Re-
pair System): an automated system for repairing faulty ontologies in response to
unexpected failures when executing multi-agent plans [McNeill & Bundy, 2007].
ors forms plans to achieve its goals using the services provided by other agents.
In forming these plans, ors draws upon its knowledge base, which provides a rep-
resentation of its world, including its beliefs about the abilities of other agents
and under what circumstances they will perform various services. To request
actions or ask questions of the other agents, ors uses a simple performative
language implemented in kif

2, an ontology language based on first-order logic.
The representation of the world used by ors may be faulty, not just in con-

taining false beliefs, but also in using a signature that does not match that used
by some of its collaborating agents. This mismatch will inhibit inter-agent com-
munication, leading to faulty plans that will fail during execution. ors analyses
its failed plans, communicates with any agents that unexpectedly refused to per-
form a service, and proposes repairs to its ontology, including the signature of
that ontology. Repairs can include: adding, removing or permuting arguments
to predicates or functions, merging or splitting of predicates or functions and
changing their types, as well as some belief revisions, such as adding or removing
the precondition of an action.

Adding arguments to and splitting functions are examples of refinement, in
which ontologies are enriched. Unfortunately, refinement operations are only par-
tially defined. For instance, when an additional argument is added to a function
it is not always clear what value each of its instances should take, or indeed
whether any candidate values are available. When an old function is split into
two or more new functions, each occurrence of the old function must be mapped
to one of the new ones. It is not always clear how to perform this mapping.

The evaluation of ors consisted of attempts to reproduce automatically the
manual repairs we observed in kif ontologies. Although this evaluation was
successful, it was hampered by a lack of examples of before and after versions of
ontologies, and of records of the fault in the before version, how it was diagnosed
and how it was repaired to produce the after version. This led us to investigate
domains in which ontological evolution was better documented. We picked the
domains of physics and law. Our progress in the physics domain is the topic of
the next section.

3 galileo: Signature Evolution in Physics

We are now applying and developing our techniques in the domain of physics
[Bundy, 2007, Bundy & Chan, 2008]. This is an excellent domain because many
of its most seminal advances can be seen as signature evolution, i.e., changing
the way that physicists view the world. These changes are often triggered by
a contradiction between existing theory and experimental observation. These
2 http://logic.stanford.edu/kif/kif.html

http://logic.stanford.edu/kif/kif.html
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contradictions, their diagnosis and the resulting repairs have usually been well
documented by historians of science, providing us with a rich vein of case studies
for the development and evaluation of our techniques, addressing the evaluation
problem identified in the ors project. The physics domain requires higher-order
logic: both at the object-level, to describe things like planetary orbits and cal-
culus, and at the meta-level, to describe the repair operations.

3.1 Repair Plans

We are developing a series of repair plans which operate simultaneously on a
small set of small higher-order theories, e.g., one representing the current theory
of physics, another representing a particular experimental set-up. Before the
repair, these theories are individually consistent but collectively inconsistent.
Afterwards the new theories are also collectively consistent. Each repair plan
has a trigger formula and some actions: when the trigger is matched, the actions
are performed. The actions modify the signatures and axioms of the old theories
to produce new ones. Typical actions are similar to those described above for
ors. The repair plans have been implemented in the galileo system (Guided
Analysis of Logical Inconsistencies Leads to Evolved Ontologies) using λProlog
[Miller & Nadathur, 1988] as our implementation language, because it provides
a polymorphic, higher-order logic.

This combination of repair plans and multiple interacting logic theories helps
to solve several tough problems in automated signature evolution.

– The overall context of the plan completes the definition of the, otherwise only
partially defined, refinement operations. For instance, it supplies the values
of additional arguments and specifies which new function should replace
which old one. Organising the theory as several interacting, small theories
further guides the refinement, e.g., by enabling us to uniformly replace all
the occurrences of an old function in one theory in one way, but all the
occurrences in another theory in a different way.

– Grouping the operations into a predefined repair plan helps control search.
This arises not only from inference, but also from repair choices. It also
occurs not only within the evolving object-level theory but also in the meta-
level theory required to diagnose and repair that object-level theory. This
solution is adopted from our work on proof plans [Bundy, 1991].

– Having several theories helps us control inconsistency. A predictive theory
and an observational one can be internally consistent, but inconsistent when
combined. Since all sentences are theorems in an inconsistent theory, the
triggers of all repair plans would be matched, creating a combinatorial ex-
plosion. This problem can be avoided when a trigger requires simultaneous
matching across a small set of consistent ontologies.

– It is also enabling us to prove the minimality of our repair plans, i.e., to
show that the repairs do not go beyond what is necessary to remove the
inconsistency. We have extended the concept of conservative extension to
signature evolution. We can now prove that the evolution of each separate
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theory is conservative in this extended sense. Of course, we do not want the
evolution of the combined theory to be conservative, since we want to turn
an inconsistent combined theory into a consistent one.

3.2 Some Repair Plans and Their Evaluation

We have so far developed two repair plans, which we call Where’s my stuff?
(wms) and Inconstancy. These roughly correspond to the refinement operations
of splitting a function and adding an argument, respectively. We have found
multiple examples of these repairs across the history of physics, but are always
interested in additional ones.

The wms repair plan aims at resolving contradictions arising when the pre-
dicted value returned by a function does not match the observed value. This is
modelled by having two theories, corresponding to the prediction and the ob-
servation, with different values for this function. To break the inconsistency, the
conflicting function is split into three new functions: visible, invisible and total.
The conflicting function becomes the total function in the predictive theory and
the visible function in the observation theory3. The invisible function is defined
as the difference between them, and this new definition is added to the predictive
theory. The intuition behind this repair is that the discrepancy arose because
the function was not being applied to the same stuff in the predictive and the
observational theories — the invisible stuff was not observed.

wms has been successfully applied to conflicts between predictions of and
observations of the following functions: the temperature of freezing water; the
energy of a bouncing ball; the graphs relating orbital velocity of stars to distance
from the galactic centre in spiral galaxies; and the precession of the perihelion of
Mercury. In these examples the role of the invisible stuff is played by: the latent
heat of fusion, elastic potential energy, dark matter and an additional planet,
respectively.

The Inconstancy repair plan is triggered when there is a conflict between
the predicted independence and the observed dependence of a function on some
parameter, i.e., the observed value of a function unexpectedly varies when it
is predicted to remain constant. This generally requires several observational
theories, each with different observed values of the function, as opposed to the
one observational theory in the wms plan. To effect the repair, the parameter
causing the unexpected variation is first identified and a new definition for the
conflicting function is created that includes this new parameter. The nature of
the dependence is induced from the observations using curve-fitting techniques.

Inconstancy has been successfully applied to the following conflicts between
predictions and various observations: the ratio of pressure and volume of a gas;
and again the graphs relating orbital velocity of stars to distance from the galac-
tic centre in spiral galaxies. The unexpected parameter of the function is the
temperature of the gas and the acceleration between the stars, respectively. The
first of these repairs generalises Boyle’s Law to the Ideal Gas Law and the second

3 There are situations in which these roles are inverted [Bundy, 2007].
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generalises the Gravitational Constant to Milgrom’s mond (MOdified Newto-
nian Dynamics). Interestingly, wms and Inconstancy produce the two main rival
theories on the spiral galaxy anomaly, namely dark matter and mond. Since this
is still an active controversy, its unfolding will help us develop mechanisms to
choose between rival theory repairs. We are currently experimenting also with
applying Inconstancy to the replacement of Aristotle’s concept of instantaneous
light travel with a finite (but fast) light speed, using conflicts between the pre-
dicted and observed times of eclipses by Jupiter’s moon Io.

4 Conclusion

We have argued for the importance of automated evolution of logical theories
to adapt to new circumstances, to recover from failure and to make them better
suited to the current problem. We argue that this requires more than just belief
revision — although this is part of the story. We also need signature revision,
i.e., changes to the underlying syntax of the theory. We have begun the work
of automating signature evolution in the ors and galileo projects. We have
developed repair plans over multiple theories, which address some of the tough
problems of partial definedness, combinatorial explosion, coping with inconsis-
tency and ensuring minimality, that beset this endeavour.

In the future, we plan to: develop additional repair plans, research additional
case studies from the history of physics, refine our currently rather ad hoc logical
theories, thoroughly evaluate our repair plans on a significant corpus of case
studies, and explore notions of minimal repair and other aspects of a theory of
signature evolution. Ideas for future repair plans include: the converses of wms

and Inconstancy; the use of analogy to create new theories; and the correction
of faulty causal dependencies.
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Abstract. We introduce and study a tactic language, Hitac, for con-
structing hierarchical proofs, known as hiproofs. The idea of hiproofs is
to superimpose a labelled hierarchical nesting on an ordinary proof tree.
The labels and nesting are used to describe the organisation of the proof,
typically relating to its construction process. This can be useful for un-
derstanding and navigating the proof. Tactics in our language construct
hiproof structure together with an underlying proof tree. We provide
both a big-step and a small-step operational semantics for evaluating
tactic expressions. The big-step semantics captures the intended mean-
ing, whereas the small-step semantics hints at possible implementations
and provides a unified notion of proof state. We prove that these notions
are equivalent and construct valid proofs.

1 Introduction

Interactive theorem proving is a challenging pursuit, made additionally chal-
lenging by the present state-of-the-art. Constructing significant sized computer
checked proofs requires struggling with incomplete and partial automation, and
grappling with many low-level system specific details. Once they have been writ-
ten, understanding and maintaining such proofs is in some ways even harder:
small changes often cause proofs to break completely, and debugging to find the
failure point is seldom easy.

Moreover, notions of proof vary from one theorem prover to another, locking
users into specific provers they have mastered. What is needed is a more abstract
notion of proof which is independent of a particular prover or logic, but supports
the relevant notions needed to interactively explore and construct proofs, thus
improving the management of large proofs. In this paper, we study the notion of
hiproof [1], which takes the hierarchical structure of proofs as primary. Although
any system in which tactics can be defined from other tactics leads naturally to
a notion of hierarchical proof, this is the first work to study the hierarchical
nature of tactic languages in detail. By developing an idealised tactic language,
therefore, we aim to work towards a generic proof representation language.
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(a) (b) (c)

Fig. 1. Example Hiproofs

Figure 1 shows three example hiproofs which illustrate the basic ideas. Dia-
gram (a) shows the structure of an induction procedure: it consists of the ap-
plication of an induction rule, followed by a procedure for solving the base case
and a procedure for solving the step case. The step case uses rewriting and
the induction hypothesis to complete the proof. Diagram (b) shows a procedure
for solving a positive propositional statement, using implication and then con-
junction introduction, solving one subgoal using an axiom and leaving another
subgoal unsolved, indicated by an arrow exiting the “Prop” box. The second
subgoal is then solved using reflexivity. Diagram (c) shows two labelled hiproofs
labelled l and m, respectively. l applies rule a, which produces two subgoals, the
first of which is solved inside l with b, and the second of which is solved by the
proof labelled m (consisting of a single rule c). We will use this third example
as a test case later.

A hiproof is abstract: nodes are given names corresponding to basic proof
rules, procedures or compositions thereof. Each node may be labelled with a
name: navigation in the proof allows “zooming in” by opening boxes to reveal
their content. Boxes which are not open are just visualised with their labels;
details inside are suppressed. Hiproofs are an abstraction of a proof in an un-
derlying logic or derivation system; we call a hiproof valid if it can be mapped
on to an underlying proof tree, where nodes are given by derivable judgements.

The central topic, and novelty, introduced in this paper is a tactic program-
ming language for constructing valid hiproofs. The language is general and not
tied to a specific system. It is deliberately restrictive: at the moment we seek
to understand the connection between hierarchical structure and some core con-
structs for tactic programming, namely, alternation, repetition and assertion;
features such as meta-variable instantiation and binding are left to future work.
Part of the value of our contribution is the semantically precise understanding
of this core.
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Outline. The next section introduces a syntax for hiproofs and explains the no-
tion of validity. By extending this syntax we introduce tactics which can be used
to construct programs. In Section 3 we study notions of evaluation: a tactic can
be applied to a goal and, if successful, evaluated to produce a valid hiproof. We
consider two operational semantics: a big-step relation which defines the mean-
ing of our constructs, and a finer-grained small-step semantics with a notion of
proof state that evolves while the proof is constructed. In Section 4 we demon-
strate how our language can be used to define some familiar tactics. Section 5
concludes and relates our contribution to previous work.

2 Syntax for Hiproofs and Tactics

Hiproofs add structure to an underlying derivation system, introduced shortly.
Hiproofs are ranged over by s and are given by terms in the following grammar:

s ::= a atomic
id identity
[l] s labelling
s ; s sequencing
s ⊗ s tensor
〈〉 empty

We assume a ∈ A where A is the set of atomic tactics given by the underly-
ing derivation system. The remaining constructors add the structure introduced
above: labelling introduces named boxes (which can be nested arbitrarily deep);
sequencing composes one hiproof after another, and tensor puts two hiproofs
side-by-side, operating on two groups of goals. The identity hiproof has no ef-
fect, but is used for “wiring”, to fill in structure. It can be applied to a single
(atomic) goal. The empty hiproof is the vacuous proof for an empty set of goals.
Hiproofs have a denotational semantics given in previous work [1]; the syntax
above serves as an internal language for models in that semantics. The denota-
tional semantics justifies certain equations between terms, in particular, empty
is a unit for the tensor, and tensor and sequencing are associative.

When writing hiproof terms we use the following syntactic conventions: the
scope of the label l in [l] s extends as far as possible and tensor binds more tightly
that sequencing.

Example 1. The hiproof in Fig. 1(c) is written as

([l] a ; b ⊗ id) ; [m] c.

Notice the role of id corresponding to the line exiting the box labelled l.

The underlying derivation system defines sets of atomic tactics a ∈ A and atomic
goals γ ∈ G. Typically, what we call a goal is given by a judgement form in the
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γ1 · · · γn

γ aγ ∈ A

a � γ −→ γ1 ⊗ · · · ⊗ γn

(V-Atomic)

id � γ −→ γ (V-Identity)

s � γ −→ g

[l] s � γ −→ g
(V-Label)

s1 � g1 −→ g s2 � g −→ g2

s1 ; s2 � g1 −→ g2
(V-Sequence)

s1 � g1 −→ g′
1 s2 � g2 −→ g′

2

s1 ⊗ s2 � g1 ⊗ g2 −→ g′
1 ⊗ g′

2
(V-Tensor)

〈〉 � 〈〉 −→ 〈〉 (V-Empty)

Fig. 2. Validation of Hiproofs

underlying derivation system. We work with lists of goals g written using the
binary tensor:

g ::= γ g ⊗ g 〈〉
The tensor is associative and unitary, with 〈〉 the unit (empty list). We write
g : n to indicate the length of g, i.e., when g = γ1 ⊗ · · ·⊗ γn or g = 〈〉 for n = 0,
called the arity. Elementary inference rules in the underlying derivation system
can be seen as atomic tactics of the following form:

γ1 · · ·γn

γ a

which given goals γ1, . . . , γn produce a proof for γ. There are, of course, other
atomic tactics possible. However, for a particular atomic tactic a, there may be
a family of goals γ to which it applies; we write aγ to make the instance of a
precise. A restriction is that every instance of a must have the same arity, i.e.,
number of premises n. By composing atomic tactics, we can produce proofs in
the derivation system. Thus, each hiproof s has a family of underlying proofs
which consist of applications of the instances of the underlying atomic tactics.
We say that s validates proofs from g2 to g1, written s � g1 −→ g2. Validation
is defined by the rules in Fig. 2.

Validation is a well-formedness check: it checks that atomic tactics are ap-
plied properly to construct a proof, and that the structural regime of hiproofs is
obeyed. Notice that, although g1 and g2 are not determined by s, the arity re-
striction means that every underlying proof that s validates must have the same
shape, i.e., the same underlying tree of atomic tactics. This underlying tree is
known as the skeleton of the hiproof [1]. The (input) arity s : n of a hiproof s
with s � g1 −→ g2 is n where g1 : n; note that again by the restriction on
atomic tactics, a hiproof has a unique arity, if it has any.
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Example 2. Suppose we have a goal γ1 which can be proved like this:

γ2
b γ3

c

γ1
a

Then ([l] a ; b ⊗ id) ; [m] c � γ1 −→ 〈〉, with arity 1.

To show how the abstract hiproofs may be used with a real underlying derivation
system, we give two small examples with different sorts of underlying goals.

Example 3. Minimal propositional logic MPL has the formulae:

P ::= TT FF X P =⇒ P

where X is a propositional variable. Goals in MPL have the form Γ � P , where Γ
is a set of propositions. The atomic tactics correspond to the natural deduction
rules:

Γ, P � P
ax

Γ ∪ {P} � Q

Γ � P =⇒ Q
impI

Γ � P =⇒ Q Γ � P

Γ � Q
impE

Γ � P

Γ ∪ {Q} � P
wk

Atomic tactics are rule instances (e.g., ax{X}�X), which are viewed as being
applied backwards to solve some given atomic goal; they have the obvious arities.

Example 4. Minimal equational logic MEL is specified by a signature Σ, giving
a set of terms TΣ(X) over a countably infinite set of variables X , together
with a set of equations E of the form a = b with a, b terms. Goals in this
derivation system are equations of the same form. These can be established
using the following atomic tactics (where a, b, c, d ∈ TΣ(X)):

a = a
refl

a = b b = c

a = c
trans

a = b

b = a
sym

a = b c = d

a[c/x] = b[d/x]
subst

Here, a[c/x] denotes the term a with the variable x replaced by term c through-
out. For example, the more usual substitutivity rule

a = b

a[c/x] = b[c/x]
subst′

can be derived with the hiproof h1 = subst ; id ⊗ refl of arity 1, whereas the
usual congruence rule say for a binary operation f

a1 = b1 a2 = b2
f(a1, a2) = f(b1, b2)

ctxt

can be derived with the hiproof h2 = subst ; (subst ; refl ⊗ id) ⊗ id of arity 1.
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2.1 Tactics and Programs

The hiproofs introduced above are static proof structures which represent the
result of executing a tactic. We now present a language of tactics which can be
evaluated to construct such hiproofs. These tactic expressions will be the main
object of study. They are defined by extending the grammar for hiproofs with
three new cases:

t ::= a id [l] t t ; t t ⊗ t 〈〉 as for hiproofs
t | t alternation
assert γ goal assertion
T defined tactic

Together the three new cases allow proof search: alternation allows alternatives,
assertion allows controlling the control flow, and defined tactics allow us to build
up a program of possibly mutually recursive definitions. Syntactic conventions for
hiproofs are extended to tactic expressions, with alternation having precedence
between sequencing (lowest) and tensor (highest). Alternation is also associative.
Further, the arity t : n of a tactic is defined as follows: for a hiproof s, it has
been defined above; [l] t : 1; if t1 : n, then t1 ; t2 : n; if t1 : n and t2 : m,
then t1 ⊗ t2 : n + m; if t1 : n and t2 : n, then t1 | t2 : n; assert γ : 1; and if

T
def
= t ∈ Prog and t : n, then T : n. This definition is partial, not all tactics can

be given an arity.

Programs. A tactic program Prog is a set of definitions of the form Ti
def
= ti,

together with a goal matching relation on atomic goals γ � γ′ which is used
to define the meaning of the assertion expression. The definition set must not
define any T more than once, and no label may appear more than once in all of
the definition bodies ti.

The uniqueness requirement on labels is so that we can map a label in a hiproof
back to a unique origin within the program – although notice that, because of
recursion, the same label may appear many times on the derivation.

We do not make restrictions on the goal matching relation. In some cases it
may simply be an equivalence relation on goals. For MEL, a pre-order is more
natural: the matching relation can be given by instantiations of variables, so
a goal given by an equation b1 = b2 matches a goal a1 = a2 if there is an
instantiation σ : X → TΣ(X) such that bi = aiσ.

Example 5. We can give a tactic program for producing the hiproof shown in
Fig. 1(c) by defining:

Tl
def
= [l] a ; b ⊗ id

Tm
def
= [m] c

Tu
def
= (assert γ3 ; Tm) | (Tl ; Tu)

If we evaluate the tactic Tu applied to the goal γ1, we get the hiproof shown
earlier, ([l] a ; b ⊗ id) ; [m] c, with no left over goals.
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The next section provides an operational semantics to define a notion of evalu-
ation that has this effect.

3 Operational Semantics

To give a semantics to tactic expressions, we will consider an operational seman-
tics as primary. This is in contrast to other approaches which model things as the
original LCF-style tactic programming does, i.e., using a fixed-point semantics to
explain recursion (e.g., ArcAngel [2]). We believe that an operational semantics
is more desirable at this level, because we want to explain the steps used during
tactic evaluation at an intensional level: this gives us a precise understanding of
the internal proof state notion, and hope for providing better debugging tools
(a similar motivation was given for Tinycals [3]).

There is a crucial difference between hiproofs and tactic expressions. Because
of alternation and repetition, tactic evaluation is non-deterministic: a tactic ex-
pression can evaluate to many different hiproofs, each of which can validate
different proofs, so we cannot extend the validity notion directly, even for (stat-
ically) checking arities – which is why our notion of arity is partial. This is not
surprising because part of the point of tactic programming is to write tactics that
can apply to varying numbers of subgoals using arbitrary recursive functions. It
is one of the things that makes tactic programming difficult. In future work we
plan to investigate richer static type systems for tactic programming, in the belief
that there is a useful intermediate ground between ordinary unchecked tactics
and what could be called “certified tactic programming” [4,5], where tactics are
shown to construct correct proofs using dependent typing.

Here, we use untyped tactic terms, as is more usual. We begin by defining a
big-step semantics that gives meaning to expressions without explicitly specify-
ing the intermediate states. In Sect. 3.2 we give a small-step semantics which
provides a notion of intermediate proof state.

3.1 Big-Step Semantics

The big-step semantics is shown in Fig. 3. It defines a relation 〈g, t〉 ⇓ 〈s, g′〉
inductively, which explains how applying a tactic t to the list of goals g results
in the hiproof s and the remaining (unsolved) goals g′. A tactic t proves a goal,
g, therefore, if 〈g, t〉 ⇓ 〈s, 〈〉〉, for some hiproof s. The relation is defined with
respect to a program Prog containing a set of definitions.

The rules directly capture the intended meaning of tactic expressions. For
example, (B-Label) evaluates a labelled tactic expression [l] t, by first evaluating
the body t using the same goal γ, to get a hiproof s and remaining goals g. The
result is then the labelled hiproof [l] s and remaining goals g. Like (V-Label), this
rule reflects key restrictions in the notion of hiproof (motivated in [1]), namely
that a box has a unique entry point, its root, accepting a single (atomic) goal.

Notice that in (B-Assert), assertion terms evaluate to identity if the goal
matches, or they do not evaluate at all. Similarly, (B-Atomic) only allows an
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γ1 · · · γn

γ aγ ∈ A

〈γ, a〉 ⇓
〈a, γ1 ⊗ · · · ⊗ γn〉

(B-Atomic)

〈γ, id〉 ⇓ 〈id, γ〉
(B-Id)

〈γ, t〉 ⇓ 〈s, g〉
〈γ, [l] t〉 ⇓ 〈[l] s, g〉

(B-Label)

〈g1, t1〉 ⇓ 〈s1, g2〉
〈g2, t2〉 ⇓ 〈s2, g3〉

〈g1, t1 ; t2〉 ⇓ 〈s1 ; s2, g3〉
(B-Seq)

〈g1, t1〉 ⇓ 〈s1, g
′
1〉

〈g2, t2〉 ⇓ 〈s2, g
′
2〉

〈g1 ⊗ g2, t1 ⊗ t2〉 ⇓
〈s1 ⊗ s2, g

′
1 ⊗ g′

2〉

(B-Tensor)

〈〈〉, 〈〉〉 ⇓ 〈〈〉, 〈〉〉 (B-Empty)

〈g, t1〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-L)

〈g, t2〉 ⇓ 〈s, g′〉
〈g, t1 | t2〉 ⇓ 〈s, g′〉

(B-Alt-R)

γ � γ′

〈γ′, assert γ〉 ⇓ 〈id, γ′〉
(B-Assert)

T
def
= t ∈ Prog

〈g, t〉 ⇓ 〈s, g′〉
〈g, T 〉 ⇓ 〈s, g′〉

(B-Def)

Fig. 3. Big-step semantics for Hitac

atomic tactic a to evaluate if it can be used to validate the given goal γ. Hence,
failure is modelled implicitly by the lack of a target for the overall evaluation
(i.e., there must be some subterm 〈g, t〉 for which there is no 〈s, g′〉 it evaluates
to). The rules for alternation allow an angelic choice, as they allow us to pick
the one of the two tactics which evaluate to a hiproof (if either of them does); if
both alternatives evaluate, the alternation is non-deterministic.

While the obvious source of non-determinism is alternation, the tensor rule
also allows the (possibly angelic) splitting of an input goal list into two halves
g1 ⊗ g2, including the possibility that g1 or g2 is the empty tensor 〈〉.

The crucial property is correctness of the semantics: if a hiproof is produced,
it is a valid hiproof for the claimed input and output goals.

Theorem 1 (Correctness of big-step semantics)
If 〈g, t〉 ⇓ 〈s, g′〉 then s � g −→ g′.

Proof By induction on the derivation of 〈g, t〉 ⇓ 〈s, g′〉.

Fact 1 (Label origin). If t is label-free, 〈g, t〉 ⇓ 〈s, g′〉 and the label l appears
in s, then l has a unique origin within some tactic definition x from Prog.

The label origin property is immediate by the definition of program and the
observation that evaluation only introduces labels from the program. It means
that we can use labels as indexes into the program to find where a subproof was
produced, which is the core motivation for labelling, and allows a source level
debugging of tactical proofs.
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3.2 Small-Step Semantics

Besides the big-step semantics given above, it is desirable to explain tactic eval-
uation using a small-step semantics. The typical reason for providing small-step
semantics is to give meaning to non-terminating expressions. In principle we
don’t need to do this here (non-terminating tactics do not produce proofs), but
in practice we are interested in debugging tactic expressions during their evalu-
ation, including ones which may fail. A small step-semantics provides a notion
of intermediate state which helps do this.

We now define an evaluation machine which evolves a proof state configura-
tion in each step, eventually producing a hiproof. The reduction is again non-
deterministic; some paths may get stuck or not terminate. Compared with the
big-step semantics, the non-determinism in alternation does not need to be pre-
dicted wholly in advance, but the rules allow exploring both alternation branches
of a tactic tree in parallel to find one which results in a proof.

Formulation of a small-step semantics is not as straightforward as the big-step
semantics, because it needs to keep track of the intermediate stages of evaluation,
which do not correspond to a well-formed hiproof. The difficulty is in recording
which tactics have been evaluated and which not, and moving the goals which
remain in subtrees out of their hierarchical boxes. It was surprisingly hard to find
an elegant solution. The mechanism we eventually found is pleasantly simple;
it was devised by visualising goals moving in the geometric representation of
hiproofs; they move along lines, in and out of boxes, and are split when entering
a tensor and rejoined afterwards.

This suggests a unified notion of proof state, where goals appear directly in
the syntax with tactics. To this end, we define a compound term syntax for proof
states which has hiproofs, tactic expressions and goal lists as sublanguages:

p ::= a id [l] p p ; p p ⊗ p p | p assert γ T g

The general judgement form is p ⇒ p′, defined by the rules shown in Fig. 4.
A proof state, p, consists of a mixture of open goals, g, active tactics, t, and
successfully applied tactics, i.e., hiproofs, s. Composing proof states can be un-
derstood as connecting, or applying, the tactics of one state to the open goals
of another. In particular, the application of tactic t to goal g has the form g ; t,
and we treat the sequencing operator on proof states as associative. The notion
of value is a fully reduced proof state with the form s ; g′. A complete reduction,
therefore, has the form:

g ; t ⇒∗ s ; g′.

What happens is that the goals g move through the tactic t, being transformed by
atomic tactics, until (if successful) the result is a simple hiproof s and remaining
goals g′. Note that not all terms in this grammar are meaningful. In the rules,
therefore, we will restrict attention to reductions of a meaningful form, and are
careful to distinguish between syntactic categories for proof states, p, and the
sublanguages of tactics t, hiproofs s and goals g, which can be embedded into the
language of proof states. For example, in the rule (S-Alt), g has to be a goal and
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γ1 · · · γn

γ aγ ∈ A

γ ; a ⇒
a ; γ1 · · · ⊗ · · · γn

(S-Atomic)

γ ; id ⇒ id ; γ (S-Id)

γ ; [l] t ⇒ [l] γ ; t (S-Enter)

[l] s ; g ⇒ ([l] s) ; g (S-Exit)

g1 ⊗ g2 ; p1 ⊗ p2 ⇒
(g1 ; p1) ⊗ (g2 ; p2)

(S-Split)

(s1 ; g1) ⊗ (s2 ; g2) ⇒
s1 ⊗ s2 ; g1 ⊗ g2

(S-Join)

g ; t1 | t2 ⇒
(g ; t1) | (g ; t2)

(S-Alt)

(s1 ; g) | p2 ⇒ s1 ; g (S-Sel-L)

p1 | (s2 ; g) ⇒ s2 ; g (S-Sel-R)

γ � γ′

γ ; assert γ′ ⇒ id ; γ
(S-Assert)

T
def
= t ∈ Prog

g ; T ⇒ g ; t
(S-Def)

p ⇒ p′

[l] p ⇒ [l] p′ (S-Lab)

p1 ⇒ p′
1

p1 ; p2 ⇒ p′
1 ; p2

(S-Seq-L)

p2 ⇒ p′
2

p1 ; p2 ⇒ p1 ; p′
2

(S-Seq-R)

p1 ⇒ p′
1

p1 ⊗ p2 ⇒ p′
1 ⊗ p2

(S-Tens-L)

p2 ⇒ p′
2

p1 ⊗ p2 ⇒ p1 ⊗ p′
2

(S-Tens-R)

p1 ⇒ p′
1

p1 | p2 ⇒ p′
1 | p2

(S-Alt-L)

p2 ⇒ p′
2

p1 | p2 ⇒ p1 | p′
2

(S-Alt-R)

Fig. 4. Small-step semantics for Hitac

t1, t2 must be tactics. Further, note that the empty goal and the empty hiproof
and tactic are both denoted by 〈〉; this gives rise to the identity 〈〉 ; 〈〉 = 〈〉 ; 〈〉
where on the left we have a tactic applied to an empty goal, and on the right a
hiproof applied to an empty goal. The small-step semantics therefore does not
need an explicit rule for the empty case.

The appearance of constrained subterms, and in particular, value forms s ; g,
restricts the reduction relation and hints at evaluation order. Intuitively, join-
ing tensors in (S-Join) only takes place after a sub-proof state has been fully
evaluated. Similarly, in (S-Exit), when evaluation is complete inside a box, the
remaining goals are passed out on to subsequent tactics. Alternatives need only
be discarded in (S-Sel-L) or (S-Sel-R) after a successful proof has been found.

The theorems below show that restrictions do not limit the language, by
relating it to the big-step semantics.

Example 6. Consider the tactic program from Ex. 5. We show the reduction of
Tu applied to the goal γ1. The steps name the major rule applied at each point.

γ1 ; Tu ⇒
⇒ γ1 ; (assert γ3 ; Tm) | (Tl ; Tu) (S-Def)
⇒ (γ1 ; assert γ3 ; Tm) | (γ1 ; Tl ; Tu) (S-Alt)
⇒ . . . γ1 ; ([l] b ; c ⊗ id) ; Tu reduce on right, (S-Def)
⇒ . . . ([l] γ1 ; b ; c ⊗ id) ; Tu (S-Enter)
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⇒ . . . ([l] b ; γ2 ⊗ γ3 ; c ⊗ id) ; Tu (S-Atomic)
⇒ . . . ([l] b ; (γ2 ; c) ⊗ (γ3 ; id)) ; Tu (S-Split)
⇒ . . . ([l] b ; (c ; 〈〉) ⊗ (γ3 ; id)) ; Tu (S-Atomic)
⇒ . . . ([l] b ; (c ; 〈〉) ⊗ (id ; γ3)) ; Tu (S-Id)
⇒ . . . ([l] b ; (c ⊗ id) ; γ3) ; Tu (S-Join), 〈〉 ⊗ γ3 ≡ γ3

⇒ . . . ([l] b ; c ⊗ id) ; γ3 ; Tu (S-Exit)
⇒ . . . ([l] b ; c ⊗ id) ; γ3

; (assert γ3 ; Tm) | (Tl ; Tu) (S-Def)
⇒ . . . ; (γ3 ; assert γ3 ; Tm) | (γ3 ; Tl ; Tu) (S-Alt)
⇒ . . . ; (γ3 ; Tm) | (γ3 ; Tl ; Tu) (S-Assert)
⇒ . . . ; (γ3 ; [m] c) | (γ3 ; Tl ; Tu) (S-Def)
⇒ . . . ; ([m] γ3 ; c) | (γ3 ; Tl ; Tu) (S-Enter)
⇒ . . . ; ([m] c ; 〈〉) | (γ3 ; Tl ; Tu) (S-Atomic)
⇒ . . . ; ([m] c) ; 〈〉 | (γ3 ; Tl ; Tu) (S-Exit)
⇒ . . . ([l] b ; c ⊗ id) ; ([m] c) ; 〈〉 (S-Sel-L)
⇒ ([l] b ; c ⊗ id) ; ([m] c) ; 〈〉 (S-Sel-R)

The final value is as claimed in Ex. 5.

Our main result is that the two semantics we have given coincide. This shows
that the small-step semantics is indeed an accurate way to step through the
evaluation of tactic expressions.

Theorem 2 (Completeness of small-step semantics). If 〈g, t〉 ⇓ 〈s, g′〉,
then g ; t ⇒∗ s ; g′

Proof. Straightforward induction on big-step derivation.

Theorem 3 (Soundness of small-step semantics). If g ; t ⇒∗ s ; g′ then
〈g, t〉 ⇓ 〈s, g′〉.
Proof. By induction on the length of the derivation, using Lemma 1.

Lemma 1 (Structure preservation)

1. If [l] p ⇒∗ s ; g then for some s′, s = [l] s′ and there exists a reduction
p ⇒∗ s′ ; g with strictly shorter length.

2. If p1 ⊗ p2 ⇒∗ s ; g and p1, p2 �= 〈〉, then for some s1, s2, g1 and g2, we
have s = s1 ⊗ s2 and g = g1 ⊗ g2 and there exist reductions pi ⇒∗ si ; gi

with strictly shorter lengths.
3. If p ; t ⇒∗ s ; g where p is not a goal, then for some s1, s2, g1, we have

s = s1 ; s2 and there exist reductions p ⇒∗ s1 ; g1, g1 ; t ⇒∗ s2 ; g with
strictly shorter length.

4. If p1 | p2 ⇒∗ s ; g then there exists a strictly shorter reduction of p1 ⇒∗

s ; g or of p2 ⇒∗ s ; g.

Proof. Each part by induction on the lengths of sequences involved. For each
constructor, a major rule is the base case and congruence rules are step cases.

Theorems 1 and 3 give correctness also for the small step semantics.

Corollary 1 (Correctness of small-step semantics). If g ; t ⇒∗ s ; g′

then s � g −→ g′.
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4 Tactic Programming

Tactics as above are procedures which produce hiproofs. To help with writing
tactics, most theorem provers provide tacticals (tactic functionals or higher-order
tactics), which combine existing tactics into new ones. The simplest examples
of tacticals are the alternation and sequencing operations for tactics. Theorem
provers like the original LCF, Isabelle, HOL or Coq provide more advanced
patterns of applications; we concentrate on two illustrative cases here.

We will write tacticals as a meta-level notion, i.e., the following equations
are meant as short-cuts defining one tactic for each argument tactic t:

ALL t
def
= (t ⊗ ALL t) | 〈〉

ID
def
= ALL id

REPEAT t
def
= (t ; REPEAT t) | ID

ALL t applies t to as many atomic goals as available; in particular, ID is the
‘polymorphic identity’, which applied to any goal g : n reduces to idn, the n-fold
tensor of id. REPEAT t applies t as often as possible. An application of this is a
tactic to strip away all implications in the logic MPL (Example 3), defined as

stripImp def= REPEAT impI. To see this at work, here it is used in an actual proof:

� A =⇒ (B =⇒ A) ; stripImp
⇒ � A =⇒ (B =⇒ A) ; (impI ; REPEAT impI) | ID
⇒∗ ({A} � B =⇒ A ; REPEAT impI) | (� A =⇒ (B =⇒ A) ; ID)
⇒∗ (id ; {A,B} � A) | . . . | . . .
⇒∗ id ; {A,B} � A

The last goal is easily proven with the atomic tactic ax.

4.1 Deterministic Semantics

The big- and small-step semantics given above are non-deterministic: a tactic
t applied to a goal g may evaluate to more than one hiproof s (and remaining
goals g′). This may result in many ‘unwanted’ reductions along with successful
ones; e.g., REPEAT t ; g can always reduce to id ; g. Non-determinism has its
advantages: the tensor splitting allows a tactic such as ALL b ⊗ ALL c to solve
the goal γ2 ⊗ γ2 ⊗ γ3 by splitting the tensor judiciously: γ2 ⊗ γ2 ⊗ γ3 ; ALL b ⊗
ALL c ⇒ (γ2 ⊗ γ2 ; ALL b) ⊗ (γ3 ; ALL c). However, this behaviour is hard to
implement (it requires keeping track of all possible reductions, and selecting the
right ones after the fact), and it is in marked contrast to the usual alternation
tactical (ORELSE in the LCF family) which always selects the first alternative if
it is successful, and the second otherwise.

To give a deterministic behaviour for our language, we can define a restricted
small-step semantics, which includes a strict subset of the reductions of the
non-deterministic one. Since the principal sources of non-determinism are the
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alternation and the tensor splitting rules, the deterministic small-step semantics
has the same rules as the small-step semantics from Sect. 3.2, but replaces rules
(S-Sel-L), (S-Sel-R) and (S-Split) with the following:

(s1 ; g) | p2 ⇒D s1 ; g (TSD-Alt-L)

p1 �⇒D s1;h
p1 | (s2 ; g) ⇒D s2 ; g

(TSD-Alt-R)

g1 : n t1 : n
g1 ⊗ g2 ; t1 ⊗ t2 ⇒D (g1 ; t1) ⊗ (g2 ; t2)

(TSD-Split)

The right alternative is only chosen if the left alternative does not evaluate to
any hiproof. Further, we only allow the argument goals to be split if the first
component of the tactic has a fixed arity. This means that in the above example,
γ2 ⊗ γ2 ⊗ γ3 ; ALL b ⊗ ALL c does not reduce; to prove that goal under
deterministic reduction, we need the tactic ALL (b | c).

Theorem 4 (Deterministic small-step semantics). The deterministic se-
mantics is a restriction of the non-deterministic one:

if t ; g ⇒∗
D s ; g then t ; g ⇒∗ s ; g

Proof. A simple induction on the derivation of ⇒∗
D . The rules (TSD-Alt-L),

(TSD-Alt-R) and (TSD-Split) are admissible in the non-deterministic small-step
semantics.

Corollary 2. (Soundness of the deterministic semantics) If g ; t ⇒∗
D s ; g,

then 〈g, t〉 ⇓ 〈s, g′〉.

Theorem 4 implies that the deterministic semantics is weaker. In fact, it suf-
fices for our simple example tacticals but some others (e.g., violating the arity
restriction) are not covered. To recover more of the expressivity of the non-
deterministic semantics, one could introduce a notion of backtracking, and treat
the tensor split in a demand driven way to avoid the restriction of fixed arity.
However, these extensions are beyond the scope of the present paper.

5 Related Work and Conclusions

This paper introduced a tactic language, Hitac, for constructing hierarchical
proofs. We believe that hierarchical proofs offer the chance for better manage-
ment of formal proofs, in particular, by making a connection between proofs and
procedural methods of constructing them.

Our work with hierarchical structure in the form of hiproofs is unique, al-
though there are many related developments on tactic language semantics and
structured proofs elsewhere. A full survey is beyond our scope (more references
can be found in [1]), but we highlight some recent and more closely connected
developments.
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Traditional LCF-style tactic programming uses a full-blown programming lan-
guage for defining new tactics, as is also done in the modern HOL systems. The
direct way of understanding such tactics is as the functions they define over
proof states, suggesting a denotational fixed point semantics such as studied by
Oliveira et al. [2]. Coq offers the power of OCaml for tactic programming, but
also provides a dedicated functional language for writing tactics, Ltac, designed
by Delahaye [6]. This has the advantage of embedding directly in the Coq proof
language, and offers powerful matching on the proof context. However, Delahaye
did not formalise an evaluation semantics or describe a tactic tracing mechanism.

Kirchner [7] appears to have been the first to consider formally describing a
small-step semantics for tactic evaluation, impressively attempting to capture
the behaviour of both Coq and PVS within a similar semantic framework. He
defines a judgement e/τ → e′/τ ′, which operates on a tactic expression e and
proof context τ , to produce a simpler expression and updated context. So, unlike
our simpler validation-based scheme, state based side-effecting of a whole proof
is possible. However, the reduction notion is very general and the definitions for
Coq and PVS are completely system-specific using semantically defined opera-
tions on proof contexts; there is a big gulf between providing these definitions
and proving them correct.

Tinycals [3] is a recent small-step tactic language, implemented in the Matita
system. The main motivation is to allow stepping inside tactics in order to extend
Proof General-like interaction. In Coq and other systems of which we are aware,
single-stepping defined tactics using their source is not possible, at best they
can be traced by interrupting the tactic engine after a step and displaying the
current state. Tinycals allows tracing linked back to the tactic expression, also
showing the user information about remaining goals and backtracking points.
The Tinycals language allows nested proof structure to be expressed in tactics,
like hiproofs, and is also reminiscent of Isabelle’s declarative proof language
Isar [8], but there is no naming for the nested structure in either case.

One system that bears a closer structural resemblance to the hiproof notion
is NuPrl’s tactic tree [9], which extends LCF-style tactics by connecting them to
proof trees, as would be done by combining our big-step semantics with the vali-
dation check which links a hiproof to an underlying tree. NuPrl allows navigating
the tree and expanding or replacing tactics at each node.

Future work. Work still remains to fully describe the formal properties of the
calculus and its extensions, including type systems for arity checking as hinted at
in Sect. 3, and further deterministic evaluation relations. One important result
for the small-step semantics is to characterise the normal forms. This requires a
careful analysis of the “stuck” states (such as when an atomic tactic does not
match a goal) that can be reached, and we have some preliminary results on
this. Isolating failure points in stuck states will be important to help debugging.

The calculus we have presented here represents an idealised simple tactic
language. We believe that this is a natural starting point for the formal study of
tactic languages. We have kept examples concise on purpose to allow the reader
to check them. Clearly, larger examples should be explored, but this will require



A Tactic Language for Hiproofs 353

mechanical assistance in some form. Moreover, there is clearly a diversity of
concepts and constructs which are used to guide proof search in real systems.
For example, many proof assistants allow goals to depend on each other via
a meta-variable mechanism. More generally, we can envision interdependencies
between each of tactics, goals, and proofs, and this leads us to speculate on the
possibility of a “tactic cube” (analogous to Barendregt’s Lambda Cube) of tactic
languages.

On the practical side, the use of a generic tactic language offers hope that
we will be able to write tactics that can be ported between different systems.
We plan to investigate this and other issues with an implementation in Proof
General. In associated work at Edinburgh, a graphical tool is being developed
for displaying and navigating in hiproofs. Finally, one of us is developing a sys-
tem which uses auto-generated formal proofs as evidence for the certification
of safety-critical software. In this regard, the explicitly structured proofs which
result from applications of tactics are likely to prove more useful than the un-
structured proofs which are generated by most present theorem provers.

Acknowledgements. The authors would like to thank Gordon Plotkin, John
Power, and Alan Bundy for useful discussions.
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A Example Reductions

Here are the reductions for the examples from Section 4 in detail. We first show
how ALL id reduces applied to an empty goal list.

〈〉 ; ALL id
⇒ 〈〉 ; (id ⊗ ALL id) | 〈〉 (S-Def)
⇒ (〈〉 ; (id ⊗ ALL id) | (〈〉 ; 〈〉) (S-Alt)
⇒ 〈〉 ; 〈〉 (S-Sel-R)

We can use this to show how ID reduces for a goal of arity 2.

γ1 ⊗ γ2 ; ID
⇒∗ γ1 ⊗ γ2 ; (id ⊗ ALL id) | 〈〉 (S-Def)
⇒ (γ1 ⊗ γ2 ; id ⊗ ALL id) | (γ1 ⊗ γ2 ; 〈〉) (S-Alt)
⇒ ((γ1 ; id) ⊗ (γ2 ; ALL id)) | . . . (S-Split)
⇒ ((id ; γ1) ⊗ (γ2 ; (id ⊗ ALL id) | 〈〉)) | . . . (S-Id),(S-Def)
⇒∗ ((id ; γ1) ⊗ (γ2 ⊗ 〈〉 ; id ⊗ ALL id) | (γ2 ; 〈〉)) | . . . (S-Alt), γ2 ≡ γ2 ⊗ 〈〉
⇒∗ ((id ; γ1) ⊗ ((γ2 ; id) ⊗ (〈〉 ; ALL id) | . . .)) | . . . (S-Split)
⇒∗ ((id ; γ1) ⊗ ((id ; γ2) ⊗ (〈〉 ; 〈〉) | . . .)) | . . . (S-Id), see above
⇒∗ ((id ; γ1) ⊗ (id ; γ2)) | . . . (S-Join), γ2 ⊗ 〈〉 ≡ γ2, (S-Sel-R)
⇒∗ id ⊗ id ; γ1 ⊗ γ2 (S-Join), (S-Sel-L)

Finally, here is the full reduction from Section 4.
� A =⇒ (B =⇒ A) ; stripImp
⇒ � A =⇒ (B =⇒ A) ; (impI ; REPEAT impI) | ID (S-Def)
⇒ (� A =⇒ (B =⇒ A) ; impI ; REPEAT impI) | (� A =⇒ (B =⇒ A) ; ID) (S-Alt)
⇒ ({A} � B =⇒ A ; REPEAT impI) | . . . (S-Atomic), (S-Seq-L)
⇒ ({A} � B =⇒ A ; (impI ; REPEAT impI) | ID) | . . . (S-Def)
⇒ ({A} � B =⇒ A ; impI ; REPEAT impI) | ({A} � B =⇒ A ; ID) | . . . (S-Alt)
⇒ ({A,B} � A ; REPEAT impI) | . . . | . . . (S-Atomic), (S-Seq-L)
⇒ ({A,B} � A ; ((impI ; REPEAT impI) | ID)) | . . . | . . . (S-Def)
⇒ ({A,B} � A ; impI ; REPEAT impI) | ({A,B} � A ; ID) | . . . | . . . (S-Alt)
⇒∗ (id ; {A,B} � A) | . . . | . . . (S-Id), (S-Sel-R)
⇒∗ id ; {A,B} � A (S-Sel-L), (S-Sel-L)

The last goal is easily proven with the atomic tactic ax.
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Abstract. Traditionally a rigorous mathematical document consists of
a sequence of definition – statement – proof. Taking this basic outline as
starting point we investigate how these three categories of text can be
represented adequately in the formal language of Isabelle/Isar.

Proofs represented in human-readable form have been the initial moti-
vation of Isar language design 10 years ago. The principles developed here
allow to turn deductions of the Isabelle logical framework into a format
that transcends the raw logical calculus, with more direct description of
reasoning using pseudo-natural language elements.

Statements describe the main result of a theorem in an open format
as a reasoning scheme, saying that in the context of certain parameters
and assumptions certain conclusions can be derived. This idea of turning
Isar context elements into rule statements has been recently refined to
support the dual form of elimination rules as well.

Definitions in their primitive form merely name existing elements of the
logical environment, by stating a suitable equation or logical equivalence.
Inductive definitions provide a convenient derived principle to describe a
new predicate as the closure of given natural deduction rules. Again there
is a direct connection to Isar principles, rules stemming from an inductive
characterization are immediately available in structured reasoning.

All three categories benefit from replacing raw logical encodings by
native Isar language elements. The overall formality in the presented
mathematical text is reduced. Instead of manipulating auxiliary logical
connectives and quantifiers, the mathematical concepts are emphasized.

1 Introduction

Isabelle/Isar [13, 14, 15] enables to produce formal mathematical documents with
full proof checking. Similar in spirit to the Mizar system [12, 11], the user writes
text in a formal language that is checked by the machine. As a side-effect of this,
Isabelle/Isar produces high-quality documents using existing LATEX technology:
the present paper is an example of such a formally processed document.

Rigorous mathematics is centered around proofs, and this view is taken to the
extreme in Isabelle/Isar. The demands for human-readable proofs, which is the
hardest part in formalized mathematics, are taken as guidelines for the design
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of the much simpler elements of statements and definitions. While the initial
conception of the Isar proof language dates back almost 10 years, some more
recent additions help to express structured statements and inductive definitions
even more succinctly, in a “logic-free” style. This enables higher Isar idioms
to focus on the mathematics of the application at hand, instead of demanding
recurrent exercises in formal logic from the user. So mathematical reasoning is
emphasized, and auxiliary logical constructions are left behind eventually.

Our basic approach works essentially in bottom-up manner, starting from
primitive logical principles towards mathematical reasoning that is eventually
free from the logic (which better serves in the background for foundational pur-
poses only). As the art of human-readable formal reasoning evolves further, we
hope to move towards a stage that meets with other approaches that are coming
the top-down way from informal mathematics.

Overview. §2 reviews the original idea of “natural deduction” due to Gentzen,
and its implementation in the Isabelle/Pure framework. §3 gives an overview
of the Isar proof language as a linearized expression of structured proofs in the
underlying logical framework. §4 introduces structured Isar statements, which
enable to state and prove reasoning schemes conveniently, without going through
the logical framework again. §5 covers a recent refinement of the well-known
concept of inductive definitions, which enables to obtain natural deduction rules
directly from basic definitions, without intermediate statements or proofs. §6
illustrates the benefits of the native “logic-free” style of Isar definitions, state-
ments, and proofs by an example about well-founded multiset ordering.

2 Natural Deduction Revisited

About 75 years ago Gentzen introduced a logical calculus for “natural deduc-
tion” [3] that was intended to formalize the way mathematical reasoning actually
works, unlike earlier calculi due to Hilbert and Russel. Since we share the moti-
vation to approximate mathematical reasoning, we briefly review some aspects
of traditional natural deduction as relevant for Isabelle/Isar.

Gentzen uses a two-dimensional diagrammatic representation of reasoning
patterns, which may be composed to proof trees according to certain princi-
ples. Each logical connective is characterized by giving introduction rules and
elimination rules. This is illustrated for −→ and ∀ as follows (in our notation):

[A]....
B

A −→ B
(−→I ) A −→ B A

B
(−→E )

[a]....
B(a)

∀ x . B(x )
(∀ I )

∀ x . B(x )
B(a)

(∀E )
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Inferences work by moving from assumptions (upper part) to conclusions (lower
part). Nested inferences, as indicated by three dots and brackets, allow to refer
to local assumptions or parameters, which are discharged when forming the final
conclusion. Note that in (∀ I ) we have treated the locally “fresh” parameter a
analogous to an assumption, which reflects the formal treatment in the Isabelle
framework. Traditional logic texts often treat this important detail merely as a
footnote (“eigenvariable condition”).

The Isabelle/Pure framework [8, 9] implements a generic version of higher-
order natural deduction, without presupposing any particular object-logic. Natu-
ral deduction rules are represented in Isabelle as propositions of the “meta-logic”,
which provides the framework connectives of implication A =⇒ B and quantifi-
cation

∧
x . B x. This first-class representations of primitive and derived natu-

ral deduction rules is supported by two main operations: resolution for mixed
forward-backward chaining of partial proof trees, and assumption for closing
branches. Both may involve higher-order unification, which results in a very
flexible rule-calculus that resembles higher-order logic programming [15, §2.2].

According to the initial “logical framework” idea of Isabelle [8, 9], the user
may specify a new object-logic by declaring connectives as (higher-order) term
constants, and rules as axioms. For example, the minimal logic of −→ and ∀
could be declared as follows (using type i for individuals and o for propositions):

imp :: o ⇒ o ⇒ o (infix −→)
impI :

∧
A B . (A =⇒ B) =⇒ A −→ B

impE :
∧

A B . (A −→ B) =⇒ A =⇒ B
all :: (i ⇒ o) ⇒ o (binder ∀ )
allI :

∧
B . (

∧
a. B a) =⇒ ∀ x . B x

allE :
∧

a B . (∀ x . B x ) =⇒ B a

Note that outermost
∧

is usually left implicit. The above rules merely reflect
the minimal logic of =⇒ and

∧
of the framework. The idea of generic natural

deduction becomes more apparent when the object-logic is enriched by further
connectives, for example:

conj :: o ⇒ o ⇒ o (infix ∧)
conjI : A =⇒ B =⇒ A ∧ B
conjE : A ∧ B =⇒ (A =⇒ B =⇒ C ) =⇒ C
disj :: o ⇒ o ⇒ o (infix ∨)
disjI 1 : A =⇒ A ∨ B
disjI 2 : B =⇒ A ∨ B
disjE : A ∨ B =⇒ (A =⇒ C ) =⇒ (B =⇒ C ) =⇒ C
ex :: (i ⇒ o) ⇒ o (binder ∃ )
exI : B a =⇒ ∃ x . B x
exE : (∃ x . B x ) =⇒ (

∧
a. B a =⇒ C ) =⇒ C

These rules for predicate logic follow Gentzen [3], except for conjunction elimina-
tion. Instead of two projections A ∧ B =⇒ A and A ∧ B =⇒ B, our conjE rule
enables to assume local facts A and B, independently from the main goal. Other
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typical situations of elimination are represented by disjE, which splits the main
goal into two cases with different local assumptions, and exE, which augments
the main goal by a local parameter a such that B a may be assumed.

This uniform presentation of eliminations is typical for Isabelle/Pure [8, 9],
but often appears peculiar to users without a strong background in formal logic.
Even in Gentzen’s original article, the disjE and exE rules are explained with
special care, while “the other rules should be easy to understand” [3]. In the
Isar proof language (§3), we shall provide a refined view on elimination, that
expresses directly the idea of being able to assume local assumptions over local
parameters, potentially with a case-split involved.

The examples for natural deduction presented so far have referred to tra-
ditional connectives of predicate logic: −→, ∀ , ∧, ∨, ∃ etc. There is nothing
special about these in the generic framework of Isabelle/Pure. We may just as
well reason directly with concepts of set theory, lattice theory etc. without going
through predicate logic again. Here are natural deduction rules for x ∈ A ∩ B :

interI : x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B
interE : x ∈ A ∩ B =⇒ (x ∈ A =⇒ x ∈ B =⇒ C ) =⇒ C

In practice, such domain-specific rules are not axiomatized, but derived from the
definitions of the underlying concepts. In fact, the majority of rules will be of the
latter kind — after the initial object-logic axiomatization, regular users proceed
in this strictly definitional manner. Thus the role of the logical framework as
foundation for new logics is changed into that of a tool for plain mathematical
reasoning with derived concepts. Then the main purpose of the special con-
nectives =⇒ and

∧
is to outline reasoning patterns in a “declarative” fashion.

Guided by the indicated structure of natural deduction rules, structured proofs
are composed internally by means of the resolution and assumption principles.

The remaining question is how to obtain natural deduction rules conveniently.
As we shall see later (§5), a refined version of the well-known concept of inductive
definitions allows to produce elimination rules quite naturally from a “logic-free”
specification of the introduction rules only. The system will derive a proper
predicate definition internally, and derive the corresponding rules, which may
then be turned immediately into Isar proof texts in the application.

3 Isar Proofs

The Isar proof language [13, 14, 15] enables to express formal natural deduction
proofs in a linear form that approximates traditional mathematical reasoning.
Gentzen [3] admits that his calculus looses information present in the “narrated”
version of informal reasoning: it is unclear where to start reading two-dimensional
proof trees. This linguistic structure is recovered in Isabelle/Isar: proof texts are
written with pseudo-natural language elements, which are interpreted by the Isar
proof processor in terms of the underlying logical framework of Isabelle/Pure,
see [15, §3.3] for further details.
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It is important to understand that Isar is not another calculus, but a language
that is interpreted by imposing certain policies on the existing rule calculus
of Isabelle/Pure. To this end, Isar introduces non-logical concepts to organize
formal entities notably the proof context, the goal state (optional), and a register
for the latest result. The overall proof configuration is arranged as a stack over
these components, which enables block-structured reasoning within a flat logic.

An Isar proof body resembles a mathematical notepad: statements of various
kinds may be written down, some refer to already established facts (note), some
extend the context by new parameters and assumptions (fix and assume), some
produce derived results (have and show, followed by a sub-proof). Moreover,
there are several elements to indicate the information flow between facts and
goals, notably then, from, with, using, also, finally, moreover, ultimately.

Previous facts may be referenced either by name, or by a literal proposition
enclosed in special parentheses. For example, in the scope of assume a: A, both
a and 〈A〉 refer to the same (hypothetical) result. In the subsequent examples,
we mostly use the latter form for clarity. The labelled version is preferable in
larger applications, when propositions are getting bigger. The special name this
always refers to the result of the last statement.

From the perspective of the logical framework, the main purpose of Isar is
to produce and compose natural deduction rules. The most elementary way to
produce a rule works by concluding a result within the local scope of some extra
hypotheses, which are discharged when leaving the scope. For example:

{
fix x and y
assume A x and B y
have C x y 〈proof 〉

}
note 〈

∧
x y . A x =⇒ B y =⇒ C x y〉

Within the body of a sub-proof, fix–assume–show yields a rule as above, but
the result is used to refine a pending subgoal (matching both the assumptions
and conclusion as indicated in the text). The structure of the goal tells which
assumptions are admissible in the sub-proof, but there is some flexibility due to
the way back-chaining works in the logical framework. For example:

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −
fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −
fix y assume B y
fix x assume A x
show C x y 〈proof 〉

qed

The proof and qed elements are not just delimiters, but admit initial and ter-
minal refinements of pending goals. The default for proof is to apply a canonical
elimination or introduction rule declared in the background context, using the
“rule” method. The default for qed is to do nothing; in any case the final stage
of concluding a sub-proof is to finish pending sub-goals trivially by assumption.
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Further abbreviations for terminal proofs are “by method1 method2” for “proof
method1 qed method2”, and “..” for “by rule”, and “.” for “by this”.

With standard introduction and elimination rules declared in the library, we
can now rephrase natural deduction schemes (§2) as linear Isar text:

have A −→ B
proof
assume A
show B 〈proof 〉

qed

assume A −→ B and A
then have B ..

have ∀ x . B x
proof
fix a
show B a 〈proof 〉

qed

assume ∀ x . B x
then have B a ..

Here we have mimicked Gentzen’s diagrammatic reasoning, composing proof
texts according to the structure of the underlying rules. Isar is much more flex-
ible in arranging natural deduction proof outlines, though. Some of the rule
premises may be established beforehand and pushed into the goal statement; the
proof body will only cover the remaining premises. This allows mixed forward-
backward reasoning according to the following general pattern:

from facts1 have props using facts2 proof (method1) body qed (method2)

For example, premise A −→ B could be provided either as “from 〈A −→ B 〉”
before the goal, as “using 〈A −→ B 〉” after the goal, or as “show A −→ B” in
the body. It is up to the author of the proof to arrange facts adequately, to gain
readability by the most natural flow of information. Sub-structured premises are
usually addressed within a sub-proof, using fix–assume–show in backwards
mode, as seen in the above introduction proofs of −→ and ∀ .

The other rules from §2 can be directly turned into Isar proof texts as well,
but eliminations of the form . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C demand special

attention. A naive rendering in Isar would require the main goal C given be-
forehand, and a sub-proof that proves the same C in a context that may be
enriched by additional parameters and assumptions. Isar’s obtain element [15,
§3.1] supports this style of reasoning directly, in a logic-free fashion. For example:

{
obtain x and y where A x and B y 〈proof 〉
have C 〈proof 〉

}
note 〈C 〉

The proof obligation of “obtain x and y where A x and B y” corresponds
to the rear-part of an eliminations rule: (

∧
x y. A x =⇒ B y =⇒ thesis) =⇒

thesis for a hypothetical thesis that is arbitrary, but fixed. Having finished that
proof, the context is augmented by “fix x and y assume A x and B y”.
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Results exported from that scope are unaffected by these additional assumptions,
provided the auxiliary parameters are not mentioned in the conclusion!

We can now spell out the remaining natural deduction schemes of §2 ade-
quately, only disjE requires explicit sub-proofs involving the main conclusion C,
because obtain cannot split a proof text into several cases.

assume A and B
then have A ∧ B ..

assume A ∧ B
then obtain A and B ..

assume A
then have A ∨ B ..

assume B
then have A ∨ B ..

assume A ∨ B
then have C
proof
assume A
then show C 〈proof 〉

next
assume B
then show C 〈proof 〉

qed

assume B a
then have ∃ x . B x ..

assume ∃ x . B x
then obtain a where B a ..

4 Isar Statements

Isar proof composition is centered around natural deduction rules of the logical
framework. Such rules may be established as regular theorems like this:

theorem r :
∧

x y . A x =⇒ B y =⇒ C x y
proof −
fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

This is slightly unsatisfactory, because the structure of the result is specified
redundantly in the main statement and the proof body, using framework connec-
tives

∧
/=⇒ vs. Isar proof elements fix–assume–show, respectively. Moreover,

exposing the Isabelle/Pure rendering of the intended reasoning scheme gives the
head statement a rather technical appearance. This is even worse for elimination
rules, due to extra rule nesting . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C etc.

Isar statements address these issues by introducing first-class notation for
certain rule schemes. As seen in the initial example in §3, proof blocks allow to
produce natural deduction rules on the spot, by discharging local parameters
and assumptions, e.g. “{ fix x assume A x have B x 〈proof 〉 }” for

∧
x . A x

=⇒ B x. Based on this idea we introduce three kinds of clausal Isar statements.

1. Big clauses have the form “fixes vars assumes props shows props” and
specify the outermost structure of a natural deduction reasoning pattern.
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The given fixes and assumes elements determine a local context, shows
poses simultaneous local goals within that. The subsequent proof proceeds
directly within the local scope; the final result emerges by discharging the
context, producing corresponding

∧
/=⇒ rule structure behind the scenes.

2. Dual clauses have the form “fixes vars assumes props obtains vars where
props” and abbreviate certain big clauses: “obtains a where B a” expands
to “fixes thesis assumes

∧
a. B a =⇒ thesis shows thesis”. Case-splits

may be indicated by several clauses separated by “|”, which corresponds
to multiple branches of the form

∧
ai. B i ai =⇒ thesis. According to the

principles behind big clauses, the resulting rule will have exactly the elim-
ination format described in §2. Within the proof body, each obtains case
corresponds to a different hypothetical rule to conclude the main thesis ; one
of these possibilities has to be chosen eventually.

3. Small clauses are of the form “B x if A x for x” and indicate the second-level
rule structure of framework propositions within big clauses. This corresponds
directly to

∧
x . A x =⇒ B x, but clausal notation may not be nested further.

The basic fixes–assumes–shows form of big clauses has been available in
Isabelle/Isar for many years. The dual form is a recent addition, which has
first appeared officially in Isabelle2007. Small clauses are not available in official
Isabelle yet, but are an experimental addition for the present paper only.

Our initial proof of
∧

x y. A x =⇒ B y =⇒ C x y is now rephrased as follows:

theorem r :
fixes x and y
assumes A x and B y
shows C x y 〈proof 〉

See also §6 for proofs involving obtains. To continue our running example of
predicate logic, we rephrase the previous natural deduction rules from §2:

theorem impI : assumes B if A shows A −→ B
theorem impE : assumes A −→ B and A obtains B

theorem allI : assumes B a for a shows ∀ x . B x
theorem allE : assumes ∀ x . B x obtains B a

theorem conjI : assumes A and B shows A ∧ B
theorem conjE : assumes A ∧ B obtains A and B

theorem disjI 1: assumes A shows A ∨ B
theorem disjI 2: assumes B shows A ∨ B
theorem disjE : assumes A ∨ B obtains A | B

theorem exI : assumes B a shows ∃ x . B x
theorem exE : assumes ∃ x . B x obtains a where B a

In other words, we have managed to express the inherent structure of reasoning
schemes without demanding auxiliary logical connectives, not even those of the
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Isabelle/Pure framework. Only concepts of the application, which happens to be
predicate logic as an object-language here, and native Isar elements are involved.
The same works for domain-specific rules, e.g. those for set theory seen before:

theorem interI : assumes x ∈ A and x ∈ B shows x ∈ A ∩ B
theorem interE : assumes x ∈ A ∩ B obtains x ∈ A and x ∈ B

5 Inductive Definitions

Inductive predicates provide a convenient way to define concepts by specifying a
collection of characteristic introduction rules. Support for inductive definitions is
available in many theorem provers. Melham [6] describes a version for the HOL
system using an impredicative encoding, meaning that the definition involves
universal quantification over predicate variables, whereas Harrison’s inductive
definition package for HOL [4] uses an encoding based on the Knaster-Tarski
fixpoint theorem. The Coq system [2] is based on the Calculus of Inductive Con-
structions introduced by Paulin-Mohring, which contains inductive definitions
as a primitive concept [7]. Inductive definitions in Isabelle were first introduced
by Paulson [10], using fixpoints over the lattice of sets. Our refined version works
on generic lattices, which subsume predicates in HOL.

Many well-known concepts of mathematics can be viewed as an inductive
predicate. E.g. the transitive closure of a relation can be defined as follows:

inductive trcl for R :: α ⇒ α ⇒ bool
where

trcl R x x for x
| trcl R x z if R x y and trcl R y z for x y z

The rules of inductive may be specified using the format of “small clauses”
introduced in §4. Internally, the system derives further natural deduction rules
that may be turned into Isar proofs as discussed in §3. By virtue of its definition
as the least predicate closed under these rules, any inductive predicate admits
an induction and an inversion principle (case analysis). For example:

assume trcl R a b
then have P a b
proof (rule trcl .induct)
fix x
show P x x 〈proof 〉 — induction base

next
fix x y z
assume R x y and trcl R y z and P y z
then show P x z 〈proof 〉 — induction step

qed

This induction principle is a consequence of trcl being defined as the least fixpoint
of a predicate transformer of type (α ⇒ α ⇒ bool) ⇒ α ⇒ α ⇒ bool :
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trcl ≡
λR. lfp (λp x1 x2.

(∃ x . x1 = x ∧ x2 = x) ∨
(∃ x y z . x1 = x ∧ x2 = z ∧ R x y ∧ p y z))

The body of the function (λp x 1 x 2. . . .) is a disjunction, whose two parts
correspond to the two introduction rules for trcl. Using the fact that the predicate
transformer is monotonic, the induction principle follows from this definition
using the Knaster-Tarski theorem for least fixpoints on complete lattices:

mono f f (lfp f � P)  P
lfp f  P

The ordering relation 6 and the infimum operator # is defined on the complete
lattice of n-ary predicates in a pointwise fashion:

P 6 Q ≡ ∀ x 1 . . . xn. P x 1 . . . xn −→ Q x 1 . . . xn

P # Q ≡ λx 1 . . . xn. P x 1 . . . xn ∧ Q x 1 . . . xn

The premise f (lfp f # P) 6 P of the fixpoint theorem is established by the
proofs of the induction base and the induction step in the above proof pattern.

Case analysis corresponds to the observation that if an inductive predicate
holds, one of its introduction rules must have been used to derive it. This princi-
ple can be viewed as a degenerate form of induction, since there is no induction
hypothesis. For the transitive closure, the case analysis scheme is:

assume trcl R a b
then have Q
proof (rule trcl .cases)
fix x
assume a = x and b = x
then show Q 〈proof 〉

next
fix x y z
assume a = x and b = z and R x y and trcl R y z
then show Q 〈proof 〉

qed

Although the case analysis rule could be derived from the above least fixpoint
theorem as well, it is proved from the fixpoint unfolding theorem mono f =⇒
lfp f = f (lfp f ) which has the advantage that exactly the same proof technique
can also be used in the case of coinductive predicates, using gfp in place of lfp.

Inductive predicates are very convenient to formalize mathematical concepts
succinctly, even if there is no recursion involved. For example, the composition
of two relations R and S can be defined as follows:

inductive comp for R :: α ⇒ β ⇒ bool and S :: β ⇒ γ ⇒ bool
where comp R S x z if R x y and S y z for x y z

For comp, the underlying primitive definition is comp ≡ λR S . lfp (λp x 1 x 2.
∃ x y z . x 1 = x ∧ x 2 = z ∧ R x y ∧ S y z ). For fixpoints of constant functions
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like the above we have lfp (λx . t) = t, which easily follows from the fixpoint
unfolding theorem. Using the same principles, we can even characterize basic
operators of predicate logic as inductive predicates with zero arguments. E.g.

inductive and for A B :: bool
where and A B if A and B

inductive or for A B :: bool
where or A B if A | or A B if B

inductive exists for B :: α ⇒ bool
where exists B if B a for a

Again, these operators are just examples. Real applications would introduce their
genuine notions directly as inductive definitions.

6 Case-Study: Well-Founded Multiset Ordering

To illustrate the “logic-free” style of definitions, statements and proofs in Isar,
we formalize some aspects of well-founded multiset ordering. A multiset is a fi-
nite “bag” of items, which can be modeled as a function from items to natural
numbers that yields a non-zero value only on a finite domain. Multiset notation
is reminiscent of plain sets: {|a, a, b, b, b, c|} for enumeration, a ∈ B for member-
ship, A 7 B for union etc. The structure of multisets can also be characterized
inductively, with base case {||} and step case B 7 {|a|} for a multiset B.

Given an ordering on items, multisets can be ordered by the following intuitive
process: one item of the bag is removed and replaced by the content of another
bag of strictly smaller items; this is repeated transitively. The main theorem
states that the resulting relation on multisets is well-founded, provided that the
item ordering is well-founded. Below we merely cover the basic definitions and
a technical lemma required for the well-foundedness proof.1

Our development refers to a locally fixed less relation, which is introduced by
commencing the following locale context (see also [1]).

locale less-relation = fixes less :: α ⇒ α ⇒ bool (infix ≺ 50)
begin

The locale already contributes to the “logic-free” approach, since it avoids ex-
plicit abstraction or quantification over that parameter.

A bag of items is compared to a single item in point-wise manner as follows:

definition lesser (infix ≺ 50) where B ≺ a ↔ (∀ b. b ∈ B −→ b ≺ a)

lemma lesserI : assumes b ≺ a for b shows B ≺ a
using assms unfolding lesser-def by auto

1 See http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html for
a rather old version of the complete formalization that mixes quite different styles;
the main well-foundedness theorem is called wf-mult there.

http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html
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lemma lesserE : assumes B ≺ a and b ∈ B obtains b ≺ a
using assms unfolding lesser-def by auto

Obviously, the primitive predicate definition of B ≺ a is not logic-free, since it
uses ∀ and −→ connectives. The two extra “boiler plate” lemmas amend this by
providing an alternative characterization in natural deduction style. (In the bits
of proof shown below, we never need to analyze the lesser relation, though).

Next we define the main idea of the multiset ordering process. The subsequent
inductive predicate N ≺≺ M expresses a single step of splitting off an element
from M = B 7 {|a|} and replacing it by a point-wise smaller multiset. (The full
ordering emerges as the transitive closure of that relation.)

inductive less-multiset (infix ≺≺ 50)
where B # C ≺≺ B # {|a|} if C ≺ a for a B C

This rather succinct logic-free definition characterizes the relation by a single
clause — there are no other cases and no recursion either. Even this degenerate
form of inductive definition is very convenient in formal reasoning. Here the
decomposition of the two multisets is specified directly via pattern matching,
with side-conditions and parameters expressed as native clauses of Isabelle/Isar.

In contrast, the original formulation from the Isabelle/HOL library uses an
encoding that involves intermediate layers of predicate logic and set theory, with
separate equations to express the decomposition.

definition less-mult =
{(N , M ). ∃ a B C . M = B # {|a|} ∧ N = B # C ∧ C ≺ a}

While this might look familiar to anybody trained in logic, manipulating such
auxiliary structure in formal proof requires extra steps that do not contribute
to the application. Nevertheless, even rather bulky encodings do often happen
to work out in practice by means of reasonably strong “proof automation”. We
illustrate this by proving formally that both definitions are equivalent.

lemma N ≺≺ M ↔ (N , M ) ∈ less-mult
unfolding less-mult-def

proof
assume N ≺≺ M
then obtain a B C where M = B # {|a|} and N = B # C and C ≺ a
by (rule less-multiset .cases)

then show (N , M ) ∈ {(N , M ). ∃ a B C . M = B # {|a|} ∧ N = B # C ∧ C ≺ a}
by auto

next
assume (N , M ) ∈ {(N , M ). ∃ a B C . M = B # {|a|} ∧ N = B # C ∧ C ≺ a}
then obtain a B C where M = B # {|a|} and N = B # C and C ≺ a
by auto

from 〈C ≺ a〉 have B # C ≺≺ B # {|a|} by (rule less-multiset .intros)
with 〈M = B # {|a|}〉 and 〈N = B # C 〉 show N ≺≺ M by simp

qed

This rather lengthy proof merely shuffles logical connectives back and forth, with-
out being very informative. The auto method involved here is a fully-featured
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combination of classical proof search with equational normalization; it success-
fully bridges the gap between the intermediate statements given in the text. On
the other hand, this extra overhead can be avoided by the logic-free characteri-
zation of the inductive definition from the very beginning. So we continue in that
style now, working on the mathematics of multiset orderings instead of doing
exercises in formal logic and automated reasoning.

The proof of the main theorem combines well-founded induction over the
relation ≺ of items with structural induction over multisets. At some point in
the induction step, the multiset ordering N ≺≺ B 7 {|a|} needs to be analyzed:

lemma less-add-cases:
assumes N ≺≺ B # {|a|}
obtains

(1) M where M ≺≺ B and N = M # {|a|}
| (2) C where C ≺ a and N = B # C

Ultimately, the rule resulting from this goal statement will split an arbitrary fact
N ≺≺ B 7 {|a|} into two cases as specified above. In the present proof context, we
are still in the course of establishing this claim. Here N ≺≺ B 7 {|a|} is available
as a local fact, and there are two possibilities to finish the hypothetical main
thesis, namely rule 1: thesis if M ≺≺ B and N = M 7 {|a|} for M and rule 2:
thesis if C ≺ a and N = B 7 C for C.

This means the subsequent proof already starts out in a nicely decomposed
version of the idea of splitting cases and obtaining local parameters and assump-
tions, without having to work through auxiliary ∨, ∧, ∃ connectives again:

proof −
from 〈N ≺≺ B # {|a|}〉

obtain a ′ B ′ C where
B # {|a|} = B ′ # {|a ′|} and
N = B ′ # C and
C ≺ a ′

by (rule less-multiset .cases) simp-all
from 〈B # {|a|} = B ′ # {|a ′|}〉 show thesis
proof (rule add-eq-cases)
assume B = B ′ and a = a ′

with 〈C ≺ a ′〉 and 〈N = B ′ # C 〉

have C ≺ a and N = B # C by simp-all
then show thesis by (rule 2)

next
fix C ′ assume B ′ = C ′ # {|a|} and B = C ′ # {|a ′|}
show thesis
proof (rule 1)
from 〈C ≺ a ′〉 have C ′ # C ≺≺ C ′ # {|a ′|} by (rule less-multiset .intros)
with 〈B = C ′ # {|a ′|}〉 show C ′ # C ≺≺ B by simp
from 〈B ′ = C ′ # {|a|}〉 and 〈N = B ′ # C 〉

show N = C ′ # C # {|a|} by (simp add : union-ac)
qed

qed
qed
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Above the initial obtain statement augments the local context by means of
standard elimination of the N ≺≺ M relation, using the corresponding cases
rule. The sub-proof via add-eq-cases involves another obtains rule proven in
the background library; its statement is structurally similar to less-add-cases.

So our proof manages to maintain the logic-free style, no auxiliary connectives
are involved, only some algebraic operators from the application domain. The
old proof in the Isabelle/HOL library requires about two times more text, even
though it uses many abbreviations for sub-terms and local facts. Moreover, it
needs more automation to work through extraneous logical structure.

end

7 Conclusion and Related Work

Isabelle/Isar shares the mission of formal reasoning that approximates tradi-
tional mathematical style with the pioneering Mizar system [12, 11]. There are
many similarities and dissimilarities, see also [17, 16] for some comparison.

Concerning the logical foundations, Isar uses the Isabelle/Pure framework
[8, 9] which implements a generic higher-order version of Gentzen’s natural de-
duction calculus [3]. In contrast, Mizar works specifically with classical first-order
logic, and the style of reasoning is modeled after the “supposition calculus” due
to Jaskowski [5]. The basic paradigm of structured proof composition in Mizar
is quite different from Isar. Where Isar revolves around natural deduction rules
that emerge from local proof bodies and refine pending goals eventually, Mizar
allows to operate more directly on the logical structure of a claim in consecu-
tive refinement steps: let to move past universal quantification, assume to move
past an implication etc. In contrast, fix and assume in Isar do not operate on a
goal structure, but construct a context that will impose a certain rule structure
on the final show result. This can make a difference in practice: in proving an
implication a Mizar proof needs to say assume A invariably, while in Isar the
corresponding “assume A” is only required if that fact is actually used later.

Essentially, there are Mizar proof elements for each of the logical connectives of
∧, ∨, −→, ∀ , ∃ , but English words are used here both for the connectives and the
corresponding proof elements. For example, the proposition for x holds A[x]
can be established by let x and a proof of A[x] in that scope. Thus Mizar
enables to produce a proof text according to principles from classical first-order
logic, while Isar is more puristic in referring to generic natural deduction, where
predicate logic is just one example. This different attitude is best illustrated by
existential elimination, which works in Mizar via consider a such that B[a]
and is closely tied to actual existential quantification ex x st B[x]. In Isar
“obtain a where B a” merely espresses the more elementary idea of being able
to augment the local scope by a hypothetical entity a with property B a. This
might follow from a fact ∃ x . B x, but the elimination is better performed by a
domain-specific rule . . . =⇒ (

∧
a. B a =⇒ C ) =⇒ C, or “obtains a where B

a” as explained in the present paper. Our inductive definitions are particularly
well suited to produce such rules.
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This means certain aspects of Mizar are about predicate logic, rather than
mathematics. In contrast, our “logic-free” style in Isar enables more direct ex-
pression of definitions, statements, and proofs — reducing the overall formality
of the text.
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(eds.) TPHOLs 1999. LNCS, vol. 1690. Springer, Heidelberg (1999)

[14] Wenzel, M.: Isabelle/Isar — a versatile environment for human-readable formal
proof documents. Ph.D. thesis, Institut für Informatik, TU München (2002)

[15] Wenzel, M.: Isabelle/Isar — a generic framework for human-readable
proof documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, University of
Bia�lystok. Studies in Logic, Grammar, and Rhetoric, vol. 10(23) (2007),
http://www.in.tum.de/∼wenzelm/papers/isar-framework.pdf

[16] Wiedijk, F.(ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

[17] Wiedijk, F., Wenzel, M.: A comparison of the mathematical proof languages Mizar
and Isar. Journal of Automated Reasoning 29(3-4) (2002)

http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf


A Mathematical Type for Physical Variables

Joseph B. Collins

Naval Research Laboratory
4555 Overlook Ave, SW

Washington, DC 20375-5337

Abstract. In identifying the requirements of a markup language for de-
scribing the mathematical semantics of physics-based models, we pose
the question: “Is there a mathematical type for physical variables?”
While this question has no a priori answer, since physics is fundamen-
tally empirical, it appears that a large body of physics may be described
with a single mathematical type. Briefly stated, that type is formed as
the mathematical product of a physical unit, such as meter or second,
and an element of a Clifford algebra. We discuss some of the properties
of this mathematical type and its use in documentation of physics-based
models.

1 Introduction

We are interested in creating a markup language for the representation of phys-
ical models, i.e., a physics markup language. Our primary requirement for a
physics markup language is to represent the models that physicists and en-
gineers create and so, necessarily, the components with which they build those
models. The principal reason for creating such a language is to improve the com-
munication of the semantics of models of the physical world in order to support
interoperability of physics-based models with each other, such as with multi-
physics simulation, and interoperability with other non-physics-based models.
Physics-based models are used extensively in modeling and simulation (M&S)
frameworks to support a wide array of predictive and decision making applica-
tions of practical importance. An open and standard way of documenting the
physical and mathematical semantics of physics-based models, such as a markup
language might provide, would go a long way towards lowering the costs of model
development and validation. Additionally, since models form the basis of the the-
oretical development of physics, communication of research results and physics
education would also be favorably impacted.

In approaching these goals, we ask “What information is it necessary to specify
in order to transmit knowledge of a physical model and to make the transmis-
sion unambiguous?” In particular, we are interested in identifying the specific
mathematical concepts necessary for expressing the physical semantics since,
once identified, they may be dealt with somewhat independently. We observe
that the typical computer code representing a physics-based model follows from
a mathematical model derived from the application of mathematically phrased
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physical laws to mathematical representations of physical objects. There is a rich
array of mathematical concepts used in these mathematical representations. This
raises the question as to how we approach the problem of representing all of these
mathematical concepts. For example, we need to specify the dimensionality of
the physical objects being modeled, their spatio-temporal extents, and the em-
bedding space. We also note that: the physical quantities and corresponding
units used to describe physical properties have a mathematical structure; the
physical laws that are applied usually have a differential expression; and, invari-
ance with respect to various transformations is a key concept. Each of these,
while they carry physical semantics, must be mathematically expressed.

2 Mathematical Requirements of a Physics Markup
Language

Physical semantics ultimately rests on mathematical phrasing. To be meaning-
ful, scientific theories are required to provide predictions that are testable. In
practice, this means we must be able to compare mathematically computed pre-
dictions to numerical measurement data. Accordingly, the first things we need to
express in a physics markup language are the mathematical symbols that repre-
sent the properties of physical objects. To be useful, a physics-based model must
represent a physical object with at least one of the object’s measurable proper-
ties, which has physical dimension expressed in specified units. Very often these
properties are modeled as variables and they are used to represent such things as
the positions, velocities, and accelerations of a physical object, which typically
vary as a function of time. A prediction results when, given the model, we can
solve for a given variable. We refer to these variables as physical variables. We
need to be able to express not only physical variables, but also the mathematical
operations upon physical variables and the mathematical relationships between
physical variables.

It is often said that most models in physics are ultimately partial differential
equations with boundary conditions. In order to specify these relations between
physical variables, we will require the ability to specify, in addition to the physi-
cal variables themselves, differential operators, such as gradient, divergence, and
curl, acting on scalar and vector fields, as well as equality and inequality re-
lationships. Note that this use of the term field is not the usual mathematical
meaning as in, for example, “the real numbers form a field”, but is specifically
a physicists meaning. A physicists notion of a physical field (temperature field,
gravitational field, etc.) is a scalar or vector quantity defined at each point in a
space-time domain. Specifying a model in terms of differential equations is an
implicit form of specification, since in order to express the variables as explicit
functions of time we will require a solution to the equations.

There are many more mathematical concepts that we need to express to rep-
resent models with physical variables. We know, for example, that: classical
mechanics makes use of scalars, vectors, and tensors defined in space-time; these
vectors have length, giving metric properties to objects defined in space-time;
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quantum physics makes use of Dirac spinors and Hilbert space vectors (bra-
ket notation); general relativity requires transformation between covariant and
contra-variant forms using a non-trivial metric tensor; and, models of physical
objects possess spatial extent and often have defined boundary surfaces. Dif-
ferential equations need to be expressed over definite volumes, and boundary
conditions need to be expressed on the bounding surfaces of those volumes. We
often want to specify a preferred geometric basis for the expressed geometry, such
as rectangular, cylindrical, or spherical coordinates. Until we can express the se-
mantics of these many mathematical concepts, we will not be able to express a
large body of physical models.

Statements of invariance are also important relationships between physical
variables. While the equations that make up a model may implicitly obey some
invariance, and additional statement of such invariance may seem redundant,
specific statements of known invariance are useful in understanding a particular
model and in performing computational evaluations using the model. Invari-
ance is, in general, specified with respect to operations performed on physical
variables by particular operators. Such operators include Euclidean transforma-
tions (spatial rotations, translations, and reflections) and Lorentz transforma-
tions (space-time rotations, boosts, and reflections).

While in order to make specific predictions it is common to consider mod-
els as providing unique solutions for all of its physical variables as functions
on space-time, this is not always necessary. There is value in using models to
express incomplete knowledge of as well, which may result in sets of multiple
possible solutions. We may, for example, only only be able to specify that two
variables within a model have a functional dependence, i.e., X is a function of
Y, without knowing more detail. We may want to specify that a variable has
exclusive dependence on another or that it is independent of another. We often
need to state physical principles as inequalities, for example, for which there are
many solutions. It may be that we want to develop reusable models that can
be used to predict many different variables, but not necessarily simultaneously,
where each variable may have distinct dependencies, or lack thereof, on given
initial conditions. In building these models, we may need to develop a more
clear definition of what constitutes a model and under what conditions a model
permits solutions to be determined.

To summarize, a markup language for physics must support the following
mathematical concepts:

a) A physical attribute which has physical dimension and may be represented
in defined units. It may be represented with a scalar magnitude, or, if it is
a more complex property, by a vector, a tensor, or other object with the
necessary algebraic properties.

b) A physical object has spatial presence and extent, properties that are rep-
resented as point-like, 1-dimensional, or arbitrary dimensional attributes.
These properties may be described within the space-time reference frame of
the physical object itself, or within the space-time reference frame of another
physical object.
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c) The attributes of a physical object may satisfy a specified set of differential
equations or other mathematical relations.

Finally, it cannot be supposed that this is a complete tally of useful math-
ematical semantics. For example, statements of general physical laws, such as
Newtonian universal gravitation, will be aided by the use of mathematical quan-
tifiers to specify, for example, that gravitational forces are present between all
pairs of massive physical objects within a model. In general, it seems desirable,
if not necessary, to be able to express a full range of mathematical relations
between variables in physical models.

3 A Type for Physical Variables

The fundamental components that physicists use to build models are physical
variables, parameters that represent the physical quantity attributes of physical
objects. A physical quantity is an observable, measurable property of an object
in the physical world. A principal difficulty we have in representing physical
variables in a markup language is that physical variables do not generally have
a well-defined type, where we use the term type much as a computer scientist or
mathematician would, i.e., a class of objects with a well-defined set of allowed
operations. Physicists and engineers typically act as applied math practitioners
with a well-schooled intuition, and they are not always fussy about mathemat-
ical formalism. The types of physical variables are rarely declared as part of a
problem statement or model definition, and it is common to find abrupt transi-
tions in usage, from one implied type to another. While one might well consider
attempting to capture the reasoning abilities of these applied math practitioners
as an exercise in artificial intelligence, that is a separate research topic of its
own. We are undertaking here the problem of capturing as precisely as possible
the mathematical description of such models, and describing as concise a set of
clearly defined types as possible. The reason for looking more carefully at the
formal mathematical representations of physical variables is to determine what
is a sufficient amount of information to require for a semantic representation of
physical models.

So, we begin this inquiry into developing a physics markup language by posing
the following primary question: “What is the type necessary for representing
physical variables?” Upon reflection, we may question why we should expect
there to be a single type for representing physical variables. We state, somewhat
axiomatically, that the objective of physics is to describe physical interactions
mathematically. One may dispute the underlying axiomatic assumption that
physical interactions may be described mathematically, but, pragmatically, we
are only interested in those interactions that may be so described, since that is
what affords us the ability to make predictions.

To answer the question as to why we should expect a single type for physical
variables, consider the following. If for each interaction of two physical variables
we were to be given a physical variable of a new type, it would not take very
long for the resulting type proliferation to make it difficult, if not impossible, to
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describe the physical universe. Describing the physical universe is certainly eas-
ier if there is a countable, closed system of defined types, and easier still if there
are but a finite number of defined types. More importantly, we should expect
that if the physical universe is closed, so too in our mathematical description
of the physical universe should the set of objects that represent physical vari-
ables be closed under those operations that represent physical interactions. The
requirement of closure merely reflects the idea that physical interactions should
be a function of the physical quantities of the interacting objects and should
result in physical effects, where the effects may also be represented using physi-
cal variables. Without a requirement of closure for physical variables, we would
allow non-physical results from the interaction of physical objects or we would
allow physical effects to result from non-physical interactions. We therefore re-
quire the definition, from a formal perspective, of a type for representing physical
variables, which has a mathematical description, being essentially a set that is
closed under defined operations.

We also undertake this inquiry with the understanding that a practical solu-
tion today may well be improved upon later since it is impossible to anticipate
all of the future developments of theoretical physics. This reality should not de-
ter us, however, from attempting to answer our primary question, since there is
significant challenge and great utility in handling only those representations of
physical variables that have been described to date.

In summary, we need to represent the idea of physical variables, the mathe-
matical symbols used to represent specific physical properties of physical objects.
The physical variable may be thought of as having all of the mathematical prop-
erties that the applicable physical theories indicate that they should have, and
also be capable of holding the corresponding measurable values. The values may
be arrived at by measurement of the corresponding physical objects attributes,
or by prediction arrived at by applying physical laws, e.g., equations, to other
measured attributes of a system of physical objects.

4 The Physical Dimensional Properties of Physical
Variables

The term “physical quantity” is a fundamental one in physics, narrowly defined
by the International System of Units (SI) as the measurable properties of physical
objects. Common usage often substitutes the phrase physical dimension for the
SI defined phrase physical quantity, and uses the term physical quantity more
loosely. A “physical dimension” in this sense should not be confused with the
separate notion of spatial dimensions, e.g., those defined by three spatial basis
vectors.

The SI has also defined base quantities: they are length, mass, time, electric
current, thermodynamic temperature, amount of substance, and luminous in-
tensity with corresponding dimensions represented by the symbols L, M, T, I,
Θ, N, and J [1]. Derived quantities may be created by taking products, ratios,
and powers of the base quantities. A measurement generally returns a positive,
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definite quantity and a zero value implies an immeasurably small amount of the
quantity. The result of a simple (scalar) measurement of a physical quantity is
represented as the product of a scalar real number and a physical unit, where
the physical unit is a scale factor for a physical quantity or physical dimension.
While there is debate within the physics research community as to how many
physical dimensions are truly fundamental, standard practice is to use the seven
SI base quantities mentioned above. The SI also provides corresponding stan-
dard base units for the seven base quantities: meter; second; kilogram; ampere;
Kelvin; mole; and candela. Within the SI standard, many other units, called
derived units, are defined in terms of these base units.

While the SI system is commonly used, it is not used exclusively. Other sys-
tems may have a different set of fundamental dimensions, base units, or both. A
simple way to characterize the system used for a given model is to specify, for
n fundamental dimensions, an n-tuple of defined units. This explicitly specifies
the base units while implicitly specifying the base dimensions and supports the
expression of a model for any set of defined absolute quantities.

In its most comprehensible form, then, a physical variable represents a quan-
tity, like a length, which is generally measured as a finite precision, real number
of units, where the units are some reference or standard units. While an individ-
ual measurement is most easily thought of as a scalar quantity, physical variables
may have multiple components which are more suitably represented as vectors or
tensors. Measurement of these more complex objects is correspondingly complex.

4.1 The Mathematics of Units and Dimensions

As asserted earlier, the semantics of physics is largely contained within the math-
ematical properties of the components with which we describe physical models.
We now begin to examine the mathematical properties of physical variables. The
operation of taking the physical dimension of a physical variable, X , is usually
written with square brackets, as [X ]. This operation, which is idempotent, i.e.,
[[X ]] = [X ], is like a projection, where the information about magnitude, units,
and spatial directionality of the physical variable is all lost. We can enumerate
some of the properties of physical variables under the physical dimension bracket
operation:

All physical variables have physical dimension composed of the fundamental
dimensions:

[X ] = LαMβTγ IδΘεNζJη, (1)

where the exponents, α, β, γ, δ, ε, ζ, and η, are rational numbers.
Physical variables may be added if they are of the same dimension:

If [X ] = [Y ], then [X + Y ] = [X ] = [Y ]; (2)

The physical dimension of a product of physical variables is the same as the
commutative and associative product of the physical dimensions of the factor
variables:

[X ∗ Y ] = [X ] ∗ [Y ] = [Y ] ∗ [X ] ; (3)
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[X ∗ Y ∗ Z ] = [X ∗ Y ] ∗ [Z ] = [X ] ∗ [Y ∗ Z ] (4)

The physical dimension of the reciprocal of a physical variable is the reciprocal
of the physical dimension of the variable:

[X−1] = [X ]−1 (5)

The physical dimension of a real number is defined to be 1. Formally, the physi-
cal dimensions of physical variables form a commutative, or abelian group. This
group may be written multiplicatively, which corresponds to the usual way in
which dimensional quantities are manipulated in most physical applications.
Written multiplicatively, the group elements are the identity, 1, and, in the case
of SI, n = 7 base quantities, L, M, T, I, Θ, N, and J, along with their powers
and their products. Being abelian, this group may also be written additively,
where the group element representation is as an n-tuple of exponents for the n
base quantities. The additive representation of the group is useful in performing
dimensional analysis. The exponents of the dimensions are often integers, al-
though for convenience in some applications the exponents are extended to the
rational numbers. When written additively, the physical dimensions of physical
variables may be seen to form a vector space, where vector addition corresponds
to multiplication of the underlying physical variables and scalar multiplication of
the n-tuple of exponents corresponds to raising the physical variables to various
powers.

By taking the physical dimension of a physical variable we have lost some
essential pieces of information, which we now seek to recover. In particular, for
what is commonly thought of as a scalar physical variable, we need to represent
the combination of the units and magnitude of the physical property. In order to
do so, we here introduce the following notation: X = {X}u ∗ u, where a physical
variable is factored into two parts: the first part is {X}u, while the second part
is the unit, u, that the physical dimension is expressed in, i.e., [X ] = [u], The
first part, {X}u, which is properly scaled with respect to the unit, u, is the non-
physically-dimensioned part of the physical variable, i.e., [{X}u] = 1. We will
call this part of the physical variable, {X}u, the spatial part.

Units provide a scale factor for each of the base dimensions, giving a base
unit for each base dimension. A unit is either a base unit or a unit derived
by (commutative) products and ratios of base units. For example, a product of
two units of length results in a unit having physical dimension L ∗ L = L2, a
unit for area. A product or ratio of different units may be reduced if they have
fundamental dimensions in common. A ratio of two different units having the
same physical dimension, when reduced, results in a dimensionless real number
called a conversion factor. For example, [foot] = [meter ] = L so meter/foot ≈
3.28.

We finally note that we can represent the logarithm of the physical variable
as the formal sum

ln(X ) = ln({X}u) + α ∗ ln(u1) + ...η ∗ ln(u7) (6)
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where u =
∏7

i=1 ui in the case of seven base units. We can more simply represent
this as

(z,α,β, γ, δ, ε, ζ, η) (7)

where z = ln({X}u), representing the measured quantity in units derived from
base units. In this representation of the physical variable the operation of taking
the physical dimension is seen to be a true projection operator, i.e.,

[(z,α,β, γ, δ, ε, ζ, η)] = (0,α,β, γ, δ, ε, ζ, η). (8)

where the result is an element of the additive representation of the group of
physical dimensions. The space of fundamental and derived physical dimensions
so represented comprises a vector space, where the vector addition operation cor-
responds to multiplication of physically dimensioned quantities and the scalar
multiplication operation corresponds to raising physical quantities to powers. A
change of units is represented as a translation operation in the first (dimension-
less) component of the (1 + n)-tuple that represents the physical variable when
that component is an element of a scalar field.

While physicists routinely perform legitimate mathematical manipulations
of physical dimensions, they do this intuitively and the formal mathematical
structure of physical dimensions is rarely expressed.

5 A Type for the Spatial Part of Physical Variables

The spatial part of physical variables, i.e., {X}u, has the following properties: we
can multiply it by a scalar; we can add more than one together; we can multiply
more than one together. The first two of these properties indicate that they form
a vector space. The third property, multiplication of physical variables, is trivial
when the spatial part of a physical variable is a scalar. After scalars, the most
common object representing the spatial part of physical variables are vectors.
When a physicist or engineer refers to a “vector”, they usually mean a rank-1
tensor. Physicists and engineers also use higher rank tensors, most commonly
rank-2 tensors.

Typically used vector multiplications are: the scalar, inner, or dot product;
and, the vector cross product, or Gibbs’ vector product. Well known, though
less commonly used, is the dyadic, outer, or tensor product, where higher rank
tensors may be constructed from lower rank tensors. Usually a metric is tacitly
assumed, typically Euclidean. Other metrics are required for special and general
relativistic mechanics.

The manner in which these vectors and tensors are manipulated by physicists
is largely ad hoc, rather than uniform, and is usually derived from the work
of prior physical scientists. Maxwell popularized Hamilton’s quaternions, using
them to express electrodynamics. Quaternions were superseded by the vector
analysis of Gibbs [2] and Heaviside, which survives to this day, largely unaltered
except by addition of new concepts, objects and operations. The mathematics
used in quantum mechanics today follows the style of usage originated by the



378 J.B. Collins

physicists that originally employed it. While we do not mean to suggest in-
correctness in their treatment, much of the mathematics used by physicists is
taught by physicists. A mathematician might find an absence of definition and
uniformity in the mathematical properties of physical variables as they are most
commonly used.

Considering these issues, a principle question that that we raise is: “What is
the type of the spatial part of physical variables?” By asking this question we
mean to proceed to understand the formal mathematical structure of these ob-
jects. Because physics is at root empirical, the best answer that can be provided
is to propose a type of object that appears to meet the criteria of matching the
known objects used by physicists as physical variables. Each time a new con-
cept, object, or operation is added, it would be helpful to formally extend an
axiomatic mathematical framework to incorporate the new in with the old. The
purpose for doing this was stated previously: closure in the world of physical
quantities and interactions should be reflected by mathematical closure in the
physical variables used to represent the physical world. Happily, this question has
been constructively considered and the best answer to date appears to be that
the spatial part of physical variables may be described by Clifford algebras [3].

As usually encountered in the education of a physicist, physical variables,
specifically the spatial part of physical variables, appear to consist of several
types. Most commonly encountered are real scalars or vectors. Complex scalars
and vectors are also commonly used in representing physical variables. Minkowski
four-vector notation is well-known to students of physics to be a better notation
than Gibbs’ vector notation for electrodynamics, particularly the “Electrody-
namics of Moving Bodies”, [4] i.e., special relativity. General relativity intro-
duces multi-ranked tensors; elementary quantum mechanics introduces Hilbert
spaces and the non-commutative spinors. Finally, modern quantum particle the-
ories make liberal use of elements of various Lie algebras. To the casual observer,
there appears to be a multiplicity of types.

Clifford algebras are not commonly used by most physicists, though they are
heavily used in some forefront research areas of theoretical physics. While there
is currently some effort [5] to change this state of affairs, one may reasonably
ask why we should introduce into a discussion of standards a construct that
is not commonly used. The answer is based on two requirements. First, there
is the important problem of being able to translate or otherwise relate models
expressed in different notations. If there is one notational representation that can
capture the semantics of a catchall of individual notations, then it is useful to
have it present at least as an underlying representation, even if it is infrequently
expressed explicitly in the specification of models. That is, since it represents the
current understanding of the fundamental underlying mathematics for most, if
not all, physical models, representing Clifford algebras is sufficient to represent
physical variables in most known models. Secondly, since many models explicitly
reference Clifford algebras, it is necessary to represent Clifford algebras in order
to represent the semantics of those models.
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5.1 Features of a Clifford Algebra

The objects of Clifford algebras are vectors, although they may not always seem
as recognizable to physicists as the usual vectors that come from the Vector
Analysis of Gibbs and Heaviside. The vectors of Clifford algebras are also referred
to as multivectors and represent a richer set of objects than those in Gibbs’ Vector
Analysis. Some multivectors are the usual vectors of Gibbs’ Vector Analysis,
some are scalars and some are higher ranked tensors. Some of these multivectors
represent formal sums of the usual scalars, vectors, and tensors. Some of these
multivectors may be used to represent subspaces. Some of these multivectors
are used to represent rotations, translations, spinors and other objects normally
described by Lie groups. In summary, the principle mathematical objects of
interest to physicists are all elements of Clifford algebras.

A key element of Clifford algebras is the Clifford product, an associative vector
product with an inverse. The other vector products previously mentioned here do
not have these properties. Since Clifford algebras also have an identity element
and closure holds for the Clifford product, there is a resulting group structure
for the vectors in a Clifford algebra. Of particular interest, Lie algebras are sub-
algebras of Clifford algebras. A complete description of Clifford algebras is well
beyond the scope of this paper and is well described elsewhere [3].

One may well ask “If Clifford algebras are as powerful as advertised, why did
physicists ever commit to the standard Vector Analysis?” There may be several
speculative answers possible [6]. Certainly the work of Grassman, which gave
rise to Clifford algebras, may not have been as well publicized among physi-
cists as Gibbs’ work was, though Gibbs was certainly aware of it. Additionally,
the standard Vector Analysis serves quite well for much of classical physics, so
its continued use is a reasonable satisficing strategy. How, then, is Gibbs’ Vec-
tor Analysis not the best fit for physics? It begins to be less comfortably used
when vector objects of rank greater than one, i.e., tensors, are required, but,
most certainly, spinors appear to be foreign objects within Vector Analysis. Per-
haps one of the sorest points is that vector cross-product defined by Gibbs only
exists in three dimensions. Modern physicists like to stretch well beyond three-
dimensions. In Clifford algebras the cross product has been defined for spaces of
any dimension. Outside of three dimensional space it is not a simple vector, and
does not appear to be describable within Vector Analysis.

We note the following several points that may be of particular interest to
mathematicians. Hestenes narrows the range of Clifford algebras of interest to
physicists to geometric algebras. Geometric algebras are the subset of Clifford
algebras defined over the reals and possessing a non-singular quadratic form [3]
[7], so, from the mathematical perspective, expressing elements and operations
of a Clifford algebra are sufficient for doing the same for elements of a geometric
algebra. A concise axiomatic development of geometric algebra and its differen-
tial calculus, called geometric calculus, are provided by Hestenes [3]. Geometric
calculus claims greater generality than Cartan’s calculus of differential forms [3].

Of particular interest to physicists and other intuitive mathematicians, geo-
metric algebras have natural and well developed geometric interpretations [11]
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which, interestingly, have been exploited in computer graphics rendering using
the coordinate-free representations of rotations and translations. The work of
reformulating physics in this coherent notation, not overwhelming, but no small
task, has been underway for many years [8] [9] with the result that it appears to
have great potential for unifying the mathematics of physics. Geometric calculus
has even been successfully applied to gauge theory gravity [10], one of the more
esoteric research frontiers in physics.

We are left to conclude that the standard Gibbs’ Vector Analysis is by com-
parison just a convenient shorthand, derived from the ideas of Grassman which
have reached a fuller and richer expression in Clifford algebras. In sum, Clifford
algebras generally, and geometric algebra in particular, provide a coherent al-
gebraic method for representing the spatial part of physical variables for most
of classical and modern physics. It is certainly not the most commonly used
notation, but other notations may be readily translated into it.

6 Summary

Our purpose here has been to sketch the essential mathematical properties of
physical variables. One reason for doing this is to help clarify the mathemati-
cal semantics as separate from, though necessary to, the expression of physical
semantics. Having made this separation, experts in representing mathematical
semantics are now enabled to aid in the development of a physics markup lan-
guage by independently expanding mathematical semantic representations. In
particular, semantic representations of the mathematical properties of physical
dimensions and units, and of Clifford algebras, which include geometric alge-
bras, will greatly enable the expression of the physical semantics of physics-based
models. We believe that the expression of Clifford algebras in this way will be
significantly more straightforward from a mathematical perspective because it is
mathematically better defined than the collection of notations used for different
sub-theories within the physics community.
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Abstract. In [9], various observations on the handling of (physical)
units in OpenMath were made. In this paper, we update those obser-
vations, and make some comments based on a working unit converter
[21] that, because of its OpenMath-based design, is modular, extensible
and reflective. We also note that some of the issues in an effective con-
verter, such as the rules governing abbreviations, being more linguistic
than mathematical, do not lend themselves to easy expression in Open-
Math.

1 Introduction

For the purposes of this paper, we define a unit of measurement as any de-
terminate quantity, dimension, or magnitude adopted as a basis or standard of
measurement for other quantities of the same kind and in terms of which their
magnitude is calculated or expressed [19, unit].

Units are generally thought of as “fairly easy”, but, as this paper shows, there
are some subtleties. One of the early design goals for Java was that it should be
‘unit safe’ as well as ‘type safe’, but this was dropped due to the difficulties [12].

There have been many famous examples where unit conversion was not un-
dertaken, or where it was incorrectly calculated. The Gimli Glider [18,24], as it
became known, was a (then) new Boeing 767 plane, which, during what should
have been a routine flight in 1983, ran out of fuel just over halfway to its intended
destination. The ensuing investigation established that an incorrect conversion
had been performed, leading to a woefully insufficient fuel payload, because the
aircraft was one of the first of its kind to use a metric measure of fuel, and the
refuellers had used an imperial conversion instead of the correct metric one. In
addition, although a second check was carried out between legs of the flight, the
same incorrect conversion was used.

Large organisations such as NASA are not immune to such problems [17].
Software controlling the thrusters on the Mars Climate Orbiter was configured
to use imperial units, while ground control, and the other parts of the space
craft, interpreted values as if they were metric. This led to the orbiter entering
an incorrect orbit too close to Mars, and ultimately to its being destroyed.

Again, even widespread systems such as Google can get this wrong — see
the example in section 4 — as can attempts such as OntoWeb to “understand”
MathML in terms of simple structures such as RDF [6] (section 4.3).

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 382–397, 2008.
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2 Prior Work on Semantics of Units

2.1 OpenMath

OpenMath [3] is a standard for representing mathematical semantics. It differs
from the existing versions1 of Content MathML [4,5] in being extensible: new
Content Dictionaries (CDs) can add new OpenMath symbols, known as OMS,
and can prescribe their semantic, via Formal Mathematical Properties (FMPs).
In contrast, OpenMath variables , known as OMVs, are purely names.

OpenMath is essentially agnostic with respect to type systems. However, one
particular one, the Simple Type System [8] is used to provide arity and similar
information that is mechanical, and also information that is human-readable,
but not currently machine processable, such as stating that <OMS name="plus"
cd ="arith1"/> takes its arguments from, and returns an answer in, the same
Abelian semigroup, by having the following signature.

<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA>
<OMS name="nassoc" cd="sts"/>
<OMV name="AbelianSemiGroup"/>

</OMA>
<OMV name="AbelianSemiGroup"/>

</OMA>

2.2 Prior Work on Units in OpenMath

The major previous work on the semantics of units on OpenMath is [9]. This pro-
poses several Content Dictionaries of units: units metric1, units imperial1
and units us1. These contain definitions of many common units covering a va-
riety of dimensions (the dimensions themselves are defined in the Content Dic-
tionary dimensions1) — metric (SI)2 units are contained in units metric1, for
example. [9] suggests using the “usual” times operator (that stored in arith1)
to represent a number in a particular unit — i.e. storing the value as the number
1 Versions 1 and, to a lesser extent, 2. It is intended that OpenMath 3 and Content

MathML 3 will have converged on this important point.
2 The system in [9] actually differs in one respect from the SI system in [13,15]. [9]

takes the fundamental unit of mass to be the gram, rather than the kilogram. This
is necessary, as a slavish following of the general principles of [13] would lead to such
absurdities as the millikilogram (see section 3.1 of this paper) rather than the gram.
[13, section 3.2] explains the special rules for multiples of the kilogram, as follows.

Names and symbols for decimal multiples and submultiples of the unit of mass
are formed by attaching prefix names to the unit name “gram”, and prefix
symbols to the unit symbol “g” (CIPM 1967, Recommendation 2; PV, 35, 29
and Metrologia, 1968, 4, 45).



384 J. Stratford and J.H. Davenport

multiplied by the unit, with the unit following the value to which it refers. The
suggestions for unit “implementation” in OpenMath are stated as being based
on those used by a complementary mathematics display language, MathML —
although not blindly; where the authors believe MathML has some deficiencies,
these have been corrected. This document also specifies a reasonable way of
connecting a prefix to a unit (described in section 3.1), thus defining kilo as a
separate concept, which can then be used to construct kilogram.

[9] uses STS in a novel (for OpenMath) manner. Rather than merely ‘human-
readable’, as with <OMV name="AbelianSemiGroup"/> above, it uses formal
OpenMath symbols as the type, thus the type of gram is

<OMS cd="dimensions1" name="mass"/>

More complicated dimensions can be expressed, e.g. Newton’s type is

<OMS cd="dimensions1" name="force"/>

which has the formal property

<OMA>
<OMS cd="relation1" name="eq"/>
<OMS cd="dimensions1" name="force"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMS cd="dimensions1" name="mass"/>
<OMA>

<OMS cd="arith1" name="divide"/>
<OMS cd="dimensions1" name="length"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMS cd="dimensions1" name="time"/>
<OMI> 2 </OMI>

</OMA>
</OMA>

</OMA>
</OMA>

Hence this system supports “dimensional analysis” (which should properly be
called “dimensional algebra”).

2.3 Unit Converters

There are a great many unit converters publicly available online. These have
a range of units and features — see the analysis in [21, chapter 2]. However,
in all cases, they are monolithic, in that new units cannot be added to them
by the user. In some senses, this means that they go against modularity and
incrementality, and are not reflective, in that they do not know that other units
exist.
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None of the converters surveyed seem to know about dimensions, and hence
attitudes to the question “convert months into days”, instead of being our (1),
were generally (2), and surprisingly often (4).

1. They are both time, so the conversion is meaningful, but I don’t have an
exact conversion factor.

2. There are 30 699
1600 = 30.43687500 days in a month, which is correct on average,

but false for every month (for some reason, Google uses 30.4368499)!
3. There are 30 days in a month, which is “the nearest”, but not the most

common (e.g. http://online.unitconverterpro.com/unit-conversion/
convert-alpha/time.html), and which leads to absurdities such as “1 decade
= 121 2

3 months”.
4. I don’t know about months.

3 Abbreviations and Prefixes

Units have a variety of abbreviations and, particularly in the metric system,
a range of prefixes. It is possible, as apparent in [14, section 5.3.5], to regard
prefixed units as units in their own right, and introduce a unit centimetre
with a formal property relating it to the metre, but this way lies, if not actual
madness, vast repetition and the scope for error or inconsistency (who would
remember to define the yottapascal?).

3.1 Prefixes

OpenMath therefore defines prefixes in the units_siprefix1 CD, with FMPs
to define the semantics, e.g. the following one for peta.

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMA>
<OMS name="prefix" cd="units_ops1"/>
<OMS name="peta" cd="units_siprefix1"/>
<OMV name="unit"/>

</OMA>
</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMA>
<OMS name="power" cd="arith1"/>
<OMI> 10 </OMI>
<OMI> 15 </OMI>

</OMA>

http://online.unitconverterpro.com/unit-conversion/convert-alpha/time.html
http://online.unitconverterpro.com/unit-conversion/convert-alpha/time.html
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<OMV name="unit"/>
</OMA>

</OMA>
</OMOBJ>

OpenMath uses a prefix operation (described as option 4 of [9, section 4]) to
apply prefixes to OpenMath units. Its signature is given as follows.

<Signature name="prefix" >
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS cd="units_sts" name="prefix"/>
<OMV name="dimension"/>
<OMV name="dimension"/>

</OMA>
</OMOBJ>
</Signature>

which can be seen as
prefix × unit → unit. (1)

This has the slightly unfortunate property that it would allow, for example,
‘millimicrometre’, which is explicitly forbidden by [13, p. 122]. This could be
solved by making the signature

prefix × unit → prefixed unit, (2)

which should probably be done.
This construction also allows the use of prefixes with non-SI units, but this is

in fact legitimate [13, p. 122].

3.2 Abbreviations

One issue not covered in [9] is that of abbreviations. Here we must confess to
not having a completely worked-out and sensible solution yet. The following
possibilities have been considered.

Alternative Definition in the same CD. This would mean that, for example,
as well as units_metric1 having the symbol metre, it would also have m. These
would be linked via a FMP saying that the two were equal. Similarly, we would
have prefixes k as well as kilo.

Pro. A small extension of [9].
Con. Allows “mixed” units such as kilom or kmetre, which are (implicitly)

forbidden in [13].
Con. No built-in way of knowing which is the full name and which is the ab-

breviation.
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Alternative Definition in different CDs. This would mean that units_
metric1wouldhave the symbolmetre,and anew CD, say units_metricabbrev1,
would have the symbol m. Again, these would be linked via a FMP saying that the
two were equal. We would also have a new CD, say units_sipefixabbrev1, con-
taining the abbreviations for the prefixes, and a different operation for combining
the two, say

<Signature name="prefixabbrev" >
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS name="mapsto" cd="sts"/>
<OMS cd="units_sts" name="prefixabbrev"/>
<OMV name="dimensionabbrev"/>
<OMV name="dimensionabbrev"/>

</OMA>
</OMOBJ>
</Signature>

Pro. Prevents ‘hybrid’ units.
Pro. A converter such as [21] could output either full names or abbreviations

(‘symbols’ in [13]) depending on which CDs were available on the output
side.

Con. Knowledge of which is the name and which is the abbreviation is still
implicit — merely moved from the name of the symbol to the name of the
CD. The linkage between the name of the CD and the fact that the symbol
should be regarded as <OMV name="dimensionabbrev"/> would be outside
the formal OpenMath system.

“This isn’t an OpenMath problem”. It could be argued that abbreviating
units and prefixes isn’t an OpenMath problem at all, but a presentation one.
This is superficially tempting, but poses the question “Whose problem is it?”
Do we need a new layer of software to deal with it? One interesting sub-question
here is whether an ontology language such as OWL [7] would be better suited
to expressing such concepts.

3.3 Non-SI (but Metric) Units

The reader will have noticed that the CD is called units_metric1 rather than
units_si1. This is deliberate, as it includes the litre, which is explicitly not
an SI unit [13, Table 6, note (f)]. What of the other units in [13, Tables 6, 8]?

bar. This is 100kPa, and presumably is retained because of its convenience for
atmospheric pressure. Prefixes are valid with it [13, p. 127], though the only
common one is the millibar (which is also the mbar, since the bar, uniquely,
is its own abbreviation).
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tonne. (alias ‘metric ton’) [13, Table 6] This is essentially an alias for the
megagram, and as such does not take prefixes3. If the “different CDs” ap-
proach above were to be adopted, this could be in yet another CD, say
units_metricmisc1, on which no prefixing4 operated.

hectare. As 104m2, this is in a very similar category to the tonne, and again
does not take prefixes. The only question might be whether we ought to start
with the are instead, but it is possible to argue that the are is obsolete, and
conveys no advantage over the square decameter. If litre_pre1964 moves
to a different CD, we could reasonably leave the are there as well.

ångström. Similarly.
nautical mile. (= 1852m) Similarly.
knot. (= 1852

3600 m/s) Similarly. This is also an excellent argument for the repre-
sentaton of definitional conversions (section 5.1) as exact fractions.

4 Not All Dimensions Are Monoids

[9] assumed, implicitly, that all physical dimensions could be regarded as (Abelian)
monoids, in the sense that they could be added, and hence multiplied by integers.
This is in fact not the case.

4.1 The Temperature Problem

One problem was not addressed in [9], but has been observed elsewhere [1,
Celsius# note-10], viz. that temperatures are not the same thing as tempera-
ture intervals. This confusion is widespread, as evidenced by the Google calcu-
lator’s ability to produce computational absurdities such as

(1 degree Celsius) plus (1 degree Celsius) = 275.15 degrees Celsius

More subtly, the reader should compare the following Google outputs (generated
from (-1C) in F and -(1C) in F respectively).

(-1) degree Celsius = 30.2 degrees Fahrenheit

with

-(1 degree Celsius) = -953.14 degrees Fahrenheit

Possibly the best explanation of the difference between relative and non-relative
temperatures is in [22, Appendix B.9]5.

3 The reader may ask “what about the megaton(ne)?” This is, of course, the mega[ton
of TNT equivalent], and is not a unit of mass at all, but rather of energy, and is in
fact 4.184 petajoules [22, Appendix B.8], where the figure 4.184 is definitional in the
sense of section 5.1.

4 Except that, in Belgium, the megaton (Nederlands) or megatonne (Français), and
certain other multiples (kilo- to exa- only) are legal [2, Chap II, §4].

5 http://physics.nist.gov/Pubs/SP811/appenB9.html#TEMPERATUREinterval

http://physics.nist.gov/Pubs/SP811/appenB9.html#TEMPERATUREinterval
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4.2 To Monoid or Not to Monoid

We can ask whether this is a peculiarity of temperature. The answer is in fact
that it is not.

Most units form (Abelian) monoids, i.e. they can be added: 2 tonnes + 3
tonnes = 5 tonnes etc. Non-relative6 temperatures are one obvious counter-
example: 2◦F + 3◦F �= 5◦F or indeed any other temperature. The point is that
relative temperatures, as in “A is ten degrees hotter than B”, are additive, in
the sense that if “B is twenty degrees hotter than C”, then indeed “A is thirty
degrees hotter than C”, are additive, as are non-relative plus relative, but two
absolute temperatures are not additive.

The same problem manifests itself with other scales such as decibels. Strictly
speaking, these are purely relative, but in practice are also used in an absolute
way, as in “the sound level exceeded 85dB”. Again, the relative units form a
monoid, but the absolute units do not.

This forces us to rethink the concept of “dimension”. Though not using the
word here (it is used in section 1.3), these are defined in [13, section 1.2] as
follows.

The base quantities used in the SI are length, mass, time, electric cur-
rent, thermodynamic temperature, amount of substance, and luminous
intensity.

This implies that all masses, for example, have the same dimension, and can be
treated algebraically in the same way. But, as we have seen, not all tempera-
tures are the same, and indeed have different algebraic properties. Two relative
temperatures can be added, as in the example of A, B and C above. A rela-
tive temperature can be added to an absolute temperature, as in the following
examples.

X was heated by 10◦C, from 20◦C to 30◦C. (3)
X was heated by 10K, from 20◦C to 30◦C. (4)

X was heated by 10◦C, from 293.15K to 303.15K. (5)
X was heated by 10K, from 293.15K to 303.15K. (6)

Equations (3) and (4) mean precisely the same thing (similarly for equations (5)
and (6)), and this is obvious because, in the Content Dictionary defining relative
temperatures, we state that the two are equal7.

6 Referring to ‘absolute’ temperatures would be likely to cause confusion, though that
is what we mean in sense 10 of [19, absolute].

7 This is the standard OpenMath way of doing so for units. It might make more sense
simply to declare that the two symbols were precisely equal — see the discussion
in section 7.2. It could be argued that, since the two symbols are equal, we do not
actually need to have both — a minimalist view. This is similar to the discussion
about <OMS name="Landauin" cd="asymp1"/> in [11], and our conclusion would be
the same — convenience of rendering outweights minimality.
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<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="relative_Kelvin" cd="units_metric1"/>

</OMA>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="relative_Celsius" cd="units_metric1"/>

</OMA>
</OMA>

Equations (3) and (5) also mean precisely the same thing, but this time we need
to rely on the definitions of non-relative temperatures, as in the following8,

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>
<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="degree_Kelvin" cd="units_metric1"/>

</OMA>
<OMA>
<OMS name="minus" cd="arith1"/>
<OMA>

<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMS name="degree_Celsius" cd="units_metric1"/>

</OMA>
<OMA>

<OMS name="divide" cd="arith1"/>
<OMI> 27315 </OMI>
<OMI> 100 </OMI>

</OMA>
</OMA>

</OMA>

and need to do some actual arithmetic, as in [21].
The system of dimensions in [9] had, as the Simple Type System [8] sig-

nature of dimensions, the OpenMath <OMV name="PhysicalDimension"/>. As
its format implies, this is a mere name with no formal semantic connotation.
We therefore suggest that this be replaced by two objects: MonoidDimension
8 This differs from the currently-published experimental CD units metric1 in fol-

lowing the recommendation in section 5.1 that 273.15, as a defined number, should
be represented as an element of Q.
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for those cases where the dimension does represent an (additive) monoid, and
NonMonoidDimension. While these could be OMVs as before, we now believe
that it would make more sense for them to be OMSs, since there is a definite
semantics being conveyed here to software packages , rather than to human be-
ings. This also agrees with a growing feeling in the OpenMath community that
STS could “do more”.

4.3 The Confusion Is Widespread

It should be noted that the confusion between temperatures and relative temper-
atures manifests itself elsewhere in “web semantics”. Consider an excerpt9 from
ontoworld’s “approach to rewrite Content MathML so that it is expressable (sic)
as RDF.”

<owl:Class rdf:about="&phml;Temperature">
<rdfs:subClassOf rdf:resource="&phml;PhysicalDimension"/>

</owl:Class>

<owl:Class rdf:about="&phml;TemperatureDifference">
<rdfs:subClassOf rdf:resource="&phml;Temperature"/>

</owl:Class>

This could be argued to illustrate the difficulties of using a general-purpose
language such as RDF beyond the semantics it is capable of handling, or, more
simply perhaps, as an illustration of the fact that, since the presentation of
temperatures and temperature intervals are the same, it is hard to distinguish
the semantics , different though these may be.

5 Precision

5.1 Accuracy in the OpenMath

Conversion factors between units can be divided broadly into three categories.

Architected. There are those that, at least conceptually, arose when the unit(s)
were defined. All the metric prefixes fall into this category, as do conversions
such as “3 feet = 1 yard”, or even “1 rod = 5 1

2 yards”. These conversions, and
their inverses, clearly ought to be stored as elements of Q, i.e. as OpenMath
integers (OMI objects) or fractions thereof.

Experimental. These are those that are truly determined by an experiment,
such as the measurement of a standard of length in one system in terms
of another such. An obvious example is those units that involve g, as in “1
slug ≈ 32.17405 pounds”. These are probably best represented by means of
floating-point numbers (OMF objects).
The reader might object that, since these items are only approximate, we
should represent them by intervals, which are well-handled by OpenMath,

9 http://ontoworld.org/wiki/Semantic MathML/0.1#Physical Dimensions

http://ontoworld.org/wiki/Semantic_MathML/0.1#Physical_Dimensions
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as in the CD interval1. This is a plausible point. We happen to disagree
with it, for the reasons about to be given, but nevertheless it is fair to say
that more usage of these factors is called for before a definitive decision can
be made.
– Manipulation of intervals is not conservative unless it is done sym-

bolically — [10]. Hence, if g were to be represented by an interval,
say [32, 33] (absurdly wide, but this makes the point better), one slug
would be [32, 33] pounds, which, on conversion back, would become
[3233 ≈ 0.97, 33

32 ≈ 1.03] slugs.
– Definitions in OpenMath are intended to be permanent, so an increase

in precision would have to lead to a change in the formal definition.
– Experimentalists tend not to work in terms of intervals, but in terms of

the standard accuracy [16]. It would be a fair argument, though, to say
that there ought to be OpenMath interval types capable of representing
these.

Definitional. These are those that started life as experimental, but have since
been adopted as architected definitions. An obvious example is “1 yard =
0.9144 metre”, which was adopted as a formal definition, replacing the pre-
vious experimental result10 of “1 metre ≈ 39.370147 inches” [20] in 1959.
Another example would be the value of “absolute zero”, in the days of an
independent celsius scale, which was about −273.15◦C. Nowadays, this is
fixed as precsiely this value, or, more accurately, the concept of ◦C is defined
in terms of absolute zero and the number 273.15 [13, 2.1.1.5].

We now believe that all definitional numbers occurring in unit conversions, as
well as those architected, should be expressed as elements of Q, i.e. as (fractions
of) OMI. Hence the 0.9144 mentioned above should in fact be encoded as

<OMA>
<OMS name="divide" cd="arith1"/>
<OMI> 9144 </OMI>
<OMI> 10000 </OMI>

</OMA>

This suggestion is well-characterised by the foot. Thus U.S. survey foot is de-
fined11 as 1200

3937 ≈ .3048006096m, whereas the ‘international’ foot is defined
as precisely 0.3048m. The difference is only just detectable in IEEE (single-
precision) floating-point, and is best stored exactly.

5.2 Precision of Display

There is also the issue of how much precision to display in the result. In general
terms, the result should not be more precise than the least precise value used in
10 It is worth noting that [20] describes this as “1 yard = 0.91439841 metres”, [1,

Imperial units] as 0.914398416 metres, and an accurate conversion of the headline
figure in [20] is .9143984146. This illustrates the general point that a number and
its reciprocal are unlikely both to be exact decimals.

11 U.S. Metric Law of 1866.
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the calculation. [21] currently supplies the entire result from the calculation, with
a user-controllable “significant figures” level as part of the system’s front-end.
This was chosen on the basis that several alternatives considered appeared non-
sensical or unreasonably difficult to implement or make firm decisions about. For
example, internally, fractions (which in OpenMath are comprised of two infinite
precision integers) are stored as finite-precision floating point numbers. It is
impossible to tell, when presented with such a floating point number, whether
it was made as such (again, OpenMath Floats, in decimal, can be of arbitrary
precision) or whether it came from a fraction; in both these cases rounding would
not be required, or if it was the result of a calculation, in which case rounding
would be necessary. A nonsensical answer would clearly result if values were
rounded during the calculation, and due to the aforementioned unknowable fact
of where the value came from, it would also be impossible to maintain an internal
counter of to how many significant figures the end result would be reasonable.
With the chosen approach, a currently unanswered question regards the number
of significant figures to display in a result such as 10 metre is 1 rod 5 yard 1
foot 3 inch 700.787401574787 mil. Should the number of significant figures
only cover the last part of the result?

6 The Two Meanings of “Obsolete”

According to the OpenMath standard [3], a content dictionary can be declared
to be obsolete. This facility is needed so that, when an area of OpenMath
gets rewritten in a (hopefully) better way, the semantics of existing OpenMath
objects are preserved. However, there has been no need to deploy it yet. It is
a feature of OpenMath12 that this takes place at the content dictionary level,
rather than the symbol level.

However, when we say that

<OMS name="litre_pre1964" cd="units_metric1"/>

is “obsolete”, we do not mean that it is obsolete as an OpenMath symbol, rather
that it is a current OpenMath symbol denoting an obsolete unit of measurement,
and therefore that it should be in an official CD. Does this matter? There are
two views.

No. This is the view of [9]. It is a unit, which may still be encountered as old
texts/experiments etc. are analysed, so should be present.

Yes. In [21] we produced a unit converter that attempted to produce the “best”
fit to a given input. Hence, as 175.98 pints converts to 100.002614775
litres, but also 99.99991478 litre_pre1964s, the latter conversion would,
much to the user’s surprise (and indeed ours on first encountering this issue),
be preferred. In fact, we actually get

OpenMathConverter.exe --source_quantity 175.98 --source_unit

12 At least at version 2. This may change in version 3.
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pint --destination_unit metric
0.999998147801862 hectolitre_pre1964

Similarly, as 10 metres is 10.93613298 yards, but 1.988387814 rods, the
latter will again be preferred13.

From the point of view of ‘user-friendliness’, we are inclined to sympathise with
[21], and state that obsolete units belong in separate CDs, in particular that
litre_pre1964 should be moved from units_metric1 to, say, units_metricobs
before units_metric1 becomes official.

7 Conclusion

We conclude that it is possible to use the OpenMath unit system (or ontology,
as one might call it) of [9] to produce a serious and, unlike others, extensible
unit converter, as in [21].

7.1 Recommendations for OpenMath Unit/Dimension CDs

The most important recommendation is a recognition that some (in our sense of
the word) dimensions are (additive) monoids, and some are not, as outlined in
section 4.

1. Move litre_pre1964 into a different CD, which is an official CD of “ob-
solete” units. Similar steps should be taken for “obsolete” imperial units.

2. Fix dimensions1 so as to have a definition for power.
3. Delete metre_squared from the units_metric1. It is anomalous (why isn’t

there metre_cubed,andwhy doesn’t units_imperial1have foot_squared?)
and tempts a piece of software (such as earlier versions of [21]) into creating
units such as

<OMA>
<OMS name="prefix" cd="units_ops1"/>
<OMS name="deci" cd="units_siprefix1"/>
<OMs name="metre_squared" cd="units_metric1"/>

</OMA>

which is a deci(metre2), as opposed to a (decimetre)2, and is illegal [13, p.
121].

4. units_imperial1 is missing units such as inch, which need to be added.
5. Add a CD for U.S. units, where different (e.g. for volume). Move U.S. Survey

units14, currently in units_imperial1 into this.
6. Add a CD for E.U. units, where different. The only case known to the authors

is the therm, which comes in both U.S. and E.U. variants. [22, footnote 25]
states the following.

13 Which will in fact come out as 10 metre is 1 rod 5 yard 1 foot 3 inch
700.787401574787 mil.

14 See the discussion at the end of section 5.1 for the (small) difference.
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Although the therm (EC), which is based on the International Table
Btu, is frequently used by engineers in the United States, the therm
(U.S.) is the legal unit used by the U.S. natural gas industry.

The difference is about 0.02%.
7. Update all the semantics in the world of OpenMath units so as to adhere

to the principles of section 5.1, in particular definitional numbers should be
expressed as elements of Q, i.e. as (fractions of) OMI.

8. Sort out electrical energy definitions and other suggestions in [9].
9. Modify the signature of prefix, as described in section 3.1, from (1) to (2).

10. Update the definition of pascal to include an FMP: currently missing.

7.2 Further Considerations

We saw, in section 4.3, that the sort of semantics of RDF [6] are inadequate
to convey the relationship between, for example, relative temperature and non-
relative temperature. However, the OpenMath required to state that

<OMS name="relative_Kelvin" cd="units_metric1"/>

and

<OMS name="relative_Celsius" cd="units_metric1"/>

mean precisely the same thing is clumsy, and requires OpenMath-capable reason-
ing whereas all that is needed in this case is RDF-like, or OWL-like, reasoning.

We can also ask whether OWL would not be better at solving the abbrevia-
tions problem than OpenMath (see section 3.2).

Some units (calendar_year is the notable example) have multiple FMPs,
whereas most of the other secondary units have only one, which is essentially a
defining mathematical property in the sense [23, I, p. 11] that the definiens can
be completely replaced by the definiendum. Making the distinction clear, as has
been proposed elsewhere in the OpenMath community, would be a step forward.

7.3 Unsolved Problems

We see two currently unsolved problems.

1. The abbreviations issue — section 3.2, and the fact that legal prefixes can
differ between countries, as in note 4. This last might be a problem best
solved outside OpenMath.

2. The dimensions1 CD has symbols length and displacement, with the
difference being explained (under displacement) as

This symbol represents the spatial difference between two points.
The direction of the displacement is taken into account as well as
the distance between the points.

It would be possible to read this as a non-monoid version of length, but
more thought is necessary.
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Abstract. Aiming at a document-centric approach to formalizing and verifying
mathematics and software we integrated the proof assistance system ΩMEGA with
the standard scientific text-editor TEXMACS. The author writes her mathematical
document entirely inside the text-editor in a controlled language with formulas in
LATEX style. The notation specified in such a document is used for both parsing
and rendering formulas in the document. To make this approach effectively usable
as a real-time application we present an efficient hybrid parsing technique that is
able to deal with the scalability problem resulting from modifying or extending
notation dynamically. Furthermore, we present incremental methods to quickly
verify constructed or modified proof steps by ΩMEGA. If the system detects in-
complete or underspecified proof steps, it tries to automatically repair them. For
collaborative authoring we propose to manage partially or fully verified docu-
ments together with its justifications and notational information centrally in a
mathematics repository using an extension of OMDOC.

1 Introduction

Unlike widely used computer-algebra systems, mathematical assistance systems have
not yet achieved considerable recognition and relevance in mathematical practice. One
significant shortcoming of the current systems is that they are not fully integrated into or
accessible from standard tools that are already routinely employed in practice, like, for
instance, standard mathematical text-editors. Integrating formal modeling and reason-
ing with tools that are routinely employed in specific areas is the key step in promoting
the use of formal logic based techniques.

Therefore, in order to foster the use of proof assistance systems, we integrated the
theorem prover ΩMEGA [7] into the scientific text-editor TEXMACS [15]. The goal is
to assist the author inside the editor while preparing a TEXMACS document in a pub-
lishable format. The vision underlying this research is to enable a document-centric
approach to formalizing and verifying mathematics and software. We tackle this vision
by investigating two orthogonal approaches in parallel: On the one hand we start with
mathematical documents written without any restrictions and try to extract the semantic
content with natural language analysis techniques and accordingly generate or modify
parts of the document using natural language generation. On the other hand we start
with the semantic content and lift it to an abstract human-oriented representation with-
out losing the benefits of machine processability. This paper describes our recent results
for the second approach, resulting in a system in which the author can write a document
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in TEXMACS, which gets automatically proof-checked by ΩMEGA. When the document
is changed, the dependent parts are automatically rechecked.

In our scenario the workflow for the author, who is preparing a mathematical docu-
ment to be verified, consists of arbitrary combinations of the following operations: (1)
writing theory with notation or citing theory and eventually redefining notation, (2) de-
veloping proofs by constructing or modifying proof steps that are continuously checked
and possibly repaired by the proof assistance system if incomplete or underspecified,
and (3) saving the current state of the document including the verification information
in order to continue at a later date. This raises the following requirements for effectively
supporting the author in real-time: (1) a fast parsing and rendering mechanism with ef-
ficient adaptation to changes in the notation rules, (2) quick incremental proof checking
and repair techniques, and (3) an output format containing the formalized content of the
document together with its justifications and notational information.

The paper is organized as follows: Section 2 presents in more detail our general
architecture consisting of a mediator, a proof assistance system and a semantic repos-
itory. Section 3 introduces the hybrid parsing technique that efficiently deals with the
controlled authoring language and notational extensions or modifications. The formal
proof representation of the ΩMEGA system is defined in Section 4 including the notion
of proof view. The techniques for management of change needed (1) to incrementally
verify proof steps constructed or modified in the text-editor, and (2) to lift corrections
or complete proofs from the internal format of the proof assistance system to the doc-
ument are described in Section 5. In Section 6 we discuss how OMDOC [10] can be
extended such that it can also store proof steps at different levels of granularity as well
as parsing and rendering knowledge. We discuss the current situation for authoring ver-
ified mathematical documents as related work in Section 7 and summarize the paper in
Section 8.

2 Architecture

Although this paper focuses on the interplay between a mediator and a proof assistance
system, we propose to fill the authoring gap for semantic mathematics repositories with
our complementary architecture. The envisioned architecture is a cooperation between
a mediator, a proof assistance system and a semantic repository. The mediator parses
and renders the informal content authored in a text-editor and propagates changes to the
proof assistance system that provides services for verification and automatic proof con-
struction. The semantic repository takes care of the management of formalized math-
ematics. Figure 1 illustrates the flow of mathematical knowledge. The big circles in
the figure are abstract components of the architecture that can be instantiated by the
concrete components attached to them, e.g. PLATΩ as mediator. The text between the
arrows indicates the kind of knowledge that is exchanged. In detail, the roles and re-
quirements of the components are:

Mediator. Following our document-centric philosophy, the document in the text-
editor is both the human-oriented input and output representation for the proof assis-
tance system, thus the central source of knowledge. The role of the mediator PLATΩ
[16] is to preserve consistency between the text-editor and the proof assistance system
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Fig. 1. Architecture for Authoring Mathematics Repositories

by incrementally propagating changes. Additionally, services and feedback of the proof
assistance system are provided inside the text-editor through context-sensitive menus.
The mediator allows to define, modify and overload the notation used in the document
dynamically within the document.

Proof Assistance System. The role of the proof assistance system is to maintain the
formal proof object in a way that it is verifiable and such that at the same time a human
readable presentation can be extracted. It must be able to verify and integrate updates
sent from the mediator, and provide means to automate parts of the proof. Finally, the
system should be able to import from and export to standards such as OMDOC.

In our architecture we use the proof assistance system ΩMEGA, which is a repre-
sentative of systems in the paradigm of proof planning and combines interactive and
automated proof construction for domains with rich and well-structured mathematical
knowledge. Proof planning is interesting for our architecture because it naturally sup-
ports to express proof plans and their expansion, i.e. verification.

Semantic Repository. The role of the semantic repository (e.g. in form of a database
or a wiki) is to store and maintain the mathematical knowledge using structural semantic
markup or scripting languages, including possibilities to search and retrieve knowledge
and access control. The MBASE system [8] is for example a web-based, distributed
mathematical knowledge base that allows for semantic-based retrieval. Semantic Wiki
technologies like SWIM [11] are a current subject of research for collaboratively build-
ing, editing and browsing mathematical knowledge. Both types of semantic repositories
are well-suited for our architecture because they store mathematical theories and state-
ments in the OMDOC format and support dependency-aware semantic content retrieval.

Altogether, the proposed architecture allows for the incremental interactive devel-
opment of verified mathematical documents at a high level of abstraction. By using
the scientific WYSIWYG text-editor TEXMACS, the author additionally benefits from
professional type-setting and powerful macro definition facilities like in LATEX.
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3 Hybrid Parsing

Let us first introduce an example of the kind of documents we want to support. Figure 2
shows a theory about Simple Sets written in the text-editor TEXMACS. This theory defines
two base types and several set operators together with their axioms and notations. In
general, theories are built on top of other theories and may contain definitions, notations,
axioms, lemmas, theorems and proofs. Note that in the example set equality is written
as an axiom because equality is already defined in the base theory.

Fig. 2. Document in the text-editor TEXMACS

In our previous approach [16], the author had full freedom in writing her document
but had to manually provide semantic annotations. We now use a controlled author-
ing language to skip the burden of providing annotations, thus increasing the over-
all usability by dealing with pure TEXMACS documents. The grammar of the concrete
syntax is given in Table 1. NAME and LABEL are unique string identifiers. URI is a re-
source location. SYM, VAR, TYPE, PAT and TERM represent symbol, variable, type, pat-
tern and term respectively. Please note that TEXMACS renders for example the macro
”<definition|text>” into ”Definition 1. text”.

Dynamic Notation. This initial grammar can be extended on the fly by introduc-
ing new types and symbols as well as defining, extending or overloading their notations
within a document. In [3] we presented a basic mechanism that allows the user to define
notations by declaring local variables (e.g. A,B) and specifying notation patterns (e.g.
A⊂B, B⊃ A). The mechanism synthesizes automatically parsing rules from all patterns
and the default rendering rule from the first pattern. The author can group operators,
specify their associativity and define precedences as a partial ordering. Furthermore, if
the notation is modified all affected formulas in the document are adapted efficiently,
the right order of notation and formulas is checked, ambiguities are prevented using
a family of theory-specific parsers and resolved by exploiting type information. The
hierarchical structure of theories allows the reuse of concepts together with their nota-
tion even from other documents. Note that one can import theories together with their
proofs and notations from other files by a reference in the document. Dynamic Notation
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Table 1. Grammar for the Concrete Syntax of the Authoring Language

DOC ::= THY∗

THY ::= ‘<section|’ NAME ‘>’ CTX? THYC
CTX ::= ‘We’ ‘use’ CREFS ‘.’
CREFS ::= CREF (‘,’ CREF)∗ (‘and’ CREF)?

CREF ::= NAME|URI
THYC ::= (DEF|AXM|LEM|TEO|PRF)∗

DEF ::= ‘<definition|’ ‘(’ NAME ‘)’ DEFC ‘>’
DEFC ::= (DEFT|DEFS) NOTC? ALTC? SPEC∗

DEFT ::= ‘We’ ‘define’ ‘the’ ‘type’ NAME ‘.’
DEFS ::= ‘We’ ‘define’ ‘the’ ‘symbol’ NAME

‘of’ ‘type’ TYPE ‘.’
NOTC ::= ‘Let’ TVARS ‘then’ ‘we’ ‘write’ PATS ‘.’
TVARS ::= VAR ‘:’ TYPE (‘,’ VAR ‘:’ TYPE)∗

(‘and’ VAR ‘:’ TYPE)?

PATS ::= PAT (‘,’ PAT)∗ (‘or’ PAT)?

PAT ::= (VAR|STRING)+

SPEC ::= GROUP|PREC|ASSOC
GROUP ::= ‘We’ ‘group’ SYM (‘,’ SYM)∗ (‘and’ SYM)?

‘by’ NAME ‘.’
PREC ::= ‘The’ ‘precedence’ ‘is’ (SYM|NAME)

(‘≺’ (SYM|NAME))+ ‘.’
ASSOC ::= ‘The’ ‘operator’ SYM ‘is’

‘right-associative’ ‘.’
FORMS ::= FORM (‘,’ FORM)∗ (‘and’ FORM)?

FORM ::= (‘(’ LABEL ‘)’)? TERM

AXM ::= ‘<axiom|’ ‘(’ NAME ‘)’ ALTC ‘>’
LEM ::= ‘<lemma|’ ‘(’ NAME ‘)’ ALTC ‘>’
TEO ::= ‘<theorem|’ ‘(’ NAME ‘)’ ALTC ‘>’
ALTC ::= ‘It’ ‘holds’ ‘that’ FORM ‘.’
PRF ::= ‘<proof|’ STEPS? ‘>’
STEPS ::= (OSTEP STEPS?)|CSTEP
OSTEP ::= SET|ASS|FACT|GOAL|CGOAL
CSTEP ::= GOALS|CASES|CGOALS|TRIV
TRIV ::= ‘Trivial’ BY? FROM? ‘.’
SET ::= ‘We’ ‘define’ FORMS ‘.’
ASS ::= ‘We’ ‘assume’ FORMS FROM? ‘.’
FACT ::= ‘It’ ‘follows’ ‘that’ FORMS BY? FROM? ‘.’
GOAL ::= ‘We’ ‘have’ ‘to’ ‘prove’ FORM BY? FROM? ‘.’
GOALS ::= ‘We’ ‘have’ ‘to’ ‘show’ FORMS BY? FROM? ‘.’

SPRF∗

CASES ::= ‘We’ ‘have’ ‘the’ ‘cases’ FORMS BY? FROM? ‘.’
SPRF∗

CGOAL ::= ‘We’ ‘have’ ‘to’ ‘prove’ CFORM BY? FROM? ‘.’
CGOALS ::= ‘We’ ‘have’ ‘to’ ‘show’ CFORMS BY? FROM? ‘.’

SPRF∗

SPRF ::= ‘We’ ‘prove’ LABEL ‘.’ STEPS?

BY ::= ‘by’ NAME
FROM ::= ‘from’ LABEL (‘,’ LABEL)∗ (‘and’ LABEL)?

CFORMS ::= CFORM (‘,’ CFORM)∗ (‘and’ CFORM)?

CFORM ::= FORM ‘assuming’ FORMS

is aware of the positions of defining and using occurrences for notation but it does not
take into account notational knowledge obtained by proven theorems yet; this is future
work.

Speed Issues. Although we minimized the need for compiling parsers, the process-
ing of the standard example in [3] took ≈ 1min. The main reasons for inefficiency were
(1) the parsers were compiled in interpreted mode in the text-editor, and (2) the scal-
ability problem of LALR parser generators. Problem (1) has been solved by moving
the parser generation to the mediator, but even in compiled mode the processing took
≈ 6sec which is still not sufficiently fast for real-time usage. The remaining issue (2)
is severe because when notations are changed or extended all parsers for dependent
theories in the hierarchy have to be recompiled. Therefore we integrated a directly-
executable variant of an Earley parser [6] which is substantially faster than standard
Earley parsers to the point where it is comparable with standard LALR(1) parsers. Al-
though the time for parsing a single formula increases slightly, the overall processing
of the example takes ≈ 0.1sec which is perfectly suitable for a real-time application.

Algorithm. First of all, the document is preprocessed and split into segments almost
corresponding to sentences. Then the following steps are incrementally performed for
each segment: (1) the static parts of the authoring language, i.e. the controlled phrase
structure, are parsed using a precompiled LALR(1) parser; (2) the dynamic parts of the
authoring language, i.e. the formulas and notations, are parsed using a theory-specific
Earley parser; (3) the segment is propagated to the proof assistance system. Note that
the dynamic parts are always strictly separated from the static parts in the document
because they are written inside a math mode macro.

Normalization and Abstraction. The concrete syntax of the authoring language
allows for variant kinds of syntax sugaring that has to be normalized for machine
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Table 2. Grammar for the Abstract Syntax of the Proof Language

PROOF ::= STEPS
STEPS ::= (OSTEP;STEPS)|CSTEP
OSTEP ::= SET|ASSUME|FACT
CSTEP ::= GOALS|CASES|COMPLEX|TRIVIAL|ε
FORMULA ::= (LABEL :)? TERM
BY ::= by NAME?

FROM ::= from (LABEL (, LABEL)∗)?

TRIVIAL ::= trivial BY FROM
SET ::= set FORMULA
ASSUME ::= assume FORMULA FROM
FACT ::= fact FORMULA BY FROM
GOALS ::= subgoals (FORMULA { PROOF })+ BY FROM
CASES ::= cases (FORMULA { PROOF })+ BY FROM
COMPLEX ::= complex COMP+ BY FROM
COMP ::= FORMULA under FORMULA { PROOF }

processing, e.g. formula aggregation (x ∈ A,x ∈ B and x ∈ C) or the ordering of sub-
proofs. Table 2 defines a normalized abstract syntax for the proof part of the authoring
language. Aggregated formulas are composed to one formula by conjunction or dis-
junction depending on whether they are hypotheses or goals respectively. If an abstract
proof step is generated by the system, the mediator tries to decompose the formula for
aggregation accordingly. A proof is implicitly related to the last stated theorem previous
to this proof in the document. Subproofs are grouped together with their subgoal or case
they belong to. A single goal reduction is normalized to a subgoals step.

Management of Change. Using management of change we propagate incremen-
tally arbitrary changes between the concrete and abstract representation. By additionally
considering the semantics of the language we can optimize the differencing mechanism
[12]. For example the reordering of subgoals or their subproofs in the text-editor is not
propagated at all because it has no impact on the formal verification. The granularity
of differencing is furthermore limited to the reasonable level of proof steps and for-
mulas, s.t. deep changes in a formula are handled as a complete modification of the
formula. The propagation of changes is essential for this real-time application because
complete re-transformation and re-verification slows down the response time too much.
Apart from that the differencing information allows for the local re-processing of af-
fected segments instead of a global top-down re-processing using a replay mechanism.
In order to recheck only dependent parts ΩMEGA uses Development Graphs [4] for the
management of change for theories.

Let us now continue our example with a new theory in Figure 3 that refers to the
previous one and that states a theorem the author already started to prove.

Fig. 3. Theorem with partial proof

Table 3. Proof in abstract syntax

Proof.
assume x ∈ A∩ (B∪C) from . ;
fact x ∈ A∧x ∈ (B∪C) by . from . ; ε

This partial proof in concrete syntax is then
abstracted as shown in Table 3, where we
additionally emphasized underspecified parts
with a dot.
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4 Formal Proof Representation

In this section we describe how proofs are internally represented in ΩMEGA. This will
allow us to describe how proof scripts are processed by the prover. In the ΩMEGA

system proofs are constructed by the TASKLAYER that uses an instance of the generic
proof data structure (PDS) [1] to represent proofs. One main feature of the PDS is the
ability to maintain subproofs at different levels of granularity simultaneously, including
a so-called PDS-view representing a complete proof at a specific granularity.

Task. At the TASKLAYER, the main entity is a task, a multi-conclusion sequent
F1, . . . ,Fj �G1, . . . ,Gk. Each formula can be named by assigning a label l to the formula.
We denote the set of all term positions by Pos, the set of all admissible positions of a
task T by Pos(T ), and the position of the formula with label l by pos(l). Moreover, we
write Tπ to denote the subformula at position π and write Tπ←s for the type compliant
replacement of the subterm Tπ by s. We use the notation Γ�ϕ to denote the set Γ∪{ϕ}.

Agenda. The proof attempt is represented by an agenda. It maintains a set of tasks,
that are the subproblems to be solved, and a global substitution which instantiates meta-
variables. Formally an agenda is a triple A = 〈T1, . . . ,Tn;σ;Tj〉 where T1, . . . ,Tn are
tasks, σ is a substitution, and Tj is the task the user is currently working on. We will use
the notation 〈T1, . . . ,Tj−1,Tj,Tj+1 . . .Tn;σ〉 to denote that the task Tj is the current task.
Note that the application of a substitution is a global operation. To reflect the evolutional
structure of a proof, a substitution is applied to the open tasks of the agenda. Whenever
a task is reduced to a list of subtasks, the substitution before the reduction step is stored
within the PDS in the node for that task.
The Figure on the right
shows the reconstruction
of the first proof step of
the partial proof of The-
orem 8. Tasks are shown
as oval boxes connected
by justifications, where
the squared boxes indicate
which inference has been
applied. The agenda to the
shown PDS consists of the
two leaf tasks. The global
substitution σ is the iden-
tity id.

� A∩ (B∪C) = (A∩B)∪ (A∩C)

“Set Equality”

� A∩ (B∪C)⊂ (A∩B)∪ (A∩C)

“Subset”

� x ∈ A∩ (B∪C)⇒ x ∈ (A∩B)∪ (A∩C)

assume x ∈ A∩ (B∪C)

x ∈ A∩ (B∪C)� x ∈ (A∩B)∪ (A∩C)

� (A∩B)∪ (A∩C)⊂ A∩ (B∪C)

“Subset”

x ∈ A∩B∪A∩C � x ∈ A∩ (B∪C)

Fig. 4. Proof in ΩMEGA

5 Incremental Proof Step Verification and Correction

In this section we describe how information encoded as a proof script can be exchanged
between the mediator and the prover. There are two possible information flows: First,
a proof script sent by the mediator must be converted into the internal proof structure
of the prover and thereby be checked. Second, given a proof generated by the prover,
a corresponding proof script must be extracted, which can then be propagated to the
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mediator. Note that the last step is necessary as there is no guarantee that all parts of the
proof have been constructed by a proof script. Before describing both directions we give
an overview of the proof operators of the prover, which are inferences and strategies.

Inferences. Intuitively, an inference is a proof step with multiple
[H1 : ϕ]

...
P1 : ψ

C : ϕ ⇒ ψ ImplIntro

premises and one conclusion augmented by (1) a possibly
empty set of hypotheses for each premise, (2) a set of applica-
tion conditions that must be fulfilled upon inference applica-
tion, (3) a set of completion functions that compute the values
of premises and conclusions from values of other premises
and conclusions (see [2] for a formal definition). Each premise and conclusion consists
of a unique name and a formula scheme. Consider for example the inference ImplIntro
shown above. It consists of one conclusion with name C and formula scheme ϕ ⇒ ψ.
Moreover, it has one premise with name P1, formula scheme ψ, and hypothesis H1,
which has the formula scheme ϕ associated with it. In the sequel we write C to denote
the conclusion of the inference and Pi to denote the ith premise of the inference.

Given a task, we can instantiate an inference with respect to the task by trying to
find formulas in the task unifying with the formula scheme of a premise or conclusion.
Technically, such an instantiation is represented by an inference substitution σ which
binds premises and the conclusion to formulas or positions. We consider two parts of
the substitution: σx contains instantiations of meta-variables of the task, and σc maps
a premise or conclusion A to positions of the task (see [2] for details), which is ⊥
in case that A is not matched. The instantiated formula scheme is denoted by fs(A).

T

strat T ′

s1 . . .

h

Strategies. As basis for automation ΩMEGA provides
so-called strategies, which tackle a problem by some
mathematical standard problem solving workflow that
happens to be typical for this problem. To achieve a goal, a strategy performs a heuris-
tically guided search using a dynamic set of inferences (as well as other strategies),
and control rules. A strategy application either fails or constructs a subproof using the
specified inferences and substrategies. In the latter case the constructed subproof is ab-
stracted by inserting a justification labelled with the strategy application and connecting
the task the strategy has been applied to with the nodes resulting from the strategy ap-
plication. This has the advantage that the user can switch between the abstract step or
the more detailed step. Note that from a technical point of view a strategy is similar to
a tactic. However, by using explicit control knowledge its specification is declarative,
whereas tactics are usually procedurally specified.

Consider a strategy strat which is applied to a task T , and constructs a subproof
starting with the application of s1 and finally leading to the task T ′. In this case, a new
justification labelled with strat is inserted connecting T and T ′. To indicate that the
strategy application is more abstract than the subproof a hierarchical edge h is inserted,
defining an ordering on the outgoing edges of T . The resulting PDS is shown above.

5.1 Proof Checking and Repair

The verification of a single proof step can become time consuming if some information
is underspecified. In the worst case a complete proof search has to be performed. To
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obtain adequate response times a given step is worked off in two phases. First, we per-
form a quickcheck, where we assume that the given step can be justified by the prover
by a single inference application. This can be tested by a simple matching algorithm. If
the test proceeds the step is sound, as the inference application is proved to be correct.

If it is not possible to justify the step with a single inference application, a more com-
plex repair mechanism is started. This mechanism tries to find the missing information
needed to justify the step by performing a heuristically guided resource bounded search.
If we are not able to find a derivation within the given bound, a failure is reported and
sent to the mediator, which can then initiate a specific reaction.

In the sequel we describe for each construct of our proof language its quickcheck
and its repair mechanism, which are both modeled as a proof strategy in ΩMEGA. The
quickcheck rules are summarized in Table 4. We use the notation 〈{Γ � Δ,T2, . . . ,Tn},
σ〉 : s ; S→〈{Γ′ � Δ′,T2, . . . ,Tn},σ〉 : S′ to indicate that under the agenda 〈{Γ � Δ,T2, . . .
,Tn},σ〉 the proof step s in the sequence s ; S can be checked, and that the checking
results in a new agenda 〈{Γ′ � Δ′,T2, . . . ,Tn},σ〉 where the steps S′ have to be checked.

Fact. The command fact derives a new formula ϕ with label l from the current proof
context. The quickcheck tries to justify the new fact by the application of the inference
or strategy name to term positions in the formulas with labels l1, . . . , ln in the current
task. Although the specification of these formulas speeds up the matching process, both
informations by and from can be underspecified in general. In this case, all inferences
are matched against all admissible term positions, and the first one which delivers the
desired formula ϕ is applied.

Γ � Δ

fact l : ϕ

Γ� l : ϕ � Δ

Γ � ϕ
If the above check fails, the repair strategy for fact is started. It

generates a new lemma, i.e. a new proof tree, containing the as-
sumptions of the current task and the newly stated fact ϕ as goal. It
then tries to automatically close the lemma by standard forward and
backward reasoning. If the new lemma can be proved, the lemma is
automatically transformed to an inference using the mechanism described in [2], which
then justifies the step by a single inference application in the original proof.

Stating a new lemma has several advantages: Even if the lemma cannot automatically
be checked, we can continue to check subsequent proof steps. The new lemma can then
be proved with user interaction at a later time. Moreover, as the lemma is transformed
into a single inference, it is globally available and can be used in similar situations by
the quickcheck without performing any search.

Γ � l1 : ϕ ⇒ ψ�Δ

assume l : ϕ

Γ� l : ϕ � ψ�Δ

Assume. The command assume introduces a new assumption ϕ
on the left hand side of the current task. The quickcheck for as-
sume checks whether one of the following situations occurs, each
of which can be justified by a particular inference application:

– Δ contains ϕ ⇒ ψ. The implication is decomposed and l : ϕ is
added to the left side of the task.

– Δ contains ¬ϕ. Then l : ϕ is added to the left side.
– Δ contains ψ ⇒ ¬ϕ. Then l : ϕ is added to the left side and ¬ψ

to the right side of the task.

If the quickcheck fails we try to derive one of the above situations by applying in-
ferences to the goal of the current task. The hypotheses of the task remain untouched.
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Table 4. Quick checking rules

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : fact l : ϕ by name from l1, . . . , ln ;S → 〈{Γ� l : ϕ � Δ,T2 , . . . ,Tm},σname
X ◦σ〉 : S

with σname(C) = ⊥ and
⋃

σname
C (Pi) =

⋃{pos(li)}
〈{Γ � ϕ ⇒ ψ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : ϕ � ψ�Δ,T2, . . . ,Tm},σ〉 : S

with σimplintro
C (C) = pos(l1) and σimplintro

C (P) = ⊥
〈{Γ � ¬ϕ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : ϕ � Δ�⊥,T2, . . . ,Tm},σ〉 : S

with σcontradiction
C (C) = pos(l1) and σimplintro

C (P) = ⊥
〈{Γ � ψ ⇒¬φ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : φ � ¬ψ�Δ,T2 , . . . ,Tm},σ〉 : S

with σcontrapositive(C) = pos(l1) and σcontrapositive(P) = ⊥
〈{Γ � ψ�Δ,T2, . . . ,Tm},σ〉 : subgoals l′1 : ϕ1{S1}, . . . , l′n : ϕn{Sn} by name from l1, . . . , ln ;S

→ 〈{Γ � Δ� l′1 : σname(P1), . . . ,Γ � Δ� l′n+k : σname(Pn+k),T2, . . . ,Tm},σname
X ◦σ〉 : S1; . . . ;Sn ;S

with T |σname(C) = ψ and (
⋃{σname

C (Pi)}∪{σname
C (C)}) =

⋃{pos(li)}
〈{Γ � Δ,T2, . . . ,Tm},σ〉 : cases l′1 : ϕ1{S1}, . . . , l′n : ϕn{Sn} from l;S

→ 〈{Γ � Δ|pos(l)←ϕ1
, . . . ,Γ � Δ|pos(l)←ϕn ,T2, . . . ,Tm},σ〉 : S1; . . . ;Sn ;S with T |pos(l) = ϕ1 ∨ . . .∨ϕn

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : set x = t;S → 〈{Γ � Δ,T2, . . . ,Tm}, [x = t]◦σ〉 : S if x occurs in (Γ,Δ)

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : set x = t;S → 〈{Γ� x = t � Δ,T2, . . . ,Tm},σ〉 : S if x is new wrt. Γ,Δ
〈{Γ�⊥ � Δ,T2, . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ � Δ��,T2, . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ�ϕ � Δ�ϕ,T2 , . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : trivial by name from l1, . . . , ln → 〈{T2, . . . ,Tm},σ〉
with

⋃
σname

C (Pi)∪σname
C (C) =

⋃{pos(li)}
〈{T1, . . . ,Tj−1,Tj ,Tj+1, . . . ,Tm},σ〉 : ε → 〈{T1, . . . ,Tj−1 ,Tj ,Tj+1 , . . . ,Tm},σ〉

To increase the readability, subsequent steps which reduce a task to a single subtask are
grouped together to a single step. Technically this is done by inserting a hierarchical
edge. As default the most abstract proof step is propagated to the mediator.

Subgoals. The command subgoals reduces a goal of a given task to n+m subgoals,
each of which is represented as a new task, where n corresponds to the subgoals spec-
ified by the user and m denotes additional underspecified goals the user has omitted or
forgotten. Each new task stems from a premise Pi of the applied inference, where the
goal of the original task is replaced by the proof obligation for the premise, written as
pob(Pi). The quickcheck succeeds if the specified inference name introduces at least
the subgoals specified by the user.

Γ � Δ

subgoals l1 : ϕ1, . . . , ln : ϕn

Γ � l1 : ϕ1 . . . Γ � ln : ϕn Γ � ϕn+1 . . . Γ � ϕn+m

If there is no inference introducing the subgoals specified by the user within a single
step the repair strategy tries to further reduce the goal in the current task, thus introduc-
ing further subgoals, until all specified subgoals are found. As in the assume case the
antecedent of the sequent is untouched. If a subgoal matches a specified goal, it is not
further refined. If all subgoals are found by a sequence of proof steps, these steps are
abstracted to a single justification, which is by default propagated to the mediator.
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Cases. The command cases reduces a task containing a disjunction on the left hand
side of the task into n + m subtasks where in each case an additional premise is added.
As for the subgoals the user can leave out some of the cases. If the task does not contain
a suitable disjunction, the repair strategy is executed, which tries to derive a desired
disjunction by forward reasoning. The goal remains untouched. As for the subgoal case
the sequence introducing the disjunction is abstracted to a single step.

Γ � Δ

set x = t

Γ� x = t � Δ

Set. The command set is used to bind a meta-variable or to intro-
duce an abbreviation for a term. If x is an unbound meta-variable in
the proof state, set will instantiate this variable with the given term t.
The substitution x → t is added to the proof state. If x is already bound,
a failure is generated. If x does not occur in the proof state, the com-
mand set serves as a shortcut statement for the given term t. The formula x = t will
be added as a new premise to the task. The last case is shown on the right. Adding an
equation x = t with a fresh variable x as premise is conservative in the sense, that a
proof using the new variable x can be converted in a proof without x by just substituting
all occurrences of x by t. There is no repair strategy for the set command.

Γ � Δ

trivial

Trivial. The command trivial is used to indicate that a task is
solved. This is the case if a formula ϕ occurs on both the left and
the right hand side of the task, the symbol false occurs at top level on
the left hand side of the task, or the symbol true occurs at top level on
the right hand side of a task. A task can also be closed if the inference
name is applied and all its premises and conclusions are matched to term positions in
the current task. In case that the quickcheck fails the repair strategy tries to close the
task by a depth limited forward backward reasoning.

Complex. The command complex is an abstract command which subsumes an arbi-
trary sequence of the previous commands. It is used to represent arbitrary abstract steps.
Note that it is generally not possible to justify such a step with a single inference appli-
cation, and without further information a blind search has to be performed to justify the
step. Hence there is no quickcheck for complex . If however in the by slot a strategy is
specified, this strategy needs to be executed and the result to be compared.

Example. Looking at our running example, the user wanted to show Theorem 8
and stated already a partial proof (c.f. Table 3). As none of the proof checking rules
for assume are applicable, the repair mode is started. The repair strategy tries to fur-
ther refine the goal A∩ (B∪C) = (A∩B)∪ (A∩C) to construct a situation in which
the assume step is applicable. Indeed, after three refinements the proof step becomes
applicable (see Figure 4). Unnecessary derivations, indicated by a dotted line in the
Figure, are deleted. The repair process brought a second subgoal out that now can be
lifted to the abstract proof view. We offer the following lifting modes: (i) fix : repaired
proof fragments are automatically patched into the document (ii) inform : the author
is informed about repair patches and decides their execution. (iii) silent : the author is
only informed about errors, no repair patches are offered.

5.2 Proof Lifting

Whenever a part of the proof is changed, it must be propagated back to the mediator. In
principle the prover can insert arbitrary large parts and multiple hierarchies during the
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Table 5. Proof lifting rules

{diff(T,Ti)|Ti ∈ succ(T )} proof step in abstract syntax

/0 trivial by name from lab(name)
{〈{ϕ},{ξ}〉} assume ϕ by name from lab(name)
{〈 /0, /0〉} set diff(σ,σ′)
{〈 /0,{ξ1}}〉 . . . 〈 /0,{ξm}}〉} subgoals ξ1, . . . ,ξm by name from lab(name)
{〈{x = t}, /0〉} set x = t
{〈{ϕ}, /0〉} fact ϕ by name from lab(name)
{〈{ϕ1}, /0〉 . . . 〈{ϕn}, /0〉} cases ϕ1, . . . ,ϕn by name from lab(name)
{〈Γ1,Δ1〉, . . . ,〈Γm,Δm〉} complex Δ1 under Γ1, . . . ,Δm under Γm

repair phase. As default the most abstract proof hierarchy is communicated as a proof
script to the mediator. However, the mediator can ask for a more detailed or a more
abstract version of the proof script. Given a selected proof hierarchy, each proof step
has to be transformed into a command of the proof script language. This is done by a
static analysis of the proof step.

Task Difference. Technically, a proof step is executed with respect to an agenda
〈{T1, . . . ,Tn},σ〉 and results in a new agenda 〈{T ′

1, . . . ,T
′

k ,T2, . . . ,Tn},σ′〉. The step has
reduced the task T1 to subtasks succ(T ) = {T ′

1, . . . ,T
′

k}. In a first analysis, only the
differences between the tasks are analyzed, defined as follows:

diff(T,T ′) = 〈{ϕ ∈ Γ′|ϕ /∈ Γ},{ξ ∈ Δ′|ξ /∈ Δ}〉

If a task is reduced to several subtasks, we obtain a set of differences for each subtask.
Moreover, we require that the name of the applied proof operator, i.e. the inference or
strategy, for the reduction is given and we denote a substitution introduced by the proof
step with σ. We assume a function lab which returns the set of those labels which are
used in premises and conclusions of the proof operator and . if none of them has a
label.

Table 6. Proof repaired in abstract syntax

Proof.
subgoals

A∩ (B∪C)⊂ (A∩B)∪ (A∩C) : {
assume x ∈ A∩ (B∪C) from . ;
fact x ∈A∧x ∈ (B∪C) by . from . ; ε}

(A∩B)∪ (A∩C)⊂ A∩ (B∪C) : { ε}
by Set Equality from .

Lifting Rules. If succ(T ) = /0, the proof
step is translated into a trivial step. If
succ(T ) = {T ′}, there are the following
possibilities: If the task T and its succes-
sor task T ′ are the same, we analyze the
difference between σ and σ′ to obtain the
formula x = t needed for the set case. If
the difference between T and T ′ is only
one formula, and this formula has been added on the left hand side of the sequent,
and is of the form x = t, where x is new, then the step is classified as a set case,
otherwise as a fact step. If the new formula has been introduced as a goal, we classify
the step to be a subgoals step. If several hypotheses are introduced, the step is
classified to be a cases step. A formal definition of the proof lifting rules are given in
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Fig. 5. Theorem with repaired partial proof

Table 5. Considering our running example, the abstract proof is repaired as shown in
Figure 4, and presented to the author as illustrated in Figure 5.

6 Extending OMDOC for Authoring Verified Proofs

In ΩMEGA we use the OMDOC format already for theory repositories with acyclic
theory dependencies, axioms, simple definitions and assertions. So far, we only sup-
port a subset of the OMDOC features and exclude e.g. complex theory morphisms
and complex definitions. OMDOC’s current proof module (PF) is designed for rep-
resenting proofs given in a declarative or procedural proof language together with com-
ments in natural language. Additionally, there is the possibility to store formal proofs
as proof terms in proofobject elements. In the following we refer to the extension
of the PF module proposed in [5] to store proofs with proofsteps on different levels of
granularity. Moreover, as we use TEXMACS for authoring, we need to store additional
parsing and rendering knowledge beyond the coverage of OMDOC’s presentation
module. For space reasons we use the compact form <proof>...</> for XML instead
of <proof>...</proof>.

6.1 Hierarchical Proof Data Structure

As we require both, fast reconstruction of the PDS from OMDOC proofs and presen-
tation of a given view of the proof, we need to store the proofs in OMDOC with all
levels of granularity. As a simple example (with only one level of granularity) we show
in Listing 1 the proof from Figure 4 in OMDOC format.

Each proof element represents a sequence of proofsteps. The proofstep consist of a
derive element where the type attribute contains the proof command and the method
element the by information, encoded in its xref attribute. The from information is
stored in premise subelements which point to the corresponding labeled formulas.
The labels are realized using the id attribute of the OMOBJ element.

An assume proofstep introduces always a new local hypothesis which is represented
by the hypothesis element after the assume derive block. We represent a sub-
goals proofstep inside a method block by a sequence of OMOBJ - proof pairs corre-
sponding to a subgoal followed by its subproof. We encode formulas in OMDOC using
OPENMATH.
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<proof xml:id="p1" for="#distr_inter">
<derive xml:id="p1_d1" type="subgoals">
<method xref="#definition_of_set_equality">

<OMOBJ>A∩ (B∪C)⊂ A∩B∪A∩C</OMOBJ>
<proof><derive xml:id="p1_d2" type="assume"><method xref="#definition_of_subset"/></>

<hypothesis><FMP>x ∈ A∩ (B∪C)</FMP></>
<derive xml:id="p1_d3" type="fact"><FMP>x ∈ A∧ x ∈ (B∪C)</FMP>

<method xref="#definition_of_intersection"/></></>
<OMOBJ>A∩B∪A∩C ⊂ A∩ (B∪C)</OMOBJ></></></>

OMDOC Listing 1: Proof as XML tree

Finally, Listing 2 shows how we encode proof steps at different levels of granularity.
The alt element contains as first proof element the strategy justification and then
the expansion or refinement of this strategy. Table 7 gives an overview of the added
attributes and content specifications.

<proof xml:id="p1" for="#distr_inter">
<alt>
<proof><derive xml:id="p1_dx" type="complex">

<method xref="#strategy1"/></></>
<proof> ... proof from Listing 1 ... </></></>

OMDOC Listing 2: Hierarchical Justifications

Table 7. Extension of PF

Element Opt. Attrib. Content

proof alt
alt proof+

Table 8. Extension of PRES

Element Opt. Attrib. Content

use cop symbol*, OMOBJ*

6.2 Parsing and Rendering Knowledge

The parsing and rendering facility of PLATΩ uses the following knowledge which we
want to store for each theory and for each community of practice separately in OMDOC
using the presentation module (PRES). Table 8 gives an overview of the extensions to
the PRES module. Each knowledge item is encoded in a presentation block like

<presentation for="URI"><use format="texmacs" cop="name" attributes="type=TYPE">...</></>

Notations for mathematical symbols are given by NOTC. Typed variables are encoded
as symbol elements and each pattern as an OMOBJ element1. While all patterns are
allowed as parser input, the renderer uses by default the first pattern.

<presentation for="#union"><use ... attributes="type=symbol">&lt;cup&gt;</></>
<presentation for="#union"><use ... attributes="type=notation">

<symbol xml:id="x"><type>set</type></symbol>
<symbol xml:id="y"><type>set</type></symbol>
<OMOBJ><OMA>
<OMS cd="local" name="x"/><OMSTR>&lt;cup&gt;</><OMS cd="local" name="y"/></></></></>

Symbolgroups are given by GROUP. We declare a symbolgroup by using a symbol
element before specifying its elements in a presentation block.

<symbol xml:id="setops" role="symbolgroup"/>
<presentation for="#setops"><use ... attributes="type=symbolgroup">

<OMOBJ><OMS cd="th1" name="union"/></OMOBJ>
<OMOBJ><OMS cd="th1" name="intersection"/></OMOBJ></></>

1 We encode a list of terms as argument list of an OMA element.
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Associativity information for symbols, given by ASSOC, with values right or left.

<presentation for="#union"><use ... attributes="type=associativity">left</></>

Precedence constraints for two or more symbol(group)s, expressing that s1 ≺ . . .≺ sn,
are given by PREC. The symbol(group) s1 is referred to by the for attribute and the
s2, . . . ,sn are encoded as OMOBJ elements.

<presentation for="#intersection"><use ... attributes="type=precedence">
<OMOBJ><OMS cd="th1" name="union"/></OMOBJ></></>

By storing this knowledge separately for each community of practice, our architecture
supports for free the automatic notational translation of a document across communities
of practice. The default notation for all symbols is prefix notation.

7 Related Work

The most prominent system for the publication of machine checked mathematics is
MIZAR [14] with one of the largest libraries of formalized mathematics. The language
of the library is a well-designed compromise between human-readability and machine-
processability. Since the MIZAR system is not interactive, the usual workflow is to
prepare an article, compile it and loop both steps until there is no error reported. In con-
trast to that, our architecture allows for both a human-oriented and a machine-oriented
representation as well as techniques to lift or expand these representations respectively.

ISABELLE/ISAR [17] is a generic framework for human-readable formal proof doc-
uments, both like and unlike MIZAR. The ISAR proof language provides general prin-
ciples that may be instantiated to particular object-logics and applications. ISABELLE

tries to check an ISAR proof, shows the proof status but does not patch the proof script
for corrections. We try to repair detected errors or underspecifications in proof steps.

A very promising representative of distributed systems for the publication of machine
checked mathematics is LOGIWEB [9]. It allows the authoring of articles in a sophisti-
cated customizable language but strictly separates the input from the output document,
resulting in the usual LATEX workflow. By using the WYSIWYG text-editor TEXMACS
we combine input and output representation in a document-centric approach.

Regarding parsing techniques the Matita system provides currently the best strategies
for disambiguation [13]. Definitely, we plan to adapt these methods to our setting since
they reduce efficiently the amount of alternative proofs to be verified.

8 Conclusion

In this paper we presented an architecture for authoring machine checked documents for
mathematics repositories within a text-editor. To meet the real-time requirements of our
scenario, we presented fast parsing and rendering mechanisms as well as incremental
proof checking techniques. To increase the usability, the checking rules are enhanced by
repair strategies trying to fix incomplete or underspecified steps. Finally, we presented
an extension of the OMDOC format to store the formalized content of the document
together with its justifications and notational information. Thus, the proof situations
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can be efficiently restored and verified at a later date and by other authors. With the ap-
proach presented in this paper we have a solid basis for further linguistic improvements.
The plan is on the one hand to generate natural language with aggregation, topicalisa-
tion etc. from the controlled language and on the other hand to be able to understand
that constantly increasing fragment of natural language to extract the controlled lan-
guage. As future work we are going to investigate whether the proposed architecture is
a well-suited foundation for collaborative authoring inside and across communities of
practice.
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Abstract. This paper proposes the use of a formal grammar for the
verification of mathematical formulae for a practical mathematical OCR
system. Like a C compiler detecting syntax errors in a source file, we want
to have a verification mechanism to find errors in the output of math-
ematical OCR. Linear monadic context-free tree grammar (LM-CFTG)
was employed as a formal framework to define “well-formed” mathe-
matical formulae. For the purpose of practical evaluation, a verification
system for mathematical OCR was developed, and the effectiveness of
the system was demonstrated by using the ground-truthed mathematical
document database INFTY CDB-1.

1 Introduction

Grammatical analysis is useful for many types of verification problems. For ex-
ample, a C compiler grammatically analyzes a source file and returns error mes-
sages with the location and type of errors. For mathematical OCR [1], it is
natural to think that such grammatical analysis helps to detect misrecognitions
of characters and structures in mathematical formulae. This paper proposes a
mathematical-formulae verification method for a practical mathematical OCR
system based on a combination of context-free grammar [2] and tree grammar [3].

Grammatical analysis can be classified into two levels: syntactic analysis and
semantic analysis. This paper concentrates only on the syntactic analysis of
mathematical formulae because we wanted to build a very fast verification sys-
tem. Needless to say, semantic analysis is also very important for the improve-
ment of mathematical OCR. However, we will leave this task for another time.
We use the term “well-formed” to mean syntactic correctness. Since syntactic
correctness doesn’t necessarily mean semantic correctness, we can consider un-
satisfiable formulae, e.g., “1 + 2 = 5”, and tautological formulae, e.g., “x = x”,
as “well-formed” formulae if they are syntactically correct.

The final aim of this study is to completely define “well-formed” mathematical
formulae. In other words, we want to have a grammar to verify any mathematical
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formula that has appeared, or will appear, in a long-term build-up of mathemat-
ical documents. There were other grammatical approaches to the verification of
mathematical formulae such as [4,5,6]. The proposed verification method will
extend the coverage of those approaches.

In order to define “well-formed” mathematical formulae, we employed linear
monadic context-free tree grammar (LM-CFTG) [3] as a formal framework. As
shown in Fig. 1, a mathematical OCR system offers a tree representation of a
mathematical formula from a scanned image. Therefore, we needed a grammar
formalism to define a set of tree structures. An LM-CFTG defines a set of tree
structures by arranging fan-out rules and context-free rules, where fan-out rules
are used to describe the structural growth of a tree, and context-free rules are
used to describe linear growth. For example, some fan-out rules and context-
free rules of the grammar defining “well-formed” mathematical formulae are
illustrated in Fig. 2.

The proposed verification method allows us to build a very fast verification
system. Theoretically, the verification process of most mathematical formulae
will be completed in linear time depending on the size of the input, though some
exceptional mathematical formulae require cubic time. We need a very fast ver-
ification system because verification should be done for numerous recognition
candidates to improve the reliability of mathematical OCR. We experimentally
built a verification system and executed the system on the ground-truthed math-
ematical document database INFTY CDB-1 [7]. The verification of 21, 967 math-
ematical formulae (size: 48.1MB) was finished within 10 seconds by a PC (CPU:
Pentium4 3.06GHz, RAM: 1GB).
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The accomplishment of this very fast verification system mainly resulted from
the following two features of the proposed verification method:

– Division of a mathematical formula into sub-formulae; and
– A grammar formalism with a fast recognition algorithm.

The idea of the division of a formula into sub-formulae is common to well-
known algorithm design paradigms such as “Divide and Conquer” and “Dynamic
Programming.” The employment of LM-CFTG enables us to use not only parsing
algorithms for LM-CFTG [8] but also well-established parsing techniques for
context-free grammar (CFG) [2,9].

Although the proposed verification method may be useful in general, this
paper mainly discusses the implementation of a verification system created to
be used with InftyReader [10]. The information about InftyReader and other
supporting software can be found on the Infty Project website [11].

This paper is organized as follows: In Section 2, the grammar defining “well-
formed” mathematical formulae is explained; in Section 3, the outline of the
proposed verification method is described; in Section 4, the results of the exper-
iment are shown; in Section 5, LM-CFTG is introduced as a formal framework
for the grammar defining “well-formed” mathematical formulae; and in Section
6, the conclusion is drawn and future work determined.

2 “Well-Formed” Mathematical Formulae

In order to define “well-formed” mathematical formulae, linear monadic context-
free tree grammar (LM-CFTG) [3] was employed as a formal framework. The
definition and the formal properties of LM-CFTG will be introduced in Sec-
tion 5. To choose an appropriate grammar formalism, it was necessary for a
grammar formalism to have sufficient descriptive power to process a diversity of
mathematical formulae. In addition to descriptive power, we also required that
a grammar formalism be accompanied by a very fast parser.

An LM-CFTG is defined by arranging fan-out rules and context-free rules.
Fan-out rules are used to define possible structural configuration of mathemati-
cal formulae. We should arrange them for symbols which are possibly connected
with adjunct symbols. Examples of those symbols are “capital sigma” for sum-
mation, “capital pi” for product, “radical sign” for square root, “long bar” for
fraction, “integral sign” for definite integral, etc. Because any variable may have
a subscript, we arranged a fan-out rule for all italic alphabet symbols. Context-
free rules are used to define possible linear sequences of symbols of mathematical
formulae. Context-free rules constitute a context-free grammar (CFG) [2], and
thus we can use well-established parsing techniques for CFG [9].

We experimentally developed a grammar defining “well-formed” mathemat-
ical formulae. The grammar consists of 35 fan-out rules and 170 context-free
rules. The number of rules will be increased with the refinement of the gram-
mar. A representative sample of the grammar is illustrated in the appendix at
the end of this paper.
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Table 1. Grammatical categories

Category Explanation and Example

Math Acceptable mathematical formula
“u(a, b) = Int Frac”

Range Range of value of a variable
“1 ≤ i ≤ n”

Init Initialization of a variable
“i = 0”, “i = k”

Exp Acceptable expression
“2 + 3”, “n(n + 1)”

ExpList List of expressions connected with signs
“a < b < c < d”, “z = x + y”

Subscript Subscript of a variable
“2”, “n”, “1, 2”, “1, 2, 3, 4”

Supscript Supscript of a variable and expression
“′”, “′′”, “2”, “n”, “1, 2”

On the development of the grammar, we tried to arrange context-free rules so
that they constitute a deterministic context-free grammar (DCFG) [2] because
we could take advantage of a linear-time parsing technique for DCFG [9]. Unfor-
tunately, we needed to add some context-free rules, which break the condition
of DCFG, and this is the reason why a verification process of some exceptional
mathematical formulae requires cubic time. Most of those context-free rules are
related to the vertical-bar symbol because the usage of vertical bar is too diverse:
absolute value, divides, conditional probability, norm of a vector, etc.

Table 1 shows the grammatical categories defined by the context-free rules of
the grammar.

3 Outline of the Verification Method

In this section, we describe the outline of the proposed verification method. We
start with the input to the verification system, that is to say, the output of
mathematical OCR.

The output of InftyReader is given in InftyCSV format. An example of an
InftyCSV text expressing a mathematical formula is shown in Table 2. Each line
corresponds to a symbol in the formula, where: “ID” is the number uniquely
assigned to the symbol; “x1, x2, x3, x4” are the coordinates of the rectangular
area; “Mode” is a flag showing if the symbol is a part of a mathematical formula;
“Link” expresses the relationship with the parental symbol; “Parent” is the ID
of the parental symbol; and “Code” is the internal character code of the symbol.
The original image and the rectangular representation of the formula are shown
at (1) and (2) in Fig. 3.
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Table 2. An example of an InftyCSV text

ID x1 y1 x2 y2 Mode Link Parent Code

1, 1487, 708, 1535, 766, 1, -1, -1, 0x426C
2, 1542, 685, 1559, 758, 1, 0, 1, 0x1980
3, 1563, 704, 1603, 742, 1, 0, 2, 0x4161
4, 1610, 732, 1622, 753, 1, 0, 3, 0x142C
5, 1646, 683, 1679, 742, 1, 0, 4, 0x4162
6, 1686, 685, 1703, 758, 1, 0, 5, 0x1981
7, 1728, 708, 1780, 724, 1, 0, 6, 0x1D3D
8, 1801, 624, 1858, 812, 1, 0, 7, 0x33F0
9, 1853, 782, 1881, 810, 1, 2, 8, 0x4161
10, 1868, 622, 1891, 658, 1, 1, 8, 0x4162
11, 1909, 717, 2053, 722, 1, 0, 8, 0x33D1
12, 1945, 629, 1985, 689, 1, 5, 11, 0x4164
13, 1986, 650, 2016, 689, 1, 0, 12, 0x4163
14, 1911, 736, 1967, 800, 1, 6, 11, 0x0248
15, 1977, 740, 1994, 813, 1, 0, 14, 0x1980
16, 1999, 757, 2029, 796, 1, 0, 15, 0x4163
17, 2035, 740, 2051, 813, 1, 0, 16, 0x1981

3.1 Construction of a Tree Representation

First, the verification system converts an InftyCSV text into a linked list called
a tree representation. A node of a linked list is illustrated in Fig. 4. By preparing
nodes for all symbols and connecting them in accordance with “Link” and “Par-
ent” information in an InftyCSV text, the tree representation of a mathematical
formula is constructed. The InftyCSV text in Table 2 is converted into the tree
representation shown at (3) in Fig. 3.

3.2 Division of a Mathematical Formula into Strings

Secondly, strings are extracted from a tree representation of a mathematical for-
mula. Strings are obtained by concatenating symbols horizontally connected in a
tree representation. From the tree representation shown in Fig. 3, the following
five strings are extracted:

“u ( a , b ) = Int Frac”,
“b”,
“a”,
“d c”, and
“Θ ( c )”.

3.3 Grammatical Analysis

Grammatical analysis is executed in two stages: linear sequence analysis and
structural inspection. In the linear sequence analysis, a parser for a context-free
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grammar (CFG) [2] is utilized, and, for each string extracted from a tree repre-
sentation of a mathematical formula, the fitness to the grammatical categories
is examined. In Table 3, the fitness to the grammatical categories for the strings
is shown. The linear sequence analysis is the most time-consuming task in the
proposed verification method, and may cost cubic time depending on the size of
the input in the worst case, while the other tasks can be done in linear time.

After the linear sequence analysis, the structural inspection takes place. In
the structural inspection, the connectivity of nodes is examined by searching for
matching fan-out rules. The structural inspection process is illustrated in Fig. 5.
The connection of the adjunct strings, “b” and “a”, and the integral sign are
inspected. The connection of the adjunct strings, “d c” and “Θ ( c )”, and the
long bar are also inspected.

The mathematical formula in the example was successfully verified as a “well-
formed” mathematical formula.
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Table 3. Fitness to the grammatical categories

Strings Math Range Init Exp ExpList Subscript Supscript

u ( a , b ) = Int Frac yes yes yes no yes no no
b yes yes no yes yes yes yes
a yes yes no yes yes yes yes

d c yes yes no yes yes yes yes
Θ ( c ) yes yes no yes yes yes yes
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4 Experimental Results

We experimentally built a verification system in accordance with the proposed
verification method. For implementation of the system, the program was written
in C language, and GNU Bison [12], a parser generator for CFG, was utilized.
For evaluation, we executed the system on the ground-truthed mathematical
document database INFTY CDB-1 [7].

The verification of 21, 967 mathematical formulae in INFTY CDB-1 (size:
48.1MB) was finished within 10 seconds by a PC (CPU: Pentium4 3.06GHz;
RAM: 1GB). The speed of the proposed verification method was experimentally
confirmed. Theoretically, a verification process of most mathematical formulae
will be finished in linear time depending on the size of the input, though some
exceptional mathematical formulae require cubic time.

The verification system produces verification results in XHTML format with
MathML inclusions and displays error messages on a web browser such as Mozilla
Firefox [13]. An error message identifies the position and type of suspicious
mathematical-formula error as enlarged and colored red.

(1), (2), (3) and (4) in Fig. 6 are error messages produced by the verification
system. Original images corresponding to the error messages are shown in Fig. 7.
As for (1), the verification system successfully detected the misrecognition of a
comma before the letter ‘b’. The comma was misrecognized as a period. With
regard to (2), the verification system detected a faulty correspondence of paren-
theses. Looking at the original image, we noticed that this was an error from the
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Fig. 6. Error messages produced by the verification system
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Fig. 7. Original images

original document. Concerning (3), the verification system successfully detected
the misrecognition of the angle bracket. The angle bracket was misrecognized
as a less-than sign. And about (4), a structural error was detected since a left
parenthesis may not have a superscript. A portion of the left parenthesis was
misrecognized as a prime symbol.
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5 Formal Framework

In this section, we introduce the formal definitions of tree and linear monadic
context-free tree grammar (LM-CFTG). LM-CFTG was employed as a formal
framework to define “well-formed” mathematical formulae. We also introduce
known results for LM-CFTG.

5.1 Tree

A ranked alphabet is a finite set of symbols in which each symbol is associated
with a natural number, called the arity of a symbol. Let Σ be a ranked alphabet.
For n ≥ 0, let Σn = {a ∈ Σ | the arity of a is n}. A ranked alphabet is monadic
if the arity of each its element is at most 1.

The set of trees over Σ, denoted by TΣ, is the smallest set of strings over
elements of Σ, parentheses and commas defined inductively as follows:

(1) Σ0 ⊆ TΣ, and
(2) if a ∈ Σn for some n ≥ 1, and t1, t2, . . . , tn ∈ TΣ, then a(t1, t2, . . . , tn) ∈ TΣ .

Let x be a variable. TΣ(x) is defined as TΣ∪{x} taking the rank of x to be 0.
For t, u ∈ TΣ(x), t[u] is defined as the result of substituting u for the occurrences
of the variable x in t. A tree t ∈ TΣ(x) is linear if x occurs exactly once in t.

5.2 Linear Monadic Context-Free Tree Grammar

An linear monadic context-free tree grammar (LM-CFTG) is a four-tuple G =
(N,Σ, P, S), where:

– N is a monadic ranked alphabet of nonterminals,
– Σ is a ranked alphabet of terminals, disjoint with N ,
– S ∈ N0 is the initial nonterminal, and
– P is a finite set of production rules of one of the following forms:

(1) A → u

with A ∈ N0 and u ∈ TN∪Σ, or

(2) A(x) → u

with A ∈ N1 and a linear tree u ∈ TN∪Σ(x).

For an LM-CFTG G, the one-step derivation G⇒ is the relation over TN∪Σ(x)
such that, for t ∈ TN∪Σ(x), (1) if A → u is in P and t = t′[A] for some linear
tree t′ ∈ TN∪Σ(x), then t G⇒ t′[u], and (2) if A(x) → u is in P and t = t′[A(t′′)]
for some linear trees t′, t′′ ∈ TN∪Σ(x), then t G⇒ t′[u[t′′]]. See Fig. 8.

Let G
∗⇒ denote the reflexive transitive closure of G⇒ . The tree language gen-

erated by G is the set L(G) = {t ∈ TΣ | S G
∗⇒ t}.
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5.3 Known Results for LM-CFTG

First, we introduce normal forms for LM-CFTG. The reason fan-out rules and
context-free rules are sufficient to define an LM-CFTG is based on Theorem 1.

Theorem 1. (Fujiyoshi [14]) [Chomsky-like normal form] Any LM-CFTG can
be transformed into an equivalent one whose rules are in one of the following
forms:

(1) A → B(C) with A,C ∈ N0 and B ∈ N1,
(2) A → a with A ∈ N0 and a ∈ Σ0,
(3) A(x) → B(C(x)) with A,B,C ∈ N1, or
(4) A(x) → b(C1, . . . , Ci−1, x, Ci+1, . . . , Cn) with A ∈ N1, n ≥ 1, b ∈ Σn, 1 ≤

i ≤ n and C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0.

See Fig. 9.

Theorem 2. (Fujiyoshi [14]) [Greibach-like normal form] Any LM-CFTG can
be transformed into an equivalent one whose rules are in one of the following
forms:

(1) A → a with A ∈ N0 and a ∈ Σ0,
(2) A → b(C1, . . . , Ci−1, u, Ci+1, . . . , Cn) with A ∈ N0, n ≥ 1, b ∈ Σn, 1 ≤ i ≤ n,

C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0 and u ∈ TN , or
(3) A(x) → b(C1, . . . , Ci−1, u, Ci+1, . . . , Cn) with A ∈ N1, n ≥ 1, b ∈ Σn, 1 ≤

i ≤ n, C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0, and u ∈ TN1(x).
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See Fig. 10. Since N is monadic, all trees in TN and TN1(x) may be written
as B1(B2(· · · (Bm(D)) · · · )) and B1(B2(· · · (Bm(x)) · · · )), respectively, for some
m ≥ 0, B1, B2, . . . , Bm ∈ N1 and D ∈ N0. Note that m may be 0.

LM-CFTG is related to the tree adjoining grammar (TAG) [15,16,17], one of
the most famous and well-studied mildly context-sensitive grammar formalisms.
The definition of “weakly equivalent” is found in [3].

Theorem 3. (Fujiyoshi & Kasai [3]) LM-CFTG is weakly equivalent to TAG.

There exists an effective recognition algorithm for LM-CFTG.

Theorem 4. (Fujiyoshi [8]) There exists a recognition algorithm for LM-CFTG
that runs in O(n4) time, where n is the number of nodes of an input tree.

It is known that a recognition algorithm that runs in O(n3) time can be obtained
with some modifications to the O(n4)-time algorithm in [8].

6 Conclusion and Future Work

We have proposed a verification method of mathematical formulae for a practical
mathematical OCR system based on a combination of context-free grammar and
tree grammar. Though we have recognized the usefulness of the proposed verifica-
tion method by experimental results, we know the necessity of the improvement
of the grammar defining “well-formed” mathematical formulae. Moreover, in or-
der to avoid the ambiguity of the grammar, the inclusion of semantic analysis
needs to be considered.

In the future, we plan to internalize a verification system within the recogni-
tion engine of a mathematical OCR system. Because the flexibility of the gram-
mar is important, we want to allow users to manipulate the grammar. Therefore,
we will reflect on ways users can update the grammar by themselves.
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Appendix: Representative Sample of the Grammar
Defining “Well-Formed” Mathematical Formulae

Fan-Out Rules:

 

∫
Exp

Exp

Int∫Int

Exp

Exp

∫Int

Range

∫
Range

Int

Σ
Init

Exp

Sum ΣSum

Init

Exp

Σ
Range

Sum ΣSum

Range

∏
Init

Exp

Prod ∏
Range

Prod ∏Prod

Range

Prod

Init

Exp

∏

Letter a
Subscript

Supscript

Letter b
Subscript

Letter c
Supscript

Exp

Exp

Frac

Exp

SqrtNumeric 1
Exp

Range

Lim lim

Subscript

Log log

Range

Lim lim
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Context-Free Rules:

Math → ExpList
→ Sign ExpList

ExpList → Exp
→ ExpList Sign Exp

Exp → Term
→ UnaryOp Term

Term → Factor
→ Term Factor
→ Term BinaryOp Factor
→ ‘∞’

Range → Exp
→ Exp Sign Exp
→ Exp Sign Factor Sign Exp

Init → Exp ‘=’ Exp

SubScript→ Exp
→ Sign
→ SubScript ‘,’ Exp
→ SubScript ‘,’ Sign
→ Exp ‘=’ Exp

SupScript→ Exp
→ Sign
→ ‘′’ //prime
→ ‘′′’ //doubleprime
→ ‘′′′’ //tripleprime

Sign → ‘=’
→ ‘�=’
→ ‘<’
→ ‘≤’
→ ‘>’
→ ‘≥’
→ ‘∈’
→ ‘9’
→ ‘�9’
→ ‘⊂’
→ ‘�⊂’
→ ‘⊃’
→ ‘�⊃’
→ ‘≡’
→ ‘∼=’
→ ‘∼’
→ ‘→’
→ ‘⇒’
→ ‘↔’
→ ‘⇔’
→ ‘�→’
→ ‘,’ //comma
→ ‘;’ //semicolon
→ ‘|’ //vert

UnaryOp → ‘+’
→ ‘−’
→ ‘±’
→ ‘∓’
→ ‘∀’
→ ‘∃’

BinaryOp→ ‘+’
→ ‘−’
→ ‘×’
→ ‘/’
→ ‘∩’
→ ‘∪’
→ ‘·’
→ ‘•’
→ ‘:’ //colon
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Factor → V ariable
→ Number
→ ∅
→ ∗
→ :
→ ∇
→ ℵ
→ ‘(’ ExpList ‘)’
→ ‘[’ ExpList ‘]’
→ ‘{’ ExpList ‘}’
→ ‘(’ ExpList ‘]’
→ ‘[’ ExpList ‘)’
→ ‘〈’ ExpList ‘〉’
→ Frac
→ Sqrt
→ ‘|’ Term ‘|’
→ TrigOp Factor
→ SumOp Factor
→ FuncOp Factor

V ariable → Letter

Letter → ‘a’
→ ‘b’
...
→ ‘z’

Number → Integer
→ Integer ‘.’ Integer
→ ‘.’ Integer

Integer → Numeric
→ Integer Numeric

Numeric → ‘0’
→ ‘1’
...
→ ‘9’

TrigOp → Sin
→ Cos
→ Tan

Sin → ‘sin’
Cos → ‘cos’
Tan → ‘tan’

SumOp → Int
→ Sum
→ Prod
→ Bigcap
→ Bigcup

Int → ‘
∫

’
Sum → ‘

∑
’

Prod → ‘
∏

’
Bigcap → ‘

⋂
’

Bigcup → ‘
⋃

’

FuncOp → Lim
→ Log
→ Min
→ Max

Lim → ‘lim’
Log → ‘log’
Min → ‘min’
Max → ‘max’
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Abstract. The feedback given by e-learning tools that support incre-
mentally solving problems in mathematics, logic, physics, etc. is limited,
or laborious to specify. In this paper we introduce a language for spec-
ifying strategies for solving exercises. This language makes it easier to
automatically calculate feedback when users make erroneous steps in a
calculation. Although we need the power of a full programming language
to specify strategies, we carefully distinguish between context-free and
non-context-free sublanguages of our strategy language. This separation
is the key to automatically calculating all kinds of desirable feedback.

1 Introduction

Tools like Aplusix [9], ActiveMath [14], MathPert [4], and our own tool for
rewriting logic expressions [24] support solving mathematical exercises incre-
mentally. Ideally a tool gives detailed feedback on several levels. For example,
when a student rewrites p → (r ↔ p) into ¬p∨ (r ↔ p, our tool will tell the stu-
dent that there is a missing parenthesis. If the same expression is rewritten into
¬p ∧ (r ↔ p), it will tell the student that an error has been made when apply-
ing the definition of implication: correct application of this definition would give
¬p∨(r ↔ p). Finally, if the student rewrites ¬(p∧(q∨r)) into ¬((p∧q)∨(p∧r)),
it will tell the student that although this step is not wrong, it is better to first
eliminate occurrences of ¬ occurring at top-level, since this generally leads to
fewer rewrite steps.

The first kind of error is a syntax error, and there exist good error-repairing
parsers that suggest corrections to formulas with syntax errors. The second kind
of error is a rewriting error: the student rewrites an expression using a non-
existing or buggy rule. There already exist some interesting techniques for finding
the most likely error when a student incorrectly rewrites an expression. The
third kind of error is an error on the level of the procedural skill or strategy for
solving this kind of exercises. This paper discusses how we can formulate and
use strategies to construct the latter kind of feedback.

This paper. The main contribution of this paper is the formulation of a strat-
egy language as a domain-specific embedded language, with a clear separation
between a context-free and a non-context-free part. The strategy language can

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 430–445, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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be used for any domain, and can be used to automatically calculate feedback
on the level of strategies, given an exercise, the strategy for solving the exercise,
and student input. Another contribution of our work is that the specification
of a strategy and the calculation of feedback is separated: we can use the same
strategy specification to calculate different kinds of feedback.

This paper is organized as follows. Section 2 introduces strategies, and dis-
cusses how they can help to improve feedback in e-learning systems or intelligent
tutoring systems. We continue with some example strategies from the domain
of logical expressions (Section 3). Then, we present our language for writing
strategies in Section 4. We do so by defining a number of strategy combinators,
and by showing how the various example strategies can be specified in our lan-
guage. Section 5 discusses several possibilities for giving feedback or hints using
our strategy language. The last section concludes and gives directions for future
research.

2 Strategies and Feedback

Strategies. Whatever aspect of intelligence you attempt to model in a computer
program, the same needs arise over and over again [8]:

• The need to have knowledge about the domain.
• The need to reason with that knowledge.
• The need for knowledge about how to direct or guide that reasoning.

In the case of exercises, the latter kind of knowledge is often captured by a
so-called procedure or procedural skill. A procedure describes how basic steps
may be combined to solve a particular problem. A procedure is often called a
strategy (or meta-level reasoning, meta-level inference [8], procedural nets [6],
plans, tactics, etc.), and we will use this term in the rest of this paper.

Many subjects require a student to learn strategies. At elementary school,
students have to learn how to calculate a value of an expression, which may
include fractions. At high school, students learn how to solve a system of linear
equations, and at university, students learn how to apply Gaussian elimination
to a matrix, or how to rewrite a logical expression to disjunctive normal form
(DNF). Strategies are not only important for mathematics, logic, and computer
science, but also for physics, biology (Mendel’s laws), and many other subjects.
Strategies are taught at any level, in almost any subject, and range from simple
– for example the simplification of arithmetic expressions – to very complex –
for example a complicated linear algebra procedure.

E-learning systems for learning strategies. Strategic skills are almost always
acquired by practicing exercises, and indeed, students usually equate mathe-
matics with solving exercises. In schools, the dominant practice still is a student
performing a calculation using pen-and-paper, and the teacher correcting the
calculation (the same day, in a couple of days, after a couple of weeks). There
exist many software solutions that support practicing solving exercises on a com-
puter. The simplest kinds of tools offer multiple-choice questions, possibly with
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an explanation of the error if a wrong choice is submitted. A second class of
tools asks for an answer to a question, again, possibly with an analysis of the
answer to give feedback when an error has been made. The class of tools we con-
sider in the paper are tools that support the incremental, step-wise calculation
of a solution to an exercise, thus mimicking the pen-and-paper approach more
or less faithfully. Since e-learning tools for practicing procedural skills seem to
offer many advantages, hundreds of tools that support practicing strategies in
mathematics, logic, physics, etc. have been developed.

Should e-learning systems give feedback? In Rules of the Mind [1], Anderson
discusses the ACT-R principles of tutoring, and the effectiveness of feedback in
intelligent tutoring systems. One of the tutoring principles deals with student
errors. If a student made a slip in performing a step (s)he should be allowed to
correct it without further assistance. However, if a student needs to learn the
correct rule, the system should give a series of hints with increasing detail, or
show how to apply the correct rule. Finally, it should also be possible to give an
explanation of an error made by the student. The question on whether or not to
give immediate feedback is still debated. Anderson observed no positive effects in
learning with deferred feedback, but observed a decline in learning rate instead.
Erev et al. [13] also claim that immediate feedback is often to be preferred.

Feedback in e-learning systems supporting incrementally solving exercises. There
are only very few tools that mimic the incremental pen-and-paper approach and
that give feedback at intermediate steps different from correct/incorrect. Al-
though the correct/incorrect feedback at intermediate steps is valuable, it is
unfortunate that the full possibilities of e-learning tools are not used. There are
several reasons why the feedback that is given is limited. The main reasons prob-
ably are that supporting detailed feedback for each exercise is very laborious,
providing a comprehensive set of possible bugs for a particular domain requires
a lot of research (see for example Hennecke’s work [16] on student bugs in cal-
culating fractions), and automatically calculating feedback for a given exercise,
strategy, and student input is very difficult.

Feedback should be calculated automatically. We think specifying feedback to-
gether with every exercise that is solved incrementally is a dead-end: teachers
will want to enter new exercises on a regular basis, and completely specifying
feedback is just too laborious, error prone, and repetitive. Instead, feedback
should in general be calculated automatically, given the exercise, the strategy
for the exercise, buggy rules and strategies, and the input from the student. To
automatically calculate feedback, we need information about the domain of the
exercise, the rules for manipulating expressions in this domain, the strategy for
solving the exercise, and common bugs. For example, for Gaussian elimination
of a matrix, we have to know about matrices (which can be represented by a list
of rows), the rules for manipulating matrices (the elementary matrix operations
such as scaling a row, subtracting a row from another row, and swapping two
rows), buggy rules and strategies for manipulating matrices (subtracting a row



Specifying Strategies for Exercises 433

from itself), and the strategy for Gaussian elimination of a matrix, which can
be found in the technical report corresponding to this paper [15].

Representing strategies. Representing the domain and the rules for manipulating
an expression in the domain is often relatively straightforward. Specifying a
strategy for an exercise is more challenging in many cases. To specify a strategy,
we need the power of a full programming language: many strategies require
computations of values. However, to calculate feedback based on a strategy, we
need to know more than that it is a program. We need to know its structure
and basic components, which we can use to report back on errors. Furthermore,
we claim that if we ask a teacher to write a strategy as a program, instead of
specifying feedback with every exercise, the automatic approach is not going to
be very successful.

An embedded domain-specific language for specifying strategies. This paper dis-
cusses the design of a language for specifying strategies for exercises. The do-
mains and rules vary for the different subjects, but the basic constructs for
describing strategies are the same for different subjects (‘first do this, then do
that’, ‘either do this or that’). So the strategy language can be used for any
domain (mathematics, logic, physics, etc). It consists of several basic constructs
from which strategies can be built. These basic constructs are combined with
program code in a programming language to be able to specify any strategy.
The strategy language is formulated as an embedded domain-specific language
(EDSL) in a programming language [19] to easily facilitate the combination of
program code with a strategy. Here ‘domain-specific’ means specific for the do-
main of strategies, not specific for the domain of exercises. The separation into
basic strategy constructs and program code offers us the possibility to analyse
the basic constructs, from which we can derive several kinds of feedback.

What kind of feedback? We can automatically calculate the following kinds of
feedback, many of which are part of the tutoring principles of Anderson [1].

• Is the student still on the right path towards a solution? Does the step made
by the student follow the strategy for the exercise? What is the next step
the student should take?

• We produce hints based on the strategy.
• Based on the position on the path from the starting point to the solution of

an exercise we create a progress bar.
• If a student enters a wrong final answer, we ask the student to solve sub-

problems of the original problem.
• We allow the formulation of buggy strategies to explain common mistakes

to students.

We do not build a model of the student to try to explain the error made by
the student. According to Anderson, an informative error message is better than
bug diagnosis.
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How do we calculate feedback on strategies? The strategy language is defined as
an embedded domain-specific language in Haskell [27]. Using the basic constructs
from the strategy language, we can create something that looks like a context-
free grammar. The sentences of this grammar are sequences of transformation
steps (applications of rules). We can thus check whether or not a student follows
a strategy by parsing the sequence of transformation steps, and checking that
the sequence of transformation steps is a prefix of a correct sentence from the
context-free grammar. Many steps require student input, for example when a
student wants to multiply a row by a scalar, or when a student wants to subtract
two rows. This part of the transformation cannot be checked by means of a
context-free grammar, and here we make use of the fact that our language is
embedded into a full programming language, to check input values supplied
by the student. The separation of the strategy into a context-free part, using
the basic strategy combinators, and a non-context-free part, using the power of
the programming language, offers us the possibility to give the kinds of feedback
mentioned above. Computer Science has almost 50 years of experience in parsing
sentences of context-free languages, including error-repairing parsers, which we
can use to improve feedback on the level of strategies.

Related work. Explaining syntax errors has been studied in several contexts,
most notably in compiler construction [30], but also for e-learning tools [18].
Some work has been done on trying to explain errors made by students on the
level of rewrite rules [16,21,25,5].

Already around 1980, but also later, VanLehn et al. [6,7,31], and Anderson
and others from the Advanced Computer Tutoring research group at CMU [1,2]
worked on representing procedures or procedural networks. VanLehn et al. al-
ready noticed that ‘The representation of procedures has an impact on all parts
of the theory.’ Anderson et al. report that the technical accomplishment was ‘no
mean feat’. Both VanLehn et al. and Anderson et al. chose to deploy collections of
condition-action rules, or production systems. In Mind bugs [31], VanLehn states
several assumptions about languages for representing procedures. In Rules of the
Mind [1], Anderson formulates similar assumptions. Their leading argument for
selecting a language for representing procedures is that it should be psycholog-
ically plausible. We think our strategy language can be viewed as a production
system. But our leading argument is that it should be easy to calculate feedback
based on the strategy. Using an EDSL for specifying the context-free part of a
strategy simplifies calculating feedback. Furthermore, our language satisfies the
assumptions about representation languages given by VanLehn, such as the pres-
ence of variables in procedures, and the possibility to define recursive procedures.
Neither VanLehn nor Anderson use parsing for the language for procedures to
automatically calculate feedback.

Zinn [33] writes strategies as Prolog programs, in which rules and strategies
(‘task models’) are intertwined.
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3 Three Example Strategies

In this section we present three strategies for rewriting a classical logical expres-
sion to disjunctive normal form. Although the example strategies are relatively
simple, they are sufficiently rich to demonstrate the main components of our
strategy language.

The domain. Before we can define a strategy, we first have to introduce the
domain of logical expressions and a collection of available rules. A logical ex-
pression is a logical variable, a constant true or false (written T and F ), the
negation of a logical expression, or the conjunction, disjunction, implication, or
equivalence of two logical expressions. This results in the following grammar:

Logic ::= Var | T | F | ¬Logic | Logic ∧ Logic
| Logic ∨ Logic | Logic → Logic | Logic ↔ Logic

Var ::= p | q | r | . . .

If necessary, we write parentheses to resolve ambiguities. Examples of valid ex-
pressions are ¬(p ∨ (q ∧ r)) and ¬(¬p ↔ p).

The rules. Logical expressions form a boolean algebra, and hence a number
of rules for logical expressions can be formulated. Figure 1 presents a small
collection of basic rules and some tautologies and contradictions. All variables in
these rules are meta-variables and range over arbitrary logical expressions. The
rules are expressed as equivalences, but are only applied from left to right. For
most rules we assume to have a commutative variant, for instance, T ∧ p = p
for rule AndTrue. With these implicit rules, we can bring every logical expression
to disjunctive normal form.

Every serious exercise assistant for this domain has to be aware of a much
richer set of rules. In particular, we have not given rules for commutativity
and associativity, several plausible rules for implications and equivalences are
omitted, and the list of tautologies and contradictions is far from complete.

Strategy 1: apply rules exhaustively. The first strategy applies the basic rules
from Figure 1 exhaustively: we proceed as long as we can apply some rule
somewhere, and we will end up with a logical expression in disjunctive nor-
mal form. This is a special property of the chosen collection of basic rules, and
this is not the case for a rule set in general. The strategy is very liberal, and
approves every sequence of rules.

Strategy 2: four steps. Strategy 1 accepts sequences that are not very attractive,
and that no expert would ever consider. We give two examples:

¬¬(p ∨ q) DeMorganOr=⇒ ¬(¬p ∧ ¬q) T ∨ (¬¬p) NotNot=⇒ T ∨ p



436 B. Heeren et al.

Basic Rules:
Constants: AndTrue: p ∧ T = p

OrTrue: p ∨ T = T
NotTrue: ¬T = F

AndFalse: p ∧ F = F
OrFalse: p ∨ F = p
NotFalse: ¬F = T

Definitions: ImplDef: p → q = ¬p ∨ q
EquivDef: p ↔ q = (p ∧ q) ∨ (¬p ∧ ¬q)

Negations: NotNot: ¬¬p = p
DeMorganAnd: ¬(p ∧ q) = ¬p ∨ ¬q
DeMorganOr: ¬(p ∨ q) = ¬p ∧ ¬q

Distribution: AndOverOr: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

Additional Rules:
Tautologies: ImplTaut: p → p = T

EquivTaut: p ↔ p = T
OrTaut: p ∨ ¬p = T

Contradictions: AndContr: p ∧ ¬p = F EquivContr: p ↔ ¬p = F

Fig. 1. Rules for logical expressions

In both cases, it is more appealing to select a different rule (NotNot and
OrTrue, respectively). We define a new strategy that proceeds in four steps,
and such that the above sequences are not permitted.

• Step 1: Remove constants from the logical expression with the rules for
”constants” (see Figure 1), supplemented with constant rules for implications
and equivalences. Apply the rules top-down, that is, at the highest possible
position in the abstract syntax tree. After this step, all occurrences of T and
F are removed.

• Step 2: Use ImplDef and EquivDef to rewrite implications and equivalences
in the formula. Proceed in a bottom-up order.

• Step 3: Push negations inside the expression using the rules for negations,
and do so in a top-down fashion. After this step, all negations appear directly
in front of a logical variable.

• Step 4: Use the distribution rule (AndOverOr) to move disjunctions to
top-level. The order is irrelevant.

Strategy 3: tautologies and contradictions. Suppose that we want to extend Strat-
egy 2, and use rules expressing tautologies and contradictions (for example, the
additional rules in Figure 1). These rules introduce constants. Our last strategy
is as follows:

• Follow the four steps of Strategy 2, however:
• Whenever possible, use the rules for tautologies and contradictions (top-

down), and
• clean up the constants afterwards (step 1). Then continue with Strategy 2.
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Buggy rules. In addition to the collection of rules and a strategy, we can formu-
late buggy rules. These rules capture mistakes that are often made, such as the
following unsound variations on the two De Morgan rules:

BuggyDM1 : ¬(p ∧ q) �= ¬p ∧ ¬q BuggyDM2 : ¬(p ∨ q) �= ¬p ∨ ¬q

The advantage of formulating buggy rules is that specialized feedback can be
presented if the system detects that such a rule was applied. Note that these
rules should not appear in strategies, since that would invalidate the strategy.

The idea of formulating buggy rules can easily be extended to buggy strategies.
Such a strategy helps to recognize common procedural mistakes, in which case
we can report a detailed message.

4 A Language for Strategies for Exercises

The previous section gives an intuition of strategies for exercises, such as the
three DNF strategies. In this section we define a language for specifying such
strategies. We explore a number of combinators to combine simple strategies
into more complex ones. We start with a set of basic combinators, and gradually
move on to more powerful combinators.

4.1 Basic Strategy Combinators

Strategies are built on top of basic rules, such as the logic rules from the previous
section. Let r be a rule, and let a be some term. We write r(a) to denote the
application of r to a, which returns a set of terms. If this set is empty, we say
that r is not applicable to a, and that the rule fails.

The basic combinators for building strategies are the same as the building
blocks for context-free grammars. In fact, we can view a strategy as a grammar
where the rules form the alphabet of the language.

– Sequence. Two strategies can be composed and put in sequence. We
write s <�> t to denote the sequence of strategy s followed by strategy t .

– Choice. We can choose between two strategies, for which we will write
s <|> t . One of its argument strategies is applied.

– Units. Two special strategies are introduced: succeed is the strategy that
always succeeds, without doing anything, and fail is the strategy that always
fails. These combinators are useful to have: succeed and fail are the unit
elements of the <�> and <|> combinators.

– Labels. With our final combinator we can label strategies. We write
label � s to label strategy s with some label �. Labels are used to mark
positions in a strategy, and allow us to attach content such as hints and
messages to the strategy. Labeling does not change the language that is
generated by the strategy.

We can apply a strategy s to a term a, written s(a), just as we can apply some
rule. We make the informal description of the presented combinators precise by
giving a formal definition for each of the combinators:
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(s <�> t)(a) = {c | b ← s(a), c ← t(b)}
(s <|> t)(a) = s(a) ∪ t(a)
succeed(a) = {a}
fail(a) = ∅
(label � s)(a) = s(a)

The rest of this section introduces more strategy combinators to conveniently
specify strategies. All these combinators, however, can be defined in terms of the
combinators that are given above.

4.2 Extensions

Extended Backus-Naur form (EBNF) extends the notation for grammars, and
offers three new constructions that one often encounters in practice: zero or
one occurrence (option), zero or more occurrences (closure), and one or more
occurrences (positive closure). Along these lines, we introduce three new strategy
combinators: many s means repeating strategy s zero or more times, with many1
we have to apply s at least once, and option s may or may not apply strategy
s . We define these combinators using the basic combinators:

many s = (s <�> many s) <|> succeed
many1 s = s <�> many s
option s = s <|> succeed

Observe the recursion in the definition of many . Depending on the implementa-
tion one prefers, the many combinator results in an infinite strategy (which is
not at all a problem in a lazy programming language such as Haskell), or this
combinator gets a special treatment and is implemented as a primitive. It is
quite common for an EDSL to introduce a rich set of combinators on top of a
(small) set of basic combinators.

4.3 Negation and Greedy Combinators

The next combinators we consider allow us to specify that a certain strategy is
not applicable. Have a look at the definition of not , which only succeeds if the
argument strategy s is not applicable to the current term a:

(not s)(a) = if s(a) = ∅ then {a} else ∅

Observe that the not combinator can be specified as a single rule that either
returns a singleton set or the empty set depending on the applicability of strat-
egy s . A more general variant of this combinator is check , which receives a
predicate as argument (instead of a strategy) for deciding what to return.

Having defined not , we now specify greedy variations of many, many1 , and
option (repeat , repeat1 , and try, respectively). These combinators are greedy as
they will apply their argument strategies whenever possible.
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repeat s = many s <�> not s
repeat1 s = many1 s <�> not s
try s = s <|> not s
s � t = s <|> (not s <�> t)

The last combinator defined, s $ t , is a left-biased choice: t is only considered
when s is not applicable.

4.4 Traversal Combinators

In many domains, terms are constructed from smaller subterms. For instance,
a logical expression may have several subexpressions. Because we do not only
want to apply rules and strategies to the top-level term, we need some addi-
tional combinators to indicate that the strategy or rule at hand should be ap-
plied somewhere. For this kind of functionality, we need some support from the
underlying domain. Let us assume that a function once has been defined on a
certain domain, which applies a given strategy to exactly one of the term’s im-
mediate children. For the logic domain, this function would contain the following
definitions:

once s (p ∧ q) = {p′ ∧ q | p′ ← s(p)} ∪ {p ∧ q′ | q′ ← s(q)}
once s (¬p) = {¬p′ | p′ ← s(p)}
once s T = ∅

Using generic programming techniques [17], we can define this function once and
for all, and use it for every domain.

With the once function, we can define some powerful traversal combinators.
The strategy somewhere s applies s to one subterm (including the whole term
itself).

somewhere s = s <|> once (somewhere s)

If we want to be more specific about where to apply a strategy, we can instead
use bottomUp or topDown :

bottomUp s = once (bottomUp s) � s
topDown s = s � once (topDown s)

These combinators search for a suitable location to apply a certain strategy in a
bottom-up or top-down fashion, without imposing an order in which the children
are visited.

4.5 DNF Strategies Revisited

In Section 3, we presented three alternative strategies for turning a logical ex-
pression into disjunctive normal form. Having defined a set of strategy combi-
nators, we can now give a precise definition of these strategies in terms of our
combinators. We start with grouping the rules, as suggested by Figure 1:
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basicRules = constants <|> definitions <|> negations <|> distribution
constants = ANDTRUE <|> ANDFALSE <|> ORTRUE <|> ORFALSE

<|> NOTTRUE <|> NOTFALSE

Definitions for the other groups are similar. The first two strategies can now
conveniently be written as: The labels in the second strategy are not mandatory,

dnfStrategy1 = repeat (somewhere basicRules)
dnfStrategy2 = label "step 1" (repeat (topDown constants))

<�> label "step 2" (repeat (bottomUp definitions))
<�> label "step 3" (repeat (topDown negations))
<�> label "step 4" (repeat (somewhere distribution))

but they emphasize the structure of the strategy, and help to attach feedback to
this strategy later on. The third strategy can be defined with the combinators
introduced thus far, but we postpone the discussion and give a more elegant
definition after the reflections.

4.6 Reflections

Is the set of strategy combinators complete? Not really, although we hope to
have convinced the reader how easily the language can be extended with more
combinators. In fact, this is probably the greatest advantage of using an EDSL
instead of defining a new, stand-alone language. We believe that our combinators
are sufficient for specifying the kind of strategies that are needed in interactive
exercise assistants that aim at providing intelligent feedback. Our language is
very similar to strategic programming languages such as Stratego [32,23], and
very similar languages are used in parser combinator libraries [20,30], boiler-
plate libraries [22], workflow applications [28], theorem proving (tacticals [26])
and data-conversion libraries [12], which suggests that our library could serve as
a firm basis for strategy specifications.

One strategy combinator that we have not yet tackled is s <‖> t , which applies
the strategies s and t in parallel, i.e., interleaving steps from s with steps from t .
Although this combinator would not allow us to define more strategies, it does
help to specify certain strategies more concisely.

With parallel strategy combinators, we can give a concise definition for the
third DNF strategy, in which we reuse our second strategy. We assume to have
the left-biased variant of the parallel combinator at our disposal, for which we
will write s ‖> t . Similar to the left-biased choice operator ($), this strategy
applies a rule from s if possible. We first define a new and reusable combinator,
followed by a definition for the strategy:

In the above definition, step1 is equal to repeat (topDown constants).
Our strategy language can be used to model strategies in multiple mathemat-

ical domains. In the technical report corresponding to this paper [15] we present
a complete strategy that implements the Gaussian elimination algorithm in the
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whenever s t = repeat s ‖> t
dnfStrategy3 = whenever ((tautologies <|> contradictions) <�> step1)

dnfStrategy2

linear algebra domain. This example is more involved than the strategies for
DNF, and shows, amongst others, how rules can be parameterized, and how to
maintain additional information in a context while running a strategy. The re-
port also discusses a strategy for simplifying fractions in the domain of arithmetic
expressions.

Producing a strategy is like programming, and might require quite some effort.
We think that the effort is related to the complexity of the strategy. Gaussian
elimination is an involved strategy, which probably should be written by an ex-
pert, but the basic strategy for DNF, dnfStrategy1 , is rather simple, and could
have been written by a teacher of a course in logic. Furthermore, due to com-
positionality of the strategy combinators, strategies are reusable. In the linear
algebra domain, for example, many strategies we have written consist of Gaus-
sian elimination, preceded and followed by some exercise-specific steps (e.g., to
find the inverse of a matrix).

We can specify a strategy that is very strict in the order in which steps
have to be applied (dnfStrategy2 enforces a very strict order), or very flexible
(dnfStrategy1 doesn’t care about which step is applied when). Furthermore, we
can enforce a strategy strictly, or allow a student to deviate from a strategy, as
long as the submitted expression is still equivalent to the previous expression,
and the strategy can be restarted at that point (this is possible for most of the
strategies we have encountered). If we want a student to take clever short-cuts
through a strategy, then these shortcuts should either be explicitly specified in
the strategy (which is always possible), or it should be possible to deviate from
the given strategy.

5 Feedback on Strategies

This section briefly sketches how we use the strategy language, as introduced
in the previous sections, to give feedback to users of our e-learning systems,
or to users of other e-learning systems that make use of our feedback services.
We have implemented several kinds of feedback. Most of these categories of
feedback appear in the tutoring principles of Anderson [1], or in existing tools
supporting the stepwise construction of a solution to an exercise. No existing
tool implements more than just a few of these categories of feedback.

We do not try to tackle the problem of how feedback should be presented to a
student in this paper. Here we look at the first step needed to provide feedback,
namely to diagnose the problem, and relate the problem to the rules and the
strategy for the exercise. We want users of our feedback services to determine
how these findings are presented to the user. For example, we could generate
a table from the strategy with the possible problems, and let teachers fill this
table with the desired feedback messages.



442 B. Heeren et al.

Feedback after a step. After each step a student performs, we check whether or
not this step is valid according to the strategy. Checking whether or not a step is
valid amounts to checking whether or not the sequence of steps supplied by the
student is a valid prefix of a sentence of the language specified by the context-
free grammar corresponding to the strategy. Hence, this is essentially a parsing
problem. As soon as we detect that a student no longer follows the strategy, we
have several opportunities to react on this. We can force the student to undo
the last step, and let the student strictly follow the strategy. Alternatively, we
can warn the student that she has made a step that is invalid according to the
strategy, but let the student proceed on her own path.

For steps involving argument- and variable-value computations we have to
resort to generators, which calculate the correct values of these components, and
check these values against the values supplied by the student. These generators
are easily and naturally expressed in our framework.

Progress. Given an exercise and a strategy for solving the exercise, we determine
the minimum number of steps necessary to solve the exercise, and show this
information in a progress bar. Each time a student performs a correct step, the
progress bar is updated.

Strategy unfolding. We have constructed an OpenMath binding with the Math-
Dox system [11], in which a student enters a final answer to a question. If the
answer is incorrect, we return a new exercise, which is part of the initial ex-
ercise. For example, if a student does not return a correct disjunctive normal
form of a logical expression, we ask the student to solve the simpler problem of
first eliminating all occurrences of true and false in the logical expression. After
completing this part of the exercise, we ask to solve the remaining part of the
exercise. This kind of feedback is also used by Cohen et al. [10] in an exercise
assistant for calculus.

Hint. A student can ask for a hint. Given an exercise and a strategy for solving
the exercise, we calculate the ‘best’ next step. The best next step is an element
of the first set of the context-free grammar specified by the strategy. For the part
of the strategy that is not context-free, we specify generators for generating the
necessary variables and arguments. For example, when doing Gaussian elimina-
tion, our strategy specifies which rows have to be added or swapped when asked
for a hint. An alternative possibility for hints is to also use strategy unfolding.
Instead of giving the ‘best’ next step when asked for a hint, we tell the student
which sub-problem should be solved first.

Completion problems. Sweller, based on his cognitive load theory, describes a
series of effects and guidelines to create learning materials. The basic idea is that
a student profits from having example solutions played for him or her, followed
by an exercise in which the student fills out some missing steps in a solution [29].
We can use the strategy for a problem to play a solution for a student, and we
can play all but the middle two (three, last two, etc.) steps, and ask the student
to complete the exercise.
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Buggy strategies. If a step supplied by a student is invalid with respect to the
strategy specified, but can be explained by a buggy strategy for the problem, we
give the error message belonging to the buggy strategy. Again, this amounts to
parsing, not just with respect to the specified strategy, but also with respect to
known buggy strategies.

6 Conclusions

We have introduced a strategy language with which we can specify strategies
for exercises in many domains. A strategy is defined as a context-free grammar,
extended with non-context-free constructs for, for example, manipulating vari-
ables and arguments. The formulation of a strategy as a context-free grammar
allows us to automatically calculate several kinds of feedback to students in-
crementally solving exercises. Languages for specifying procedures or strategies
for exercises have been developed before. Our language has the same expressive
power and structure; our main contribution is the advanced feedback we can
calculate automatically, and relatively easily. This is achieved by separating the
strategy language into a context-free language, the strategy combinators, and a
non-context-free language, the embedding as a domain-specific language.

We have several plans for the future. We hope to create bindings of our feed-
back service with more existing tools, such as ActiveMath [14]. For this purpose,
we need to standardize the protocol for providing feedback. Also, we want to ap-
ply our ideas to domains with less structure, such as computer programming [3],
software modelling, and maybe even serious games in which students have to
cooperate to achieve a certain goal. Our tools are going to be used in several
courses during 2008. A preliminary test with 9 students showed that they appre-
ciated the strategic feedback within the domain of linear algebra. We will collect
more data from the experiments, and analyze and report on the results.
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29. Sweller, J., van Merriënboer, J.J.G., Paas, F.: Cognitive architecture and instruc-
tional design. Educational Psychology Review 10, 251–295 (1998)

30. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In: Launchbury, J., Sheard, T., Meijer, E. (eds.) AFP 1996. LNCS,
vol. 1129, pp. 184–207. Springer, Heidelberg (1996)

31. VanLehn, K.: Mind Bugs – The Origins of Procedural Misconceptions. MIT Press,
Cambridge (1990)

32. Visser, E., Benaissa, Z., Tolmach, A.: Building program optimizers with rewriting
strategies. In: ICFP 1998, pp. 13–26 (1998)

33. Zinn, C.: Supporting tutorial feedback to student help requests and errors in
symbolic differentiation. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS
2006. LNCS, vol. 4053, pp. 349–359. Springer, Heidelberg (2006)

http://www.haskell.org/


Mediated Access to Symbolic Computation

Systems�

Jónathan Heras, Vico Pascual, and Julio Rubio
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Abstract. Kenzo is a symbolic computation system devoted to Alge-
braic Topology. It has been developed by F. Sergeraert mainly as a re-
search tool. The challenge is now to increase the number of users and to
improve its usability. Instead of designing simply a friendly front-end, we
have undertaken the task of devising a mediated access to the system,
constraining its functionality, but providing guidance to the user in his
navigation on the system. This objective is reached by constructing an
intermediary layer, allowing us an intelligent access to some features of
the system. This intermediary layer is supported by XML technology
and interplays between a graphical user interface and the pure Common
Lisp Kenzo system.

1 Introduction

Traditionally, symbolic computation systems have been oriented to research.
This implies, in particular, that development efforts in the area of Computer
Algebra systems have been centered in aspects such as the improvement of the
efficiency (or the accuracy, in symbolic-numerical systems) or the extension of the
scope of the applications. Things are a bit different in the case of widely spread
commercial systems such as Mathematica or Maple, where some attention is also
paid to connectivity issues or to special-purpose user interfaces (usually related
to educational applications). But even in these cases the central focus is on the
results of the calculations and not on the interaction with other kind of (software
or human) agents.

The situation is, in a sense, similar in the area of interoperability among sym-
bolic computation systems (including here both computer algebra systems and
proof assistants). The emphasis has been put in the universality of the mid-
dleware (see, for instance, [5]). Even if important advances have been achieved,
severe problems have appeared, too, such as difficulties in reusing previous pro-
posals and the final obstacle of the speculative existence of a definitive mathe-
matical interlingua. The irruption of XML technologies (and, in our context, of
MathML [2] and OpenMath [4]) has allowed standard knowledge management,

� Partially supported by Comunidad Autónoma de La Rioja, project Colabora2007/16,
and Ministerio de Educación y Ciencia, project MTM2006-06513.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 446–461, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Mediated Access to Symbolic Computation Systems 447

but they are located at the infrastructure level, depending always on higher-
level abstraction devices to put together different systems. Interestingly enough,
the initiative SAGE [28] producing an integrated environment seems to have no
use for XML standards, intercommunication being supported by ad-hoc SAGE
mechanisms.

In summary, in the symbolic computation area, we are always looking for more
powerful systems (with more computation capacities or with more general ex-
pressiveness). However, it is the case that our systems became so powerful, that
we can lose some interesting kinds of users or interactions. We have encountered
this situation when designing and developing the TutorMates project [16]. Tu-
torMates is aimed at linking an educational front-end with the Maxima system
[26]. Since the final users were students (and teachers) at the high school level
it was clear from the beginning of the project that Maxima should be weakened
in a sense, in order to make its outputs meaningful for non mathematics-trained
users. This approach is now transferred to the field of symbolic computation in
Algebraic Topology, where the Kenzo system [12] provides a complete set of cal-
culation tools, which can be considered difficult to use by a non-Common Lisp
trained user (typically, an Algebraic Topology student, teacher or researcher).
The key concept is that of mediated access by means of an intermediary layer
aimed at providing an intelligent middleware between a user interface and the
kernel Kenzo system.

The paper is organized as follows. In the next section antecedents are pre-
sented, reporting on the Kenzo and the TutorMates systems. Section 3 gives
some insights on methodological and architectural issues, both in the devel-
opment of the client interface and in the general organization of the software
systems involved. The central part of the paper can be found in Section 4, where
the basics on the intermediary layer are explained. The concrete state of our
project to interface with Kenzo is the aim of Section 5. The paper ends with two
sections devoted to open problems and conclusions, and finally the bibliography.

2 Antecedents

Kenzo [12] is a Common Lisp system, devoted to Symbolic Computation in Al-
gebraic Topology. It was developed in 1997 under the direction of F. Sergeraert,
and has been successful, in the sense that it has been capable of computing ho-
mology groups unreachable by any other means. Having detected accessibility
and usability as two weak points in Kenzo (implying difficulties in increasing the
number of users of the system), several proposals have been studied to interop-
erate with Kenzo (since the original user interface is Common Lisp itself, the
search for other ways of interaction seems mandatory to extend the use of the
system). The most elaborated approach was reported in [1]. There, we devised
a remote access to Kenzo, using CORBA [25] technology. An XML extension of
MathML played a role there too, but just to give genericity to the connection
(avoiding the definition in the CORBA Interface Description Language [25] of a
different specification for each Kenzo class and datatype). There was no intention
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of taking profit from the semantics possibilities of MathML. Being useful, this
approach ended in a prototype, and its enhancement and maintenance were dif-
ficult, due both to the low level characteristics of CORBA and to the pretentious
aspiration of providing full access to Kenzo functionalities. We could classify the
work of [1] in the same line as [5] or in the initiative IAMC and its correspond-
ing workshop series (see, for instance, [7,29]), where the emphasis is put into
powerful and generic access to symbolic computation engines.

On the contrary, the TutorMates project [16] had, from its very beginning, a
much more modest objective. The idea was to give access just to a part of Max-
ima, but guiding the user in his interaction. Since the purpose of TutorMates was
educational (high school level), it was clear that many outputs given by Maxima
were unsuitable for the final users, depending on the degree and the topic learned
in each TutorMates session. To give just an example, an imaginary solution to a
quadratic equation has meaning only in certain courses. In this way, a mediated
access to Maxima was designed. The central concept is an intermediary layer
that communicates, by means of an extension of XML, between the graphical
user interface (Java based) and Maxima. The extension of MathML allows us to
encode a profile for the interaction. A profile is composed of a role (student or
teacher), a level and a lesson. In the case of a teacher (supposed to be preparing
material for his students), full access to Maxima outputs is given, but a warning
indicates to him whether the answer would be suitable inside the level and the
lesson encoded in the profile. In this way, the intermediary layer allows the pro-
grammer to get an intelligent interaction, different from the “dummy” remote
access obtained in [1].

Now, our objective is to emulate this TutorMates organization in the Kenzo
context. The final users could be researchers in Algebraic Topology or students of
this discipline. The problems to be tackled in the intermediary layer are different
from those of TutorMates. The methodological and architectural aspects of this
new product are presented in the following section.

3 Methodological and Architectural Issues

We have tried to guide our development with already proven methodologies
and patterns. In the case of the design of the interaction with the user in our
Graphical User Interface (GUI) front-end, we have followed the guidelines of
the Noesis method [11,8]. In particular, our development has been supported by
some Noesis models for control and navigation in user interfaces (see an example
in Figure 1).

Even if graphical specification mechanisms have well-known problems (related
with their scalability), Noesis models provide modular tools, allowing the designer
to control the complexity due to the size of graphics. These models enable an
exhaustive traversal of the interfaces, detecting errors, disconnected areas, lack
of homogeneity, etc.

With respect to the general organization of the software system, we have
been inspired by the Microkernel architectural pattern [3]. This pattern gives
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Fig. 1. A fragment of the control and navigation graph

a global view as a platform, in terminology of [3], which implements a virtual
machine with applications running on top of it, namely a framework (in the
same terminology). A high level perspective of the system as a whole is shown
in Figure 2. Kenzo itself, wrapped with an interface based on XML-RPC [30],
is acting as internal server. The microkernel acting as intermediary layer is
based on an XML processor, allowing both a link with the standard XML-
RPC used by Allegro Common Lisp [14], and intelligent processing. The view
of the external server is again based on an XML processor, with a higher level
of abstraction (since mathematical knowledge is included there) which can map
expressions from and to the microkernel, and which is decorated with an adapter
(the Proxy pattern, [15], is used to implement the adapter), establishing the final
connection with the client, a Graphical User Interface in our case. A simplified
version of the Microkernel pattern (without the external server) would suffice
if our objective was to build a GUI for Kenzo. But we also pursue extending
Kenzo by wrapping it in a framework which will link any possible client (other
GUIs, web applications, web services, . . .) with the Kenzo system. In this sense,
our GUI is a client of our framework. The framework should provide each client
with all necessary mathematical knowledge.

Which aspects of the intelligent processing must be dealt with in the external
server or in the microkernel, is still controversial (in the current version, as we
will explain later, we have managed the questions related to the input specifica-
tions in the external server and the most important mediations are done at the
microkernel level). Moreover, the convenience of a double level of processing is
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Fig. 2. Microkernel architecture of the system

clear, being based on, at least, two reasons. On the one hand the more concrete
one (microkernel) is to be linked to Kenzo (via XML-RPC) and the more abstract
one is aimed at being exported and imported, rendered by (extended) MathML
engines, and so on. On the other hand, this double level of abstraction reflects
the different languages in which the knowledge has to be expressed. The external
one is near to Algebraic Topology, and it should offer a communication based on
the concepts of this discipline to the final clients (this gives something as a type
system; see Section 4). The internal part must communicate with Kenzo, and
therefore a low level register of each session must be maintained (for instance,
the unique identifier referring to each object, in order to avoid recalculations).
There, a procedural language based on Kenzo conventions is needed.

As explained before, XML gives us the universal tool to transmit information
along the different layers of the system. Besides the XML-RPC mechanism
used by Allegro Common Lisp, two more XML formats (defined by means of
XML schemas) are to be considered. The first one (used in the microkernel) is
diagrammatically described in Figure 3, by using the Noesis method [11] again.
The second format is used in the external server. Figure 4 shows a diagram
corresponding to a part of this schema. The structure of this XML schema allows
us to represent some knowledge on the process (for instance, it differentiates
constructors from other kinds of algebraic manipulations); other more complex
mathematical knowledge cannot be represented in the syntax of the schema (see
Section 4). It is foreseen to adapt this XML schema to an MathML3 specifica-
tion [2], by using the concept of MathML3 content dictionary (inspired by the
corresponding OpenMath concept [4]). In Figure 5, we show how a Kenzo com-
mand (namely, the calculation of the third group of homology of the sphere of
dimension 3) will be transformed from the user command on the GUI (top part
of the figure) to the final XML-RPC format (the conventional Lisp call is shown,
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Fig. 3. Description of the Internal XML Kenzo Schema

Fig. 4. Description of the External XML Kenzo Schema

too; however our internal server, Kenzo wrapped with an XML-RPC interface,
will execute the command directly).

In the next section the behavior pursued with this architecture is explained.

4 Knowledge Management in the Intermediary Layer

The system as a whole will improve Kenzo including the following “intelligent”
enhancements:

1. Controlling the input specifications on constructors.
2. Avoiding some operations on objects which will raise errors.
3. Chaining methods in order to provide the user with new tools.
4. Determining if a calculation can be done in a local computer or should be

derived to a remote server.

The first aspect is attained, in an integrated manner, inside the Graphical
User Interface. The three last ones are dealt with in the intermediary layer. From
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Fig. 5. Transforming XML representations

another point of view, the first three items are already partially programmed in
the current version of the system; the last one is further work.

In order to explain the differences between points 1 and 2, it is worth noting
that in Kenzo there are two kinds of data. The first one is representing spaces
in Algebraic Topology (by spaces we mean here, any data structure having both
behavior and elements belonging to it, such as a simplicial set, a simplicial group,
a chain complex, and so on). The second kind of data is used to represent ele-
ments of the spaces. Thus, in a typical session with Kenzo, the users proceed in
two steps: first, constructing some spaces, and second, applying some operators
on the (elements of the) spaces previously built. This organization in two steps
has been described by using Algebraic Specification methods in [17] and [10],
for instance. Therefore, the first item in the enumeration refers to the inputs
for the constructors of spaces, and the second item refers to some operations on
concrete spaces. As we are going to explain, the first kind of control is naturally
achieved in the GUI client (from the mathematical knowledge provided by the
external XML format) but the second one, which needs some expert knowledge
management, is better dealt with in the intermediary layer.

Kenzo is, in its pure mode, an untyped system (or rather, a dynamically
typed system), inheriting its power and its weakness from Common Lisp. Thus,
for instance, in Kenzo a user could apply a constructor to an object without
satisfying its input specification. For instance, the method constructing the clas-
sifying space of a simplicial group could be called on a simplicial set without a
group structure over it. Then, at runtime, Common Lisp would raise an error
informing the user of this restriction. This is shown in the following fragment of
a Kenzo session:
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> (loop-space (sphere 4))
[K6 Simplicial-Group]
> (classifying-space (loop-space (sphere 4)))
[K18 Simplicial-Set]
> (sphere 4)
[K1 Simplicial-Set]
> (classifying-space (sphere 4))
;; Error: No method in generic function CLASSIFYING-SPACE
;; is applicable to arguments: [K1 Simplicial-Set]

With the first command, namely (loop-space (sphere 4)), we construct a
simplicial group. Then, in the next step we are verifying that a simplicial group
has a classifying space (which is, in general, just a simplicial set). In the third
command, we check that the sphere of dimension 4 is constructed in Kenzo
as a simplicial set. Thus, when in the last command we try to construct the
classifying space of a simplicial set, the Common Lisp Object System (CLOS)
raises an error.

In the current version of our system this kind of error is controlled, because
the inputs for the operations between spaces can be only selected among the
spaces with suitable characteristics. This same idea could be used to improve
the reliability of internal processes, by controlling the outputs of the interme-
diary computations. The equivalence in our system of the example introduced
before in pure Kenzo, is shown in Figure 6, where it can be seen that for the clas-
sifying operation just the spaces which are simplicial groups are candidates to
be selected. This enriches Kenzo with something as a (semantical) type system
which has been defined into the external XML schema.

With respect to the second item in the previous enumeration, the most impor-
tant example in the current version is the management of the connection degree
of spaces. Kenzo allows the user to construct, for instance, the loop space of a
non simply connected space (as the sphere of dimension 1). The result is a sim-
plicial set on which some operations (for instance, to compute the set of faces of
a simplex) can be achieved without any problems. On the contrary, theoretical
results ensure that the homology groups are not of finite type, and then they
cannot be computed. In pure Kenzo, the user could ask for a homology group of
such a space, catching a runtime error.

In our current version of the system, the intermediary layer includes a small
expert system, computing, in a symbolic way (that is to say, working with the
description of the spaces, and not with the spaces themselves considered as
Common Lisp objects), the connection degree of a space. The set of rules gives
a connection degree to each space builder (for instance, a sphere of dimension n
has connection degree n− 1), and then a rule for each operation on spaces. For
instance, loop space decreases the connection degree of its input in one unity,
suspension increases it in one unity, a cartesian product has, as connection
degree, the minimum of the connection degrees of its factors, and so on. From the
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Fig. 6. Screen-shot of Kenzo Interface with a session related to classifying spaces

design point of view, a Decorator pattern [15] was used, decorating each space
with an annotation of its connection degree in the intermediary layer. Then,
when a computation (of a homology group, for instance) is demanded by a user,
the intermediary layer monitors if the connection degree allows the transferring
of the command to the Kenzo kernel, or a warning must be sent through the
external server to the user.

As for item three, the best example is that of the computation of homotopy
groups. In pure Kenzo, there is no final function allowing the user to compute
them. Instead, there is a number of complex algorithms, allowing a user to
chain them to get some homotopy groups. Our current user interface has an
option to compute homotopy groups. The intermediary layer is in charge of
chaining the different algorithms present in Kenzo to reach the final objective.
In addition, Kenzo, in its current version, has limited capabilities to compute
homotopy groups (depending on the homology of Eilenberg-Mac Lane spaces
that are only partially implemented in Kenzo), so the chaining of algorithms
cannot be universal (in this case, a possibility would be to wire the enhancement
in the GUI, by means of the external XML schema, as in the case of item
1). Thus, the intermediary layer should process the call for a homotopy group,
making some consultations to the Kenzo kernel (computing some intermediary
homology groups, for instance) before deciding if the computation is possible or
not (this is still work in progress).

Regarding point four, our system can be distributed, at present, in two man-
ners: (a) as a stand-alone application, with a heavy client containing the Kenzo
kernel to be run in the local host computer; (b) as a light client, containing just
the user interface, and every operation and computation is done in a remote
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server. The second mode has obvious drawbacks related to the reliability of In-
ternet connections, to the overhead of management where several concurrent
users are allowed, etc. But option (a) is not fully satisfactory since interesting
Kenzo computations used to be very time and space consuming (requiring, typ-
ically, several days of CPU time on powerful computing servers). Thus a mixed
strategy should be convenient: the intermediary layer should decide if a concrete
calculation can be done in the local computer or it deserves to be sent to a
specialized remote server. (In this second case, as it is not sensible to maintain
open an Internet connection for several days waiting for the end of a compu-
tation, some reactive mechanism should be implemented, allowing the client to
disconnect and to be subscribed in some way, to the process of computation
in the remote server). The difficulties of this point have two sources: (1) the
knowledge here is not based on well-known theorems (as was the case in our dis-
cussion on the connection degree in the second item of the enumeration), since
it is context-dependent (for instance, it depends on the computational power
of a local computer), and so it should be based on heuristics ; (2) the technical
problems to obtain an optimal performance are complicated, due, in particular,
to the necessity of maintaining a shared state between two different computers.
These technical aspects are briefly commented in the Open Problems section.

With respect to the kind of heuristic knowledge to be managed into the in-
termediary level, there is some part of it that could be considered obvious: for
instance, to ask for an homology group Hn(X) where the degree n is big, should
be considered harder than if n is small, and then one could wonder about a limit
for n before sending the computation to a remote server. Nevertheless, this sim-
plistic view is to be moderated by some expert knowledge: it is the case that in
some kinds of spaces, difficulties decrease when the degree increases. The heuris-
tics should consider each operation individually. For instance, it is true that in
the computation of homology groups of iterated loop spaces, difficulties increase
with the degree of iteration. Another measure of complexity is related to the
number of times a computation needs to call the Eilenberg-Zilber algorithm (see
[12]), where a double exponential complexity bound is reached. Further research
is needed to exploit the expert knowledge in the area suitably, in order to devise
a systematic heuristic approach to this problem.

5 State of the Project

The work done up to now has allowed us to reach one of the objectives: code
reuse. This reusing has two aspects:

1. We have left the Kenzo kernel untouched. This was a goal since the team
developing the framework and the user interface, and the team maintaining
and extending Kenzo are different. Therefore, it is convenient to keep both
systems as uncoupled as possible.

2. The intermediary level has been used, without changes, both in the stand-
alone local version and in the light client with remote server version. A
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first partial prototype, moving the view towards a web application client,
seems to confirm that the degree of abstraction and genericity reached in
our architecture (note that our framework includes several XML formats,
each one with different abstraction level) is suitable.

In Figure 7, a screen-shot of our GUI is presented. The main toolbar is or-
ganized into 8 menus: File, Edit, Builders, Operations, Complexes, Computing,
Spaces and Help. The rest of the screen is separated into three areas. On the
left side, a list with the spaces already constructed during the current session
is maintained. When a space is selected (the one denoted by SS 1 in Figure 7),
a description of it is displayed in the right area. At the bottom of the screen,
one finds a history description of the current session, which can be cleared or
saved into a file. It is important to understand that a history file is different
from a session file. The first one is just a plain text description of the commands
selected by the user. The second kind of file is described in the next paragraph.

Fig. 7. Screen-shot of Kenzo Interface with an example of session

In the current version the File menu has just three options: Exit, Save Session
and Load Session. When saving a session, a file is produced containing an XML
description of the commands executed by the user in that session. In Figure 8 an
example of session file can be found; this session file corresponds to the following
Kenzo interaction:

> (sphere 3)
[K1 Simplicial-Set]
> (moore 4 2)
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[K6 Simplicial-Set]
> (loop-space (sphere 3) 2)
[K23 Simplicial-Group]
> (crts-prdc (sphere 3) (moore 4 2))
[K35 Simplicial-Set]

These session files are stored using the external XML schema described in Section
3 (see Figure 4). Thus, the session files are exportable and, besides, an extensible
stylesheet language (XSL) has been devised to render the sessions in standard
displays (using mathematical notation).

Fig. 8. Sample of a session file

The constructors of the spaces we have referred to the first point of Section
4, are collected by the menus Builders, Operations and Complexes. More specif-
ically, the menu Builders includes the main ways of constructing new spaces
from scratch in Kenzo as options: spheres, Moore spaces, Eilenberg-Mac Lane
spaces, and so on (see [18] for Algebraic Topology notions). The menu Opera-
tions refers to the ways where Kenzo allows the construction of new simplicial
spaces (see [23] for simplicial notions) from other ones: loop spaces, classifying
spaces, Cartesian products, suspensions, etc. The menu Complexes is similar,
but related to chain complexes instead of simplicial objects (here, for instance,
the natural product is the tensorial product instead of the cartesian one).

The menus Computing and Spaces collect all the operations on concrete spaces
(instead of constructing spaces, as in the previous cases). Both of them provide
their items with all the necessary “intelligence” in order to avoid raising runtime
errors. In Computing we concentrate on calculations over a space. We offer to
compute homology groups, to compute the same but with explicit generators
and to compute homotopy groups; in this last case we find the third kind of
enhancement. In menu Spaces currently we only offer the possibility of showing
the structure of a simplicial object (this is only applicable to effective, finite type
spaces).

To consider a first complete (beta) version of the system, it is necessary to
complete the questions already mentioned in the text relating to finishing the
external XML schema definition and to controlling the cases in which homotopy
groups can be effectively computed by Kenzo.
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Moreover, we have planned to develop two more tools:

1. In the menu Builders, there is a still inactivated slot called Build-finite-ss,
aimed at emulating, in our environment, the facility present in pure Kenzo
which allows the user to construct step-by-step, in an interactive manner, a
finite simplicial set (checking, in each step, whether faces are glued together
in a coherent way). To this aim, we are thinking of designing a graphical
tool.

2. In the menu Spaces, it is necessary to include the possibility of operating
locally inside a selected space. For instance, given a simplex to compute one
of its faces or given two simplexes in the same dimension we can compute
its product in a selected simplicial group. One of the difficulties here is
related to designing an editor for elements (data of the second kind, using
the terminology in Section 4), which can be given as inputs to the local
operations. This will give content to the Edit menu, in the main toolbar,
which is now inactivated.

These extra functionalities are rather a matter of standard programming, and
it is foreseen that no research problem will appear when tackling them. The
questions discussed in the next section, on the contrary, could imply important
challenges.

6 Open Problems

The most important issue to be tackled in the next versions of the system is
how organizing the decision on when (and how) a calculation should be derived
to a remote server. To understand the nature of the problem it is necessary
to consider that there are two kinds of state in our context. Starting from the
most simple, the state of a session can be described by means of the spaces
that have been constructed so far. Then, to encode (and recover) such a state,
a session file as explained in the previous section would be enough: an XML
document containing a sequence of calls to different constructors and methods.
In this case, when a calculation is considered too hard to be computed in a
local computer, the whole session file could be transmitted to the remote server.
There, executing step-by-step the session file, the program will re-find the same
state of the local session, proceeding to compute the desired result and sending it
to the client. Of course, as mentioned previously, some kind of subscription tool
should be enabled, in such a way that the client could stop its running, and then
to receive the result (or a notification indicating the result is already available
somewhere), after some time (perhaps some days or weeks of computation on
the remote server).

Even if this approach can be considered reasonable as a first step, it has turned
out to be too simplistic to deal with the richness of Kenzo. A space in Kenzo
consists in a number of methods describing its behavior (explaining, for instance,
how to compute the faces of its elements). Due to the high complexity of the
algorithms involved in Kenzo, a strategy of memoization has been systematically
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implemented. As a consequence, the state of a space evolves after it has been used
in a computation (of a homology group, for instance). Thus, the time needed
to compute, let us say, a face, depends on the concrete states of every space
involved in the calculation (in the more explicit case, to re-calculate a face on a
space could be negligible in time, even if in the first occasion this was very time
consuming). This notion of state of a space is transmitted to the notion of state
of a session. We could speak of two states of a session: the one shallow evoked
before, that is essentially static and can be recovered by simply re-executing
the top-level constructor calls; and the other deep state which is dynamic and
depends on the computations performed on the spaces.

To analyse the consequences of this Kenzo organization, we should play with
some scenarios. Imagine during a local session a very time consuming calculation
appears; then we could simply send the shallow state of the session to the remote
server, because even if some intermediary calculations have been stored in local
memory, they can be re-computed in the remote server (finally, if they are cheap
enough to be computed on the local computer, the price of re-computing them in
the powerful remote server would be low). Once the calculation is remotely fin-
ished, there is no possibility of sending back the deep state of the remote session
to the local computer because, usually, the memory used will exhaust the space
in the local computer. Thus, it could seem that to transmit the shallow state
would be enough. But, in this picture, we are losing the very reason why Kenzo
uses the memoization (dynamic programming) style. Indeed, if after obtaining a
difficult result (by means of the remote server) we resume the local session and
ask for another related difficult calculation, then the remote server will initialize
a new session from scratch, being obligated to re-calculate every previous difficult
result, perhaps making the continuation of the session impossible. Therefore, in
order to take advantages of all the possibilities Kenzo is offering now on powerful
scientific servers, we are faced with some kind of state sharing among different
computers (the local computers and the server), a problem known as difficult in
the field of distributed object-oriented programming.

In short, even if our initial goal was not related to distributed computing, we
found that in order to enable our intermediary layer as an intelligent assistant
with respect to the classification of calculations as simple (runnable on a stan-
dard local computer) or complicated (to be sent to a remote server), we should
solve problems of distributed systems. Thus, a larger perspective is necessary,
and we are working with the Broker architectural pattern, see [3], in order to find
a natural organization of our intermediary layer. From the symbolic computa-
tion literature, we will look for inspiration in different projects and frameworks
such as the MathWeb software bus [22], its successor the MathServe Framework
[21], the MoNET project [24,6,9] or the MathBroker [19] and MathBroker II [20]
projects, as well as in other works as [27], [31] or [13].

7 Conclusions

The current state of our project can be considered solid enough to be a good
point of continuation for all our objectives. We have showed how some intelligent
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guidance can be achieved in the field of Computational Algebraic Topology,
without using standard Artificial Intelligence techniques. The idea is to build
an intermediary layer, giving a mediated access to an already-written symbolic
computation system. Putting together both Kenzo itself and the intermediary
layer, we have produced a framework which is able to be connected to different
clients (desktop GUIs, web applications and so on). In addition, with this frame-
work, several profiles of interaction can be considered. In general, this can imply
a restriction of the full capabilities of the kernel system, but the interaction with
it is easier and enriched, contributing to the objective of increasing the number
of users of the system.
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Abstract. Computer generated proofs of interesting mathematical the-
orems are usually too large and full of trivial structural information,
and hence hard to understand for humans. Techniques to extract spe-
cific essential information from these proofs are needed. In this paper we
describe an algorithm to extract Herbrand sequents from proofs writ-
ten in Gentzen’s sequent calculus LK for classical first-order logic. The
extracted Herbrand sequent summarizes the creative information of the
formal proof, which lies in the instantiations chosen for the quantifiers,
and can be used to facilitate its analysis by humans. Furthermore, we
also demonstrate the usage of the algorithm in the analysis of a proof of
the equivalence of two different definitions for the mathematical concept
of lattice, obtained with the proof transformation system CERES.

1 Introduction

Within mathematical knowledge management, the problem of analyzing and un-
derstanding computer generated proofs plays a fundamental role and its impor-
tance can be expected to grow, as automated and interactive deduction methods
and computer processing power improve. Such computer generated proofs are
formal, in the sense that they strictly follow axioms and rules of inference of
formal logical calculi, as Hilbert calculi, natural deduction calculi or sequent
calculi. The main advantages of formal proofs are:

– Formal proofs, when viewed and studied as a model and ideal for informal
mathematical proofs, allow meta-mathematical investigations into the foun-
dations of Mathematics.

– The correctness of formal proofs can be easily checked, by verifying whether
the formal axioms and rules of the calculus were correctly employed.

– Formal proofs for formalized statements (formulas) can be constructed by
computers executing automated or interactive theorem provers [15].

– Automated proof transformations can be employed to obtain new formal
proofs from previously existing ones [2,3]. Subsequently, the analysis and
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interpretation of the new formal proofs might lead to the discovery of new
informal proofs of the original theorems containing interesting mathematical
arguments.

However, formal representations of real mathematical proofs or computer gen-
erated proofs of real mathematical problems usually have some drawbacks that
make them difficult to be analyzed and understood by mathematicians. Firstly,
the size of a formal proof is usually huge ([1]), which makes it hard to be visual-
ized as a whole. Secondly, many of its individual inferences are only structural,
necessary not to carry some essential idea about the proof, but only to satisfy
the formalities of the calculus. Thirdly, inference rules of proof calculi not always
correspond easily to natural inferences in informal proofs. Together these draw-
backs imply that, given a formal proof, it is not easy for humans to understand
its essential idea, because it is hidden in a large data structure of repetitive,
bureaucratic and non-intuitive formalities. Therefore there is a need for sum-
marization of formal proofs or for extraction of its hidden crucial information,
whenever these proofs are intended to be analyzed and understood by humans.
This need has become especially clear to us during the development and use of
our automated proof transformation system CERES1 for the cut-elimination of
real mathematical proofs in classical first-order logic [2].

This paper describes one possible technique that helps to overcome these
difficulties in the particular case of first-order logic. Our technique relies on
the concept of Herbrand sequent, a generalization of Herbrand disjunction [10],
which can be used to summarize the creative content of first-order formal proofs
[13], which lies in the instantiations chosen for quantified variables. Although we
use sequent calculi, the idea described here could be adapted to other calculi,
since it relies on a general property of first-order logic, as stated by Herbrand’s
theorem, and not on specific features of particular calculi.

After describing the technique, we demonstrate its use with the analysis of a
computer generated proof of the equivalence of two different lattice definitions.

2 The Sequent Calculus LKDe

Our formal proofs are written in an extension of Gentzen’s sequent calculus LK,
which is called LKDe and has the following additional features:

– Arbitrary but pre-defined atomic formulas are allowed in the axioms. This
has the advantage that typical mathematical axioms (e.g. symmetry and
reflexivity of equality, associativity of addition, . . . ) do not need to be carried
along all the formal proof in the antecedents of the sequents, but can instead
appear simply as non-tautological axiom sequents in the leaf nodes of the
proof. On the other hand, Gentzen’s cut-elimination theorem [8] holds in
this calculus only in a modified form, since atomic cuts are not necessarily
eliminable.

1 CERES Website: http://www.logic.at/ceres
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– There are additional rules for equality and mathematical definitions, in order
to make the calculus more comfortable to use in the formalization of real
mathematical proofs, which use equality and definitions of concepts very
often.

A partial description of the sequent calculus LKDe follows. A full description
can be found in [3]. Additionally, by LKe we denote the LKDe calculus without
definition rules.

Definition 1 (Sequent). A sequent is a pair A1, . . . , An � C1, . . . , Cm of se-
quences of first-order logic formulas. The first sequence, A1, . . . , An, is the an-
tecedent of the sequent and the second sequence, C1, . . . , Cm, is the consequent
of the sequent. We use the symbols Γ ,Π,Λ and Δ, possibly with subscripts, to
denote sequences of formulas in the antecedent and consequent of sequents.

1. The Axioms: We allow arbitrary atomic sequents as axioms. The logical
axioms are of the form A � A for A atomic. For equality we use the reflexivity
axiom scheme � t = t for all terms t.

2. Propositional rules: LKDe has rules for the propositional connectives: ∨,
→, ¬ and ∧, as exemplified below:

Γ � Δ, A Π � Λ, B

Γ, Π � Δ, Λ, A ∧B
∧ : r

A, Γ � Δ

A ∧ B, Γ � Δ
∧ : l1

A, Γ � Δ

B ∧A, Γ � Δ
∧ : l2

3. First-order rules: LKDe has rules for the existential (∃) and universal (∀)
quantifiers.

A{x ← t}, Γ � Δ

(∀x)A,Γ � Δ
∀ : l

Γ � Δ, A{x ← α}
Γ � Δ, (∀x)A

∀ : r

A{x ← α}, Γ � Δ

(∃x)A,Γ � Δ
∃ : l

Γ � Δ, A{x ← t}
Γ � Δ, (∃x)A

∃ : r

The ∀ : r and ∃ : l rules must satisfy the eigenvariable condition: the variable
α must not occur in Γ nor in Δ nor in A. Quantifiers introduced by them
are called strong quantifiers. For the ∀ : l and the ∃ : r rules the term t must
not contain a variable that is bound in A. Quantifiers introduced by them
are called weak quantifiers.

4. Equality rules:

Γ � Δ, s = t Π � Λ, A[s]Ξ

Γ, Π � Δ, Λ, A[t]Ξ
= (Ξ) : r1

Γ � Δ, s = t A[s]Ξ , Π � Λ

A[t]Ξ , Γ, Π � Δ, Λ
=(Ξ) : l1

Γ � Δ, t = s Π � Λ, A[s]Ξ

Γ, Π � Δ, Λ, A[t]Ξ
=(Ξ) : r2

Γ � Δ, t = s A[s]Ξ , Π � Λ

A[t]Ξ , Γ, Π � Δ, Λ
= (Ξ) : l2

where Ξ is a set of positions in A and s and t do not contain variables that
are bound in A.

5. Structural rules: weakening, contraction and permutation, as well as the
following cut-rule:

Γ � Δ, A A, Π � Λ

Γ, Π � Δ, Λ
cut
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6. Definition rules: They correspond directly to the extension principle in
predicate logic and introduce new predicate and function symbols as ab-
breviations for formulas and terms. Let A be a first-order formula with the
free variables x1, . . . , xk ,denoted by A(x1, . . . , xk), and P be a new k-ary
predicate symbol (corresponding to the formula A). Then the rules are:

A(t1, . . . , tk), Γ � Δ

P (t1, . . . , tk), Γ � Δ
d : l

Γ � Δ, A(t1, . . . , tk)

Γ � Δ, P (t1, . . . , tk)
d : r

for arbitrary sequences of terms t1, . . . , tk. Definition introduction is a simple
and very powerful tool in mathematical practice, allowing the easy introduc-
tion of important concepts and notations (e.g. groups, lattices, . . . ) by the
introduction of new symbols.

Definition 2 (Skolemization). The skolemization of a sequent removes all its
strong-quantifiers and substitutes the corresponding variables by skolem-terms
in a validity preserving way (i.e. the skolemized sequent is valid iff the original
sequent is valid). LKDe-proofs can also be skolemized, as described in [4], essen-
tially by skolemizing the end-sequent and recursively propagating the skolemiza-
tion to the corresponding formulas in the premises above. Such skolemized proofs
can still contain strong quantifiers that go into cuts.

Remark 1. There are many algorithms for skolemization. They can be classified
as either prenex, which firstly transform formulas and sequents into a prenex
form (i.e. with all quantifiers occurring in the beginning of formulas), or struc-
tural, which leave weak quantifiers in their places. It has been shown that prenex
skolemization can result in a non-elementary increase in the Herbrand Com-
plexity of an LK-Proof [4]. Moreover, prenexification impairs the readability
of formulas. Therefore we use structural skolemization algorithms [5], whenever
skolemization is necessary or desirable for our proof transformations.

Example 1. The sequent

(∀x)((∃z)P (x,z) ∧ (∀y)(P (x, y)→ P (x, f(y)))) � (∀x)(∃y)P (x,f2(y))

can be structurally skolemized to

(∀x)(P (x, g(x))∧ (∀y)(P (x, y)→ P (x, f(y)))) � (∃y)P (a, f2(y))

where a is a skolem-constant and g is a skolem-function.

3 The CERES Method

Our motivation to devise and implement Herbrand sequent extraction algorithms
was the need to analyze and understand the result of proof transformations
performed automatically by the CERES-system, among which the main one is
Cut-Elimination by Resolution: the CERES method [6].

The method transforms any LKDe-proof with cuts into an atomic-cut nor-
mal form (ACNF) containing no non-atomic cuts. The remaining atomic cuts
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are, generally, non-eliminable, because LKDe admits non-tautological axiom
sequents.

The ACNF is mathematically interesting, because cut-elimination in formal
proofs corresponds to the elimination of lemmas in informal proofs. Hence the
ACNF corresponds to an informal mathematical proof that is analytic in the
sense that it does not use auxiliary notions that are not already explicit in the
axioms or in the theorem itself.

The transformation to ACNF via Cut-Elimination by Resolution is done ac-
cording to the following steps:

1. Construct the (always unsatisfiable [6]) characteristic clause set of the orig-
inal proof by collecting, joining and merging sets of clauses defined by the
ancestors of cut-formulas in the axioms of the proof.

2. Obtain from the characteristic clause set a grounded resolution refutation,
which can be seen as an LKe-proof by exploiting the fact that the resolution
rule is essentially a cut-rule restricted to atomic cut-formulas only.

3. For each clause of the characteristic clause set, construct a projection of the
original proof with respect to the clause.

4. Construct the ACNF by plugging the projections into the leaves of the
grounded resolution refutation tree (seen as an LKe-proof) and by adjusting
the refutation accordingly. Since the projections do not contain cuts and the
refutation contains atomic cuts only, the resulting LKDe proof will indeed
be in atomic-cut normal form.

This method has been continuously improved and extended. The characteris-
tic clause sets evolved to proof profiles, which are invariant under rule permuta-
tions and other simple transformations of proofs [12,11]. The resolution and the
sequent calculi are now being extended to restricted second-order logics.

The CERES-system automates the method described above, using either Otter2

or Prover93 as resolution-based first-order theorem provers to obtain the refuta-
tion of the characteristic clause set. However, current fully-automated resolution-
based theorem provers have difficulties to refute some characteristic clause sets
produced by CERES [1]. On the other hand, interactive theorem provers are
typically not resolution-based. Therefore, we are currently developing our own
flexible, interactive and resolution-based first-order theorem prover.

4 An Algorithm for Herbrand Sequent Extraction

Herbrand sequents are a generalization of Herbrand disjunctions [10] for the
sequent calculus LK.

Definition 3 (Herbrand Sequents of a Sequent). Let s be a closed sequent
containing weak quantifiers only. We denote by s0 the sequent s after removal
of all its quantifiers. Any propositionally valid sequent in which the antecedent
2 Otter Website: http://www-unix.mcs.anl.gov/AR/otter/
3 Prover9 Website: http://www.cs.unm.edu/ mccune/prover9/
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(respectively, consequent) formulas are instances (i.e. their free variables are
possibly instantiated by other terms) of the antecedent (respectively, consequent)
formulas of s0 is called a Herbrand sequent of s.

Let s be an arbitrary sequent and s′ a skolemization of s. Any Herbrand se-
quent of s′ is a Herbrand sequent of s.

Remark 2. In Gentzen’s original sequent calculus LK, Herbrand sequents are
tautologies. In a sequent calculus with arbitrary atomic axioms, as LKDe, a
valid sequent is only valid with respect to the axioms used in the proof. Hence,
the Herbrand sequent will not be a tautology, but only propositionally valid with
respect to the axioms used in the proof.

Remark 3. It would be possible to define a Herbrand sequent of an arbitrary
sequent s without using skolemization. This could be achieved by imposing
eigenvariable conditions on the instantiations chosen for the originally strongly
quantified variables. However, the use of skolemization is advantageous, because
skolem symbols store information about how the originally strongly quantified
variables depend on the weakly quantified variables. This information would
be lost if, instead of skolem terms, we had eigenvariables. Hence, skolemization
improves readability of the Herbrand sequent.

Example 2 (Herbrand Sequents). Consider the valid sequent

(∀x)((∃z)P (x,z) ∧ (∀y)(P (x, y)→ P (x, f(y)))) � (∀x)(∃y)P (x,f2(y))

The following sequents are some of its Herbrand sequents, where g is a skolem-
function and a is a skolem-constant produced by skolemization:

1. P (a, g(a)) ∧ (P (a, g(a))→ P (a, f(g(a)))),
P (a, g(a)) ∧ (P (a, f(g(a)))→ P (a, f2(g(a)))) � P (a, f2(g(a)))

2. P (g(a), g2(a)) ∧ (P (g(a), g2(a))→ P (g(a), f(g2(a)))),
P (g(a), g2(a)) ∧ (P (g(a), f(g2(a)))→ P (g(a), f2(g2(a)))) � P (g(a), f2(g2(a)))

3. P (b, g(b))∧ (P (b, c) → P (a, f(c))), P (a, g(a))∧ (P (a, g(a))→ P (a, f(g(a)))),
P (a, g(a)) ∧ (P (a, f(g(a)))→ P (a, f2(g(a)))) � P (a, f2(g(a))), P (a, f2(d))

The first two Herbrand sequents above are minimal in the number of formulas,
while the third is not.

Apart from its usage as an analysis tool, as described in this paper, the concept
of Herbrand disjunction (or Herbrand sequent) also plays an important role in
the foundations of Logic and Mathematics, as expressed by Herbrand’s Theorem.
A concise historical and mathematical discussion of Herbrand’s Theorem, as well
as its relation to Gödel’s Completeness Theorem, can be found in [7].

Theorem 1 (Herbrand’s Theorem). A sequent s is valid if and only if there
exists a Herbrand sequent of s.

Proof. Originally in [10], stated for Herbrand disjunctions. Also in [7] with more
modern proof calculi.
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Herbrand’s theorem guarantees that we can always obtain a Herbrand sequent
from a correct proof, a possibility that was realized and exploited by Gentzen in
his Mid-Sequent Theorem for sequents consisting of prenex formulas only.

Theorem 2 (Mid-Sequent Theorem). Let ϕ be a prenex LK-Proof without
non-atomic cuts. Then there is an LK-Proof ϕ′ of the same end-sequent such
that no quantifier rule occurs above propositional and cut rules.

Proof. The original proof, for Gentzen’s original sequent calculus LK and cut-
free LK-Proofs, defines rule permutations that shift quantifier rules downwards.
The iterated application of the permutations eventually reduces the original
proof to a normal form fulfilling the mid-sequent property [8]. The rule permu-
tations can be easily extended to proofs containing atomic cuts.

Remark 4. ϕ′ has a mid-sequent, located between its lower first-order part and
its upper propositional part. This mid-sequent is a Herbrand sequent of the
end-sequent of ϕ, after skolemization of ϕ′.

However, Gentzen’s algorithm has one strong limitation: it is applicable only to
proofs with end-sequents in prenex form. Although we could transform the end-
sequents and the proofs to prenex form, this would compromise the readability
of the formulas and require additional computational effort. Prenexification is
therefore not desirable in our context, and hence, to overcome this and other
limitations in Gentzen’s algorithm, we developed three other algorithms. In this
paper we describe one of them in detail [4], which was chosen to be implemented
within CERES. The other two are described in [17,16]. Another different approach,
based on functional interpretation and aiming at proofs with cuts, can be found
in [9].

4.1 Extraction Via Transformation to Quantifier-Rule-Free LKeA

The algorithm requires a temporary transformation to an extension of the calcu-
lus LKe, called LKeA and obtained by the addition of the following two rules,
which allow the formation of array formulas 〈A1, . . . , An〉 from arbitrary formu-
las Aj , j ∈ {1, 2, . . . , n}. They will be used to replace some contraction rules in
the original proof.

Δ, A1, Γ1, . . . , An, Γn, Π � Λ

Δ, 〈A1, . . . , An〉, Γ1, . . . , Γn, Π � Λ
〈〉 : l

Λ � Δ, A1, Γ1, . . . , An, Γn, Π

Λ � Δ, 〈A1, . . . , An〉, Γ1, . . . , Γn, Π
〈〉 : r

To extract a Herbrand sequent of the end-sequent of a skolemized LKDe-
proof ϕ such that cuts do not contain quantifiers (nor defined formulas that
contain quantifiers), the algorithm executes two transformations:

1. Ψ (definition 4): produces a quantifier-rule-free LKeA-proof where quantified
formulas are replaced by array-formulas containing their instances.
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2. Φ (definition 5): transforms the end-sequent of the resulting LKeA-proof
into an ordinary sequent containing no array-formulas.

Remark 5. The restriction to proofs such that cuts do not contain quantifiers
(nor defined formulas that contain quantifiers) is necessary because otherwise the
cut-formulas in each branch of the cut would be substituted by different arrays
and the corresponding cut inference in the LKeA-proof would be incorrect.
The extracted sequent would not be propositionally valid, and therefore not a
Herbrand sequent. This restriction is not a problem, because we analyze proofs
in atomic-cut normal form produced by the CERES method.

Let ϕ be a skolemized LKDe-Proof such that cuts do not contain quantifiers
(nor defined formulas that contain quantifiers). A Herbrand sequent of the end-
sequent of ϕ can be obtained by computing:

H(ϕ) .= Φ(end-sequent(Ψ(ϕ)))

Definition 4 (Ψ : Transformation to Quantifier-rule-free LKeA). The
mapping Ψ transforms a skolemized LKDe-Proof ϕ such that cuts do not contain
quantifiers (nor defined formulas that contain quantifiers) into a quantifier-rule-
free LKeA-Proof according to the inductive definition below:

Base Case, Initial Axiom Sequents:

Ψ(A1, . . . , An � B1, . . . , Bm)
.
= A1, . . . , An � B1, . . . , Bm

Proofs Ending with Quantifier-Rules:

Ψ

⎛

⎝
[ϕ′]

A(t), Γ � Δ

(∀x)A(x), Γ � Δ
∀ : l

⎞

⎠ .
= Ψ(ϕ′)

Ψ

⎛

⎝
[ϕ′]

Γ � Δ, A(t)

Γ � Δ, (∃x)A(x)
∃ : r

⎞

⎠ .
= Ψ(ϕ′)

Proofs Ending with Definition-Rules:

Ψ

⎛

⎝
[ϕ′]

A(t1, . . . , tn), Γ � Δ

P (t1, . . . , tn), Γ � Δ
d : l

⎞

⎠ .
= Ψ(ϕ′)

Ψ

⎛

⎝
[ϕ′]

Γ � Δ, A(t1, . . . , tn)

Γ � Δ, P (t1, . . . , tn)
d : r

⎞

⎠ .
= Ψ(ϕ′)

Proofs Ending with Contractions:

Ψ

⎛

⎝
[ϕ′]

Γ, A, Λ1 . . . , A, Λn � Δ

Γ, A, Λ1, . . . , Λn � Δ
c : l

⎞

⎠ .
=

[Ψ(ϕ′)]
Γ ∗, A1, Λ

∗
1 , . . . , An, Λ∗

n � Δ∗

Γ ∗, 〈A1, . . . , An〉, Λ∗
1, . . . , Λ

∗
n � Δ∗ 〈〉 : l
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Ψ

⎛

⎝
[ϕ′]

Γ � Δ, A, Λ1 . . . , A, Λn

Γ � Δ, A, Λ1, . . . , Λn
c : r

⎞

⎠ .
=

[Ψ(ϕ′)]
Γ ∗ � Δ∗, A1, Λ

∗
1, . . . , An, Λ∗

n

Γ ∗ � Δ∗, 〈A1, . . . , An〉, Λ∗
1 , . . . , Λ∗

n

〈〉 : r

Proofs Ending with other Unary Rules:

Ψ

⎛

⎝
[ϕ′]

A, Γ � Δ

A ∧B, Γ � Δ
∧ : l1

⎞

⎠ .
=

[Ψ(ϕ′)]
A∗, Γ ∗ � Δ∗

A∗ ∧B∗, Γ ∗ � Δ∗ ∧ : l1

For other unary rules, Ψ is defined analogously to the case for ∧ : l1 above.

Proofs Ending with other Binary Rules:

Ψ

⎛

⎝
[ϕ′

1]
A, Γ1 � Δ1

[ϕ′
2]

B, Γ2 � Δ2

A ∨B, Γ1, Γ2 � Δ1, Δ2
∨ : l

⎞

⎠ .
=

[Ψ(ϕ′
1)]

A∗, Γ ∗
1 � Δ∗

1

[Ψ(ϕ′
2)]

B∗, Γ ∗
2 � Δ∗

2

A∗ ∨ B∗, Γ ∗
1 , Γ ∗

2 � Δ∗
1, Δ

∗
2
∨ : l

For other binary rules, Ψ is defined analogously to the case for ∨ : l above. Addition-
ally, the introduction of array-formulas requires an adaption of the positions in equality
rules, so that replacements are executed in all formulas of the array.

Note that the definition of Ψ is sound, as for every proof ϕ and for all formula
occurrences F in the end-sequent of ϕ, we can associate a corresponding formula
occurrence F ∗ in the end-sequent of Ψ(ϕ).

The transformation Ψ essentially omits quantifier-rules and definition-rules.
Then it replaces contractions by array formations, because the auxiliary formu-
las of contractions will not be generally equal to each other anymore after the
omission of quantifier-rules.

Example 3. Let ϕ be the following LKDe-proof:

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) � P (s2(0))
∀ : l

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x)) � P (s2(0))
∀ : l

P (0),∀x(P (x)→ P (s(x)), (∀x)(P (x)→ P (s(x)) � P (s2(0))
c : l

P (0),∀x(P (x)→ P (s(x)) � P (s2(0))
∧ : l

P (0) ∧ (∀x)(P (x)→ P (s(x)) � P (s2(0))

Let ϕc be the subproof of ϕ with the contraction as the last rule. Firstly we
compute Ψ(ϕc):

[Ψ(ϕ′)]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) � P (s2(0))
〈〉 : l

P (0),
〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
� P (s2(0))

The instances of the auxiliary occurrences of the contraction, P (0) → P (s(0))
and P (s(0)) → P (s2(0)), are not equal to each other anymore. A contraction
is therefore generally not possible, and this is why Ψ replaces contractions by
array formations. The array-formulas store all the instances that would have
been contracted.
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We proceed with the computation of Ψ(ϕ):

[Ψ(ϕ′)]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) � P (s2(0))
〈〉 : l

P (0),
〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
� P (s2(0))

∧ : l
P (0) ∧

〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
� P (s2(0))

Definition 5 (Φ: Expansion of Array Formulas). The mapping Φ trans-
forms array formulas and sequents into first-order logic formulas and sequents.
In other words, Φ eliminates 〈. . .〉 and can be defined inductively by:

1. If A is a first-order logic formula, then Φ(A) .= A
2. Φ(〈A1, . . . , An〉) .= Φ(A1), . . . , Φ(An)
3. If Φ(A) = A1, . . . , An, then Φ(¬A) .= ¬A1, . . . ,¬An

4. If Φ(A) = A1, . . . , An and Φ(B) = B1, . . . , Bm, then Φ(A ◦ B) .= A1 ◦
B1, . . . , A1 ◦Bm, . . . , An ◦B1, . . . , An ◦Bm, for ◦ ∈ {∧,∨,→}

5. Φ(A1, . . . , An � B1, . . . , Bm) .= Φ(A1), . . . , Φ(An) � Φ(B1), . . . , Φ(Bm)

Φ has not been defined over formulas that contain array formulas in the scope
of quantifiers. This is not necessary, because Ψ transforms LKDe-proofs into
LKeA-proofs where this situation never occurs.

Example 4. Let Ψ(ϕ) be the LKeA-Proof in Example 3. Then, its end-sequent,
after mapping array formulas to sequences of formulas, is:

Φ(end-sequent(Ψ(ϕ))) =

(
P (0) ∧ (P (0)→ P (s(0))),

P (0) ∧ (P (s(0))→ P (s2(0)))

)

� P (s2(0))

Theorem 3 (Soundness). Let ϕ be a skolemized LKDe-Proof in atomic cut
normal form. Then the sequent H(ϕ), extracted by the algorithm defined above,
is a Herbrand sequent of the end-sequent of ϕ.

Proof. A proof (fully available in [17]) can be sketched in the following way. We
have to show that:

1. The formulas of H(ϕ) are substitution instances of the formulas of the end-
sequent of ϕ without their quantifiers.

2. H(ϕ) is a valid sequent.

Item 1 follows clearly from the definitions of Φ and Ψ , because Ψ substitutes
quantified sub-formulas of the end-sequent by array-formulas containing only
substitution instances of the respective sub-formulas, and Φ expands the the
array-formulas maintaining the structure of the formulas where they are located.

Item 2 can be proved by devising a transformation ΦP that maps the in-
termediary LKDeA-proof Ψ(ϕ) to an LKDe-proof ΦP (Ψ(ϕ)) by substituting
〈〉 : l rules by sequences of ∧ : l rules and 〈〉 : r rules by sequences of ∨ : r
rules. Ψ(ϕ) does not contain quantifier rules. Therefore ΦP (Ψ(ϕ)) is essentially
a propositional LKe-proof, in which the arrays of the end-sequent were substi-
tuted by either nested ∧ connectives or nested ∨ connectives. The end-sequent
of ΦP (Ψ(ϕ)) can be shown, by structural induction, to be logically equivalent to
the extracted sequent Φ(end-sequent(Ψ(ϕ))). Therefore the extracted sequent is
valid.
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5 Analysis of the Lattice Proof

In this section, the usefulness of a Herbrand sequent for understanding a formal
proof will be demonstrated on a simple example from lattice theory . There are
several different, but equivalent, definitions of lattice. Usually, the equivalence of
several statements is shown by proving a cycle of implications. While reducing
the size of the proof, this practice has the drawback of not providing direct proofs
between the statements. Cut-elimination can be used to automatically generate
a direct proof between any two of the equivalent statements. In this section, we
will demonstrate how to apply cut-elimination with the CERES-system followed
by Herbrand sequent extraction for this purpose.

5.1 The Lattice Proof

Definitions 7, 8 and 10 list different sets of properties that a 3-tuple 〈L,∩,∪〉 or
a partially ordered set 〈S,≤〉 must have in order to be considered a lattice.

Definition 6 (Semi-Lattice). A semi-lattice is a set L together with an oper-
ation ◦ which is

– commutative: (∀x)(∀y) x ◦ y = y ◦ x,
– associative: (∀x)(∀y)(∀z) (x ◦ y) ◦ z = x ◦ (y ◦ z) and
– idempotent: (∀x) x ◦ x = x.

Definition 7 (Lattice: definition 1). A L1-lattice is a set L together with
operations ∩ (meet) and ∪ (join) s.t. both 〈L,∩〉 and 〈L,∪〉 are semi-lattices
and ∩ and ∪ are “inverse” in the sense that

(∀x)(∀y) x ∩ y = x ↔ x ∪ y = y.

Definition 8 (Lattice: definition 2). A L2-lattice is a set L together with
operations ∩ and ∪ s.t. both 〈L,∩〉 and 〈L,∪〉 are semi-lattices and the absorption
laws

(∀x)(∀y) (x ∩ y) ∪ x = x and (∀x)(∀y) (x ∪ y) ∩ x = x

hold.

Definition 9 (Partial Order). A binary relation ≤ on a set S is called partial
order if it is

– reflexive (R): (∀x) x ≤ x,
– anti-symmetric (AS): (∀x)(∀y) ((x ≤ y ∧ y ≤ x) → x = y) and
– transitive (T): (∀x)(∀y)(∀z) ((x ≤ y ∧ y ≤ z) → x ≤ z).

Definition 10 (Lattice: definition 3). A L3-lattice is a partially ordered set
〈S,≤〉 s.t. for each two elements of S there exist

– greatest lower bound (GLB) ∩, i.e.

(∀x)(∀y)(x ∩ y ≤ x ∧ x ∩ y ≤ y ∧ (∀z)((z ≤ x ∧ z ≤ y) → z ≤ x ∩ y)),
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– least upper bound (LUB) ∪, i.e.

(∀x)(∀y)(x ≤ x ∪ y ∧ y ≤ x ∪ y ∧ (∀z)((x ≤ z ∧ y ≤ z) → x ∪ y ≤ z)).

The above three definitions of lattice are equivalent. We will formalize the
following proofs of L1 → L3 and L3 → L2 in order to extract a direct proof of
L1 → L2, i.e. one which does not use the notion of partial order.

Proposition 1. L1-lattices are L3-lattices.

Proof. Given 〈L,∩,∪〉, define x ≤ y as x ∩ y = x. By idempotence of ∩, ≤
is reflexive. Anti-symmetry of ≤ follows from commutativity of ∩ as (x ∩ y =
x ∧ y ∩ x = y) → x = y. To see that ≤ is transitive, assume (a) x ∩ y = x and
(b) y ∩ z = y to derive

x ∩ z =(a) (x ∩ y) ∩ z =(assoc.) x ∩ (y ∩ z) =(b) x ∩ y =(a) x

So ≤ is a partial order on L.
By associativity, commutativity and idempotence of ∩, we have (x∩ y)∩ x =

x ∩ y, i.e. x ∩ y ≤ x and similarly x ∩ y ≤ y, so ∩ is a lower bound for ≤. To
see that ∩ is also the greatest lower bound, assume there is a z with z ≤ x and
z ≤ y, i.e. z ∩ x = z and z ∩ y = z. Then, by combining these two equations,
(z ∩ y) ∩ x = z, and therefore, z ≤ x ∩ y.

To show that ∪ is an upper bound, derive from the axioms of semi-lattices that
x∪ (x∪ y) = x∪ y which, by the “inverse” condition of L1 gives x∩ (x∪ y) = x,
i.e. x ≤ x∪y and similarly for y ≤ x∪y. Now assume there is a z with x ≤ z and
y ≤ z, i.e. x∩z = x and y∩z = z and by the “inverse” condition of L1: x∪z = z
and y ∪ z = z. From these two equations and the axioms of semi-lattices, derive
(x∪ y)∪ z = z which, by the “inverse” condition of L1, gives (x∪ y)∩ z = x∪ y,
i.e. x ∪ y ≤ z.

Proposition 2. L3-lattices are L2-lattices.

Proof. We want to show the absorption law (x∩y)∪x = x. That x ≤ (x∩y)∪x
follows immediately from ∪ being an upper bound. But x∩ y ≤ x because ∩ is a
lower bound. Furthermore also x ≤ x, so x is an upper bound of x∩y and x. But
as ∪ is the lowest upper bound, we have (x∩y)∪x ≤ x which by anti-symmetry
of ≤ proves (x∩y)∪x = x. For proving the other absorption law (x∪y)∩x = x,
proceed symmetrically.

By concatenation, the above two proofs show that all L1-lattices are L2-lattices.
However, this proof is not a direct one, it uses the notion of partially ordered
set which occurs neither in L1 nor in L2. By cut-elimination we will generate a
direct formal proof automatically.

5.2 Overview of the Analysis

The analysis of the lattice proof followed the steps below:
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1. Formalization of the lattice proof in the sequent calculus LKDe: semi-auto-
mated by HLK4. Firstly the proof was written in the language HandyLK,
which can be seen as an intermediary language between informal mathemat-
ics and LKDe. Subsequently, HLK compiled it to LKDe.

2. Cut-Elimination of the formalized lattice proof : fully automated by CERES,
employing the cut-elimination procedure based on resolution, sketched in
Section 3, to obtain an LKDe-proof in Atomic-Cut Normal Form (ACNF),
i.e. a proof in which cut-formulas are atoms.

3. Extraction of the Herbrand sequent of the ACNF : fully automated by CERES,
employing the algorithm described in Section 4.

4. Use of the Herbrand sequent to interpret and understand the ACNF, in order
to obtain a new direct informal proof.

5.3 Formalization of the Lattice Proof

The full formal proof has 260 rules (214 rules, if structural rules (except cut)
are not counted). It is too large to be displayed here. Below we show only a part
of it, which is close to the end-sequent and depicts the main structure of the
proof, based on the cut-rule with L3 as the cut-formula. This cut divides the
proof into two subproofs corresponding to propositions 1 and 2. The full proofs,
conveniently viewable with ProofTool5, are available in the website of CERES.

[pR]
� R

[pAS]
� AS

[pT ]
� T

� AS ∧ T
∧ : r

� R ∧ (AS ∧ T )
∧ : r

� POSET
d : r

[pGLB ] [pLUB ]

L1 � GLB ∧ LUB
∧ : r

L1 � POSET ∧ (GLB ∧ LUB)
∧ : r

L1 � L3
d : r

[p2
3]

L3 � L2
L1 � L2

cut

– L1 ≡ ∀x∀y((x ∩ y) = x ⊃ (x ∪ y) = y) ∧ ((x ∪ y) = y ⊃ (x ∩ y) = x)
– L2 ≡ ∀x∀y(x ∩ y) ∪ x = x ∧ ∀x∀y(x ∪ y) ∩ x = x
– L3 ≡ POSET ∧ (GLB ∧ LUB)
– pAS , pT , pR are proofs of, respectively, anti-symmetry (AS), transitivity (T)

and reflexivity (R) of ≤ from the axioms of semi-lattices.
– p2

3 is a proof that L3-lattices are L2-lattices, from the axioms of semi-lattices.

5.4 Cut-Elimination of the Lattice Proof

Prior to cut-elimination, the formalized proof is skolemized by CERES, resulting in
a proof of the skolemized end-sequent L1 � (s1∩s2)∪s1 = s1∧(s3∪s4)∩s3 = s3,
where s1, s2, s3 and s4 are skolem constants for the strongly quantified variables
of L2. Then CERES eliminates cuts, producing a proof in atomic-cut normal (also
available for visualization with ProofTool in the website of CERES).
4 HLK Website: http://www.logic.at/hlk/
5 ProofTool Website: http://www.logic.at/prooftool/
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The ACNF is still quite large (214 rules; 72 rules not counting structural rules
(except cut)). It is interesting to note, however, that the ACNF is smaller than
the original proof in this case, even though in the worst case cut-elimination can
produce a non-elementary increase in the size of proofs [14].

Although the ACNF of the Lattice proof is still large (214 rules), the ex-
tracted Herbrand sequent contains only 6 formulas, as shown in Subsection 5.5.
Therefore, the Herbrand sequent significantly reduces the amount of information
that has to be analyzed in order to extract the direct mathematical argument
contained in the ACNF.

5.5 Herbrand Sequent Extraction of the ACNF of the Lattice Proof

The Herbrand sequent of the ACNF, after set-normalization and removal of re-
maining sub-formulas introduced by weakening (or as the non-auxiliary formula
of ∨ and ∧ rules) in the ACNF, is:

(A1) s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2)→ s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1,
(A2) s1 ∩ s1 = s1 → s1 ∪ s1 = s1,
(A3) (s1 ∩ s2) ∩ s1 = s1 ∩ s2

︸ ︷︷ ︸
(A3i)

→ (s1 ∩ s2) ∪ s1 = s1,

(A4) (s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s1 = s1 ∪ (s1 ∩ s2),
(A5) s3 ∪ (s3 ∪ s4) = s3 ∪ s4

︸ ︷︷ ︸
(A5i)

→ s3 ∩ (s3 ∪ s4) = s3

(C1) � (s1 ∩ s2) ∪ s1 = s1
︸ ︷︷ ︸

(C1i)

∧ (s3 ∪ s4) ∩ s3 = s3
︸ ︷︷ ︸

(C1ii)

5.6 Construction of the Informal Proof

After extracting a Herbrand sequent from the ACNF, the next step is to con-
struct an informal, analytic proof of the theorem, based on the ACNF, but using
only the information about the variable instantiations contained in its extracted
Herbrand sequent. We want to stress that in the following, we are not performing
syntactic manipulations of formulas of first-order logic, but instead we use the
formulas from the Herbrand sequent of the ACNF as a guide to construct an
analytical mathematical proof.

Theorem 4. All L1-lattices 〈L,∩,∪〉 are L2-lattices.

Proof. As both lattice definitions have associativity, commutativity and idempo-
tence in common, it remains to show that the absorption laws hold for 〈L,∩,∪〉.
We notice that, as expected, these properties coincide with the conjunction (C1)
for arbitrary s1, . . . , s4 on the right hand side of the Herbrand sequent and so we
proceed by proving each conjunct for arbitrary s1, . . . , s4 ∈ L:

1. We notice that (A3i) + (A3) imply (C1i). So we prove these properties:
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(a) First we prove (A3i):

s1 ∩ s2 =(idem.) (s1 ∩ s1) ∩ s2 =(assoc.) s1 ∩ (s1 ∩ s2) =(comm.)

s1 ∩ (s2 ∩ s1) =(assoc.) (s1 ∩ s2) ∩ s1

(b) Assume (s1∩s2)∩s1 = s1∩s2. By definition of L1-lattices, (s1∩s2)∪s1 =
s1. Thus, we have proved (A3).

2. Again, we notice that (A5i) + (A5) + commutativity imply (C1ii) and use
this fact:
(a) s3 ∪ s4 =(idem.) (s3 ∪ s3) ∪ s4 =(assoc.) s3 ∪ (s3 ∪ s4). We have proved

(A5i).
(b) Assume s3∪(s3∪s4) = s3∪s4. By definition of L1-lattices, s3∩(s3∪s4) =

s3. This proves (A5).

So we have shown that for arbitrary s1, . . . , s4 ∈ L, we have (s1∩s2)∪s1 = s1
and (s3 ∪ s4) ∩ s3 = s3, which completes the proof.

Contrary to the proof in Section 5.1, we can now directly see the algebraic
construction used to prove the theorem. This information was hidden in the syn-
thetic argument that used the notion of partially ordered sets and was revealed
by cut-elimination.

This example shows that the Herbrand sequent indeed contains the essential
information of the ACNF, since an informal direct proof corresponding to the
ACNF could be constructed by analyzing the extracted Herbrand sequent only.

6 Conclusion

We have described a new algorithm for Herbrand sequent extraction, which is
better than Gentzen’s mid-sequent reduction because it can be applied to proofs
that are not in prenex form. Its use as a tool for the analysis of computer gen-
erated proofs was successfully demonstrated with a simple proof about lattices,
which was automatically transformed to atomic-cut normal form by the CERES
system. The Herbrand sequent significantly reduced the amount of information
that had to be analyzed in order to understand the atomic-cut normal form
produced by CERES:

Our algorithm still lacks support for definition rules, because they are removed
by the transformation to LKeA. We are planning to improve on this and to be
able to reinsert defined formulas in the extracted Herbrand sequent, in order to
further improve its readability.

The technique described here is not limited to sequent calculi, since it re-
lies on Herbrand’s theorem, which is applicable to first-order logic in general.
Many computer-generated proofs are obtained, for example, by automated the-
orem provers that do not work with sequent calculi, but with resolution calculi.
Such resolution proofs are usually even harder for humans to understand, and
therefore we are planning to extend the general idea behind Herbrand sequent
extraction to an algorithm applicable to resolution proofs as well. This could be
done by firstly translating a resolution refutation into a corresponding proof in
sequent calculus.
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Abstract. Diagrams have been used for centuries in the visualization of
mathematical concepts and to aid the exploration and formalization of
ideas. This is hardly surprising given the intuitive appeal of visual lan-
guages. Thus it seems very natural to establish how diagrams can play an
integral part of mathematical formalization and reasoning, giving them
the same status as the symbolic languages that they are used alongside.
Indeed, recently we have seen the emergence of diagrammatic reason-
ing systems that are defined with sufficient mathematical rigour to allow
them to be used as formal tools in their own right. Some of these systems
have been designed with particular application areas in mind, such as
number theory and real analysis, or formal logics. This paper focuses on
the use of diagrammatic logics to formalize mathematical theories with
the same level of rigour that is present in their corresponding predicate
logic axiomatizations. In particular, extensions to the constraint diagram
logic are proposed to make it more suitable for use in mathematics. This
extended logic is illustrated via the diagrammatic formalization of some
commonly occurring mathematical concepts. Subsequently, we demon-
strate its use in the proofs of some simple theorems.

1 Introduction

The demonstrable popularity of diagrammatic communication in mathematics
lies in the widespread use of diagrams to aid intuition and visualize concepts.
In all probability the pages of an arbitrarily chosen mathematics book will con-
tain illustrative diagrams; examples that emphasize the role of diagrams in-
clude [1,16,21]. Indeed, [7] argues “visual thinking in mathematics is rarely just
a superfluous aid; it usually has epistemological value, often as a means of dis-
covery.”

The prevalent usage of diagrams to illustrate mathematical concepts and their
role in discovery motivates the development of formal diagrammatic languages
that are suitable for writing definitions, formulating theorems and constructing
proofs. After all, the fact that there are benefits of using diagrams yields the
obvious question as to whether diagrams can be used on an equal footing with
symbolic notations. Recent results show that this is the case, with many dif-
ferent diagrammatic reasoning systems emerging [3,11,12,19,20,24,27,28]. In the
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Fig. 1. Logics based on Euler diagrams

context of metric space analysis it has been shown that a diagrammatic logic
specifically designed with this topic in mind allows students to outperform others
who are taught using a more typical algebraic formalism [29], for example.

Most closely related to the contribution made in this paper is the development
of diagrammatic logics based on Euler diagrams which are often mistakenly
called Venn diagrams1. The Euler diagram d1, figure 1, asserts that A and B
are disjoint and C is a subset of A. The relative placement of the curves give,
for free, that C is disjoint from B. This ‘free ride’ is one of the areas where
diagrams are thought to be superior to symbolic languages [18]. This example
also illustrates the concept of ‘well-matchedness’ [8] since the syntactic properties
that the diagram uses to make assertions mirror those at the semantic level: the
containment of one curve by another mirrors the interpretation that the enclosed
curve, C, represents a subset of the set represented by the enclosing curve, A.

The expressiveness of Euler diagrams can be increased by incorporating tra-
ditional logical connectives, such as ∧ and ∨, and the negation operator, ¬;
this results in a language equivalent to monadic first order logic (MFOL) [25].
Also equivalent to MFOL is Shin’s Venn-II language [19], which is based on
Venn diagrams and uses shading to assert emptiness and ⊗ symbols to assert
non-emptiness. In Venn-II, the only connective used is ∨. The use of shading to
assert emptiness dates back to Venn; in Euler diagrams, emptiness can be as-
serted by the absence of a region. The intuitiveness of, and advantages of using,
shading are discussed in [23].

Various extensions to Euler diagrams have been proposed, such as including
syntax to represent named individuals [27], or assert the existence of arbitrary
finite numbers of elements [11]. The Euler diagram d2 in figure 1 is augmented
with shading which asserts the emptiness of the set A − C and the Euler/Venn
diagram d3 tells us, in addition, that fred is in the set C and bob is not in the
set A. The spider diagram d4 asserts the existence of two elements in the set C
and at least one in the set A; this is done through the use of the trees which
are called existential spiders. The shading in d3 is used to place an upper bound
on the cardinality of A, limiting it to two: in the set represented by a shaded
region, all elements must be denoted by spiders.

These extensions to Euler diagrams result in monadic languages. Constraint
diagrams [13] further extend Euler diagrams and use universal spiders, which are
represented by asterisks, to make universally quantified statements and arrows

1 In a Venn diagram, all intersections between the closed curves must be present; this
condition is removed in the case of Euler diagrams.
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Fig. 2. Two constraint diagrams

to talk about properties of binary relations. Constraint diagrams were designed
for formal software specification and, in figure 2, d1 asserts that every member
(using the asterisk) can only borrow films that are in the collections of the stores
they have joined; this might be a typical constraint one may place on a film rental
system.

Euler diagrams are frequently used in the teaching of set theory to illustrate
concepts as they are introduced. More broadly, Euler diagrams are widely used
in mathematics. As a consequence, logics that build on Euler diagrams may well
enhance the teaching of logic and appeal to mathematicians. In this paper, we
investigate the use of constraint diagrams in mathematics, as opposed to software
engineering. Since constraint diagrams form a logic in their own right, it seems
natural to ask whether they are capable of axiomatizing common theories.

Section 2 gives a brief introduction to constraint diagrams and some recent
generalizations of them. We discuss the use of these generalized constraint di-
agrams to formalize mathematical concepts and subsequently present some ex-
tensions to the syntax that allow mathematical expressions to be more easily
formulated. As two simple case studies, we define axioms for the theory of par-
tially ordered sets and equivalence relations in our extended notation, presented
in section 3. Further we illustrate the use of our extended constraint diagrams
through the proof of some theorems in section 4. Section 5 presents further
extensions, allowing a variety of second order statements to be made.

2 Constraint Diagrams

The constraint diagram language was introduced specifically for software speci-
fication [13] and in this section we overview its syntax and semantics; a formal
treatment can be found in [4].

The so-called unitary diagram d1 in figure 2 contains three given contours ;
these are closed curves labelled Member, Film and Store respectively. In a uni-
tary diagram, no two distinct contours have the same label. Given contours
represent sets, and their spatial relationships make statements about contain-
ment and disjointness; in d1, figure 2, the given contours assert that Member,
Film and Store are pairwise disjoint because no pair of contours overlap. Also in
the diagram are three derived contours which assert the existence of a set; these
are the closed curves that are not labelled and happen to be targeted by arrows.
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The asterisk is called a universal spider and its habitat is the region in which
it is placed. In other words, its habitat is the region inside the contour labelled
Member. In this example, this region is also called the domain of the universal
spider; the domain is the region which represents the set that the spider quantifies
over, in this case the set Member. It is not necessarily the case that the habitat
equals the domain; see [4] for full details. A region is a set of zones. A zone is
a maximal set of points in the plane, described as being inside certain contours
(possibly no contours) and outside the rest of the contours. The diagram d1 in
figure 2 contains seven zones, three of which are inside Films.

In a unitary diagram, every arrow is sourced on, and targets, a spider or a
contour (given or derived). Every arrow has a label and, unlike given contours,
two (or more) arrows can have the same label. The actual set represented by a
derived contour is determined by any targeting arrow(s). In d1, figure 2, given
any member, m, the derived contour inside the given contour labelled Store
represents the image of the relation joined when the domain is restricted to m
(the derived contour represents the set of stores that m has joined).

Unitary diagrams can also contain existential spiders and shading and, strictly
speaking, every unitary diagram is augmented with a reading tree [4] (the dia-
gram d1 in figure 2 does not have a reading tree). Existential spiders are denoted
by trees whose nodes are round and filled (as opposed to asterisks in the universal
case) and they represent the existence of elements. For example in d2, figure 2,
there are two existential spiders; these are the dots labelled y and z and each of
these two spiders has a single zone habitat. By contrast, the universal spider la-
belled x has a two zone habitat and quantifies over the set English∪OtherLang.

Shading allows us to place upper bounds on set cardinality: in a shaded region,
all of the elements are represented by spiders. So, in figure 2, d2 expresses that the
set Film− (English∪OtherLang) is empty since there are no spiders placed in
the corresponding shaded zone. The meaning of the diagram is determined by the
order in which the quantifiers (i.e. the spiders) are interpreted. The reading tree
on the right of the diagram tells us the order in which to read the quantifiers, thus
resolving ambiguities: we start with the universal spider and then we can read
the existential spiders in either order and independently of each other. Moreover,
the reading tree also provides quantifier scoping and bracketing information (the
details can be found in [4]). The diagram expresses:

1. Film, Title and Actor are pairwise disjoint,
2. English and OtherLang form a partition of Film and
3. every film, x, has a unique name which is a title and, in addition, x has at

least one lead actor.

The first two statements capture the information provided by the underlying
Euler diagram. The uniqueness of each film’s name is asserted by the use of an
existential spider (giving the existence of the name) and shading (which asserts
that the only elements in the set of names are represented by spiders); likewise,
the existence of a lead actor is denoted by the use of a spider but there can
be more than one lead actor due to the absence of shading. Some examples of
specifications using constraint diagrams can be seen in [10,14].
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Fig. 3. Diagrams as partialorders

There are some issues regarding the well-matchedness of constraint diagrams
to their meaning [22,23] although much of the time they work well for their
intended application area; see [9] for discussions on well-matchedness in the con-
text of software engineering diagrams. Specifically for constraint diagrams [22,23]
reports on some improvements to the notation that allow well-matched state-
ments to be made more often, presenting generalized constraint diagrams which
do not require reading trees. Figure 3 illustrates the type of structure that might
be present in a generalized constraint diagram, where the boxes are unitary dia-
grams. In general, each non-root unitary diagram in such a partial order is a copy
of its immediate ancestor with some changes to the syntax. Arrows connect the
boxes, with those of the form −↗

↘ indicating conjunction whereas those of the
form −|→→ indicate disjunction. As a trivial change, in this paper we simply use
juxtaposition for ∧ and write OR to indicate a disjunction. Bounding boxes are
used for brackets. A key difference between generalized constraint diagrams and
constraint diagrams augmented with reading trees is the way in which quantifi-
cation works: in augmented constraint diagrams, quantification scopes only over
parts of the unitary diagram in which it occurs but with generalized diagrams,
the scope is, informally, the unitary diagram, d, in which it occurs and all of the
ancestors of d.

There is a simple generalized constraint diagram in figure 4. The first (root)
unitary diagram contains syntax which expresses

∀x ∈ Member {x}.canBorrow ⊆ Film

where {x}.canBorrow denotes the image of the relation canBorrow when the
domain is restricted to {x}. The second rectangle includes additional syntax,
expressing that every element of {x}.canBorrow is available to x.

However, this generalized version of constraint diagrams was designed with
software specification in mind. When attempting to use the notation for defining
mathematical concepts further modifications are beneficial.

availableTo *

FilmMember canBorrow

*

FilmMember canBorrow

*

Fig. 4. A generalized constraint diagram
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*

R

b* *a**a*

R

Fig. 5. Formalizing the symmetric property with generalized constraint diagrams

3 Formalizing Mathematical Concepts

In mathematics, we often wish to talk about properties of relations in a global
sense, making assertions such as ‘R is an equivalence relation’ or ‘the relation S
is a total order’. Frequently, such assertions do not require us to assert the dis-
tinctness of elements and require us to leave open the possibility that an element
may be related to itself. In these types of constructions constraint diagrams can
become cluttered. In this section, we take an example based approach to demon-
strating some improvements to generalized constraint diagrams that make them
more amenable to use in mathematics.

A formalization of the relationR being symmetric using generalized constraint
diagrams can be seen in figure 5, which is not particularly intuitive or visually
clear. In part, this is because one must construct the set of elements to which a
is related in some unitary diagram in which a appears, but taking care not to
specify whether a is in that set; the lefthand diagram constructs the image of a,
namely a.R, which is then used in the middle diagram but there is a requirement
on the user to recall the contour with greater weight is a.R.

Constraint diagrams are very good at making strong statements and, in the
context of object-oriented modelling this does not necessarily lead to visually
cluttered diagrams. For example, associations (binary relations) often hold be-
tween disjoint classes (sets) of objects. This means that one often wants to talk
about distinct objects, rather than having to worry about not specifying distinct-
ness, or is able to assume that an element in the domain of a binary relation is
not related to itself (since binary relations are often irreflexive).

Our first extension to the generalized constraint diagram syntax is to allow
arrows to connect components placed in different unitary diagrams, allowing the
images of relations to be constructed where we wish to make some statement
about that image, rather than necessarily in the unitary diagram where the arrow
source occurs. To illustrate, the diagram in figure 6 asserts that R is symmetric in
a much more elegant manner than the generalized constraint diagram in figure 5.
The left-hand diagram includes just a universal spider, allowing us to say ‘for
all a’. The arrow sourced on this spider targets a derived contour in the middle

a* *
R a*

Rb

Fig. 6. The relation R is symmetric
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a*
R b

Fig. 7. Everything is related to something

diagram; this derived contour represents the set of elements to which a is related.
Then, placing a universal spider, b, inside this derived contour allows us to talk
about each element to which a is related and, using a further arrow between
unitary parts, we assert that b is related to a (the right-hand diagram).

A particular feature of constraint diagrams is that arrows are used to construct
the set of objects to which something is related. By contrast, typical symbolic
constructs tend to just assert whether two elements are related. To illustrate,
∀x∃yR(x, y) says everything is related to something whereas a constraint dia-
gram would assert that everything is related to a non-empty set of elements as in
figure 7. Further useful extensions to the syntax are presented in the subsections
below, in the context of formalizing commonly occurring mathematical concepts.

3.1 Equivalence Relations

A fundamental concept in mathematics is that of an equivalence relation. We
have already shown how to formalize the symmetric property using our extended
constraint diagrams (figure 6). The reflexive and transitive properties are cap-
tured by the lefthand and righthand diagrams respectively in figure 8. For the
transitive property, the relevant diagram in figure 8 presents a formalization that
is rather different in style to the usual ∀x∀y∀z((R(x, y)∧R(y, z)) ⇒ R(x, z)). We
believe that these two different presentations provide alternative perspectives on
the same concept and could, if used in together, help students gain a deeper
appreciation of transitivity.

3.2 Ordered Sets

Another commonly occurring construct is that of a partially ordered set, that is a
set with a reflexive, antisymmetric and transitive relation on it. To formalize anti-
symmetry it is convenient to introduce the ⇒ operator into the language, as well
as allowing = to be written between syntactic elements when we wish to make
statements involving equality. We note that adding ⇒ and = to the syntax does
not increase the first-order expressive power of the language but it does facilitate

a* a*
R a*

R
R

Fig. 8. The relation R is reflexive and R is transitive
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a* *
R a*

R
�

b*
�

b

a* *
R a*

R
�b a = b

Fig. 9. Two approaches to formalizing antisymmetry

R

R OR

a* *b

b*

* a

a = b

a*

*b

Fig. 10. Trichotomy

ease of construction of certain statements. Two syntactically different ways of for-
malizing antisymmetry can be seen in figure 9, with the bottom diagram closely
resembling the typical symbolic definition ∀a∀b((R(a, b) ∧ R(b, a)) ⇒ a = b)
whereas the top diagram is closer in spirt to ∀a∀b(a �= b ⇒ (R(a, b) ⇒ ¬R(b, a))).
Thus, the diagrams in figures 8 and 9 axiomatize the theory of partially ordered
sets. Further, we may want to consider strict total orders which require us to
specify the trichotomy property. This is done in figure 10.

4 Diagrammatic Proofs

Below we show a very simple proof constructed using these mathematical con-
straint diagrams. It establishes that, for an equivalence relation, R, any two
unrelated elements are not related to any common element. This is part of the
assertion that R partitions the universal set into equivalence classes. The remain-
der of this assertion is captured by the statements of theorem 2, whose proof
nicely demonstrates that related elements have the same image, and theorem 3
which asserts that the image of R is U ; a first order predicate logic formalization
of this is given by the two sentences

∀a∀b(R(a, b) ⇒ ∀c(R(a, c) ⇔ R(b, c))) (∗)

and ∀a∃bR(b, a).
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Theorem 1. Let R be an equivalence relation. Then

a* b*
R

R

R

Proof. Assume for a contradiction that

a bR
c

R

R

Then, by symmetry,

a bR
c

R

R

b
R

By transitivity we obtain a contradiction,

a bR
c

R

R

b
R

R

Theorem 2. Let R be an equivalence relation. Then

a* b*
R R

R

Proof. Suppose that

a b
R R

Then, by transitivity,

a b
R R

R

By symmetry,

b a
R

By transitivity,

b a
R R

R

Hence
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a* b*
R R

R

Theorem 3. Let R be an equivalence relation. Then
R

Proof. Assume for a contradiction that
Rx

Then, by reflexivity,
Rx x

Hence we obtain a contradiction,
R

x

Some comments on the three presented proofs are in order. The proof of theo-
rem 1 is by contradiction, starting by assuming the negation of the result; note
that this does not require any explicit negation. It then builds up further infor-
mation by using the symmetric and transitive properties. The final diagram is
a contradiction: the second box indicates that a is not related to b, whereas the
final box asserts that a is related to b. The proof of theorem 2 uses free variables
(a concept not seen previously in constraint diagrams) visually represented by
the labels a and b without annotations (i.e. ∗ for ‘for all’ or • for ‘there exists’).
The proof builds diagrams using symmetry and transitivity, that the image of a
contains the image of b and also that the image of b contains the image of a and
hence that these two images are equal. Applying generalization completes the
last step in the proof. The proof of theorem 3 generates an obvious contradiction
using only reflexivity.

We believe that an area in which constraint diagrams excel is where statements
are being made about all of the elements related to some element; this is because
derived contours and arrows naturally allow us to construct such the set of all
such elements. Further desirable features include the presence of some implicit
implication (which is achieved in theorem 1 by placing b inside the derived
contour which represents the set over which it quantifies); implication is often
hard for those learning about logic to understand. Moreover, the use of arrows
and the placement of contours bring with them implicit universal quantification
which could also be an advantage. To draw contrast, theorem 2 contains two
universal spiders and makes no explicit use of ⇒ whereas (*) includes three
universal quantifiers and uses both ⇒ and ⇔.
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A f B

Fig. 11. Second order quantification: there exists a surjection

A
*

f B

* f
�

A f B

Fig. 12. Second order quantification: there exists an injection

A f BNOT

Fig. 13. There is not a surjection from A to B

A f B
*

Fig. 14. An alternative formalization

5 Second Order Constraint Diagrams

To be of wider applicability in mathematics, constraint diagrams need to be
able to make second order statements. For example, when stating the Schröder-
Bernstein theorem, one needs to assert the existence of functions with certain
properties. Thus, we generalized the use of derived contours, asterisks and dots to
make second-order quantification possible. To illustrate, the diagram in figure 11
asserts the existence of a surjection from A to B, by placing • next to the function
symbol f ; thus, f is acting as a second order variable. The diagram in figure 12
asserts the existence of a function from A to B that is injective. From these two
figures one can see how to formally state the Schröder-Bernstein theorem.

We might wish to specify that the cardinality of A is less than the cardinality
ofB. Formally, we could do this by asserting that there does not exist a surjection
from A to B, as in figure 13. Alternatively, we can avoid the use of the ‘negation
box’ and use second order universal quantification, as in figure 14.

To further demonstrate our extensions to the syntax, we consider defining a
well-order. We have already defined ordered sets, so we concentrate on the part
that specifies each non-empty subset has a least element. This can be seen in
figure 15, where we start off by talking about all subsets, Z, and assumes that
R is an order relation.
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Z

OR

R

* Z*
Z*

Fig. 15. Well-orders

6 Free Rides and Other Reasoning Advantages

It has been observed that one of the advantages diagrams have over symbolic
notations is related to reasoning: sometimes one must perform reasoning to make
a deduction in the symbolic world whereas the deduction may come ‘for free’
in the diagrammatic case. Euler diagrams have been well-studied in terms of
their free rides, such as with regard to subset relationships [18]. These free rides
also, therefore, apply to the images of relations under domain restrictions in
our generalized constraint diagrams. A further example of a free ride can be
seen in d1, figure 16, where the placement of an existential spider, a, inside A
and the relative positioning of A and B gives the information that the element
represented by a is not in B for free. This type of free ride is very similar to
those exhibited by Euler diagrams.

Other examples of free rides also occur. In figure 16, d2 asserts that x.f = A,
A.g = y and y.h = x for some elements x and y. We get, for free, that x.f.g = y,
A.g.h = x, y.h.f = A, x.f.g.h = x and so forth. In terms of reasoning from a
diagram interpretation perspective, we point the reader to [23] which discusses
features of constraint diagrams that are well-matched to meaning, highlighting
other areas where constraint diagrams might outperform symbolic notations.

In the context of proof writing, it is an interesting and open problem as to
what these diagrams buy you over symbolic proofs. This question will require
extensive investigation to establish. Before we can begin to answer this ques-
tion, further work is required to establish what constitutes a sound reasoning
step in our mathematical constraint diagrams. We strongly anticipate that di-
agrammatic proofs and symbolic proofs can provide different perspectives on
proof construction and neither approach is likely to be always better than the
other. This belief is not restricted to the type of diagrams that we have presented
here. It is an important challenge for the diagrammatic reasoning community to
identify the relative effectiveness of diagrammatic and symbolic proofs. Perhaps

A

d2

f

g
h

A

d1

a

B

Fig. 16. Free rides involving spiders and arrows
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a first step is to somehow classify proofs using patterns and identify which proofs
are best within each realm (diagrammatic and symbolic), before attempting to
identify when each notation outperforms the other.

7 Tool Support

The development of tools to support diagrammatic reasoning is well underway,
and recent advances provide a basis for automated support for mathematical
constraint diagrams. Such tools require varied functionality and the research
challenges can be viewed as more broad than for symbolic logics. There are at
least two major differences: first, it is more difficult to parse a 2D diagram than a
1D symbolic sentence; more significantly, when automatically generating proofs,
the diagrams must be laid out in order for the user to read the proof. In respect
of the second difference, possibly the hardest aspect of mathematical constraint
diagram layout is in the initial generation of the underlying Euler diagram. There
have been many recent efforts in this regard, including [2,5,17]. Further syntax
can be automatically added later, as demonstrated in [15].

In terms of automated reasoning, this has been investigated for unitary Eu-
ler diagrams [26] and, to some extent, for spider diagrams, for example [6].
The approaches used rely on a heuristic search, guided by a function that
provides a lower bound on proof length. Roughly speaking, the better this
lower bound, the more efficiently the theorem prover finds proofs. An Euler
diagram theorem prover, called EDITH, is freely available for download from
www.cmis.brighton.ac.uk/research/vmg/autoreas.htm. We note that the main
goals of automated reasoning in diagrammatic systems need not include outper-
forming symbolic theorem provers in terms of speed; of paramount importance
is the production of proofs that are accessible to the reader and it may be that
this readability constraint has a big impact on the time taken to find a proof.

8 Conclusion

In this paper, we have explored the use of constraint diagrams in mathematics,
which were originally designed for software specification. We presented several
extensions to the notation to make it more fit-for-purpose in a mathematical
setting. In particular, we allowed arrows to be used between unitary parts of
diagrams, equality to be asserted within unitary diagrams, and incorporated the
explicit use of ⇒ and ¬ (albeit written using English, but this is a trivial point).

The presented mathematical constraint diagrams, unlike augmented constraint
diagrams, are capable of expressing proper second-order statements through the
use of derived contours that are not the target of an arrow. Perhaps the simplest
extension we have proposed is the explicit use of function symbols alongside rela-
tion symbols. To ensure wider applicability in mathematical domains, where there
is often a need for second order quantification, we generalized derived contours so
that they could range over all subsets of any given set and, moreover, we have
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introduced syntax that allows us to talk about the existence of functions and re-
lations.

A fruitful avenue of future work will be to establish what is best rendered
diagrammatically and what is best rendered symbolically. Insight into the rela-
tive strengths of each notation will allow their effective integration, resulting in
hybrid notations that incorporate aspects from both paradigms. Moreover, we
conjecture that it will be beneficial to use both symbolic and diagrammatic logics
in a common context, providing different perspectives on the same problem. For
example, one could construct two proofs of a theorem (one diagrammatic, one
symbolic) which may provide different insights into the validity of the theorem,
aiding understanding.

In addition to the points in the previous paragraph, the intuitive nature of
diagrams has obvious benefits. The act of formalization brings with it greater
understanding of the problem in hand; by using notations (such as mathematical
constraint diagrams) that provide a different perspective on the construction of
statements, mathematicians and their students may gain a deeper insight into the
problem domain. Further, we argue that diagrammatic notations may provide
more accessible languages to those who prefer visual approaches to problem
solving over symbolic approaches. Thus, the integrated use of diagrams in formal
mathematics is likely to bring with it a greater understanding and insight.

The next stage in this work is to identify a necessary and sufficient set of
constraints that identify well-formed diagrams, so that we only prevent ambigu-
ous diagrams from being created. This will be an integral part of defining the
syntax and semantics, which in all likelihood will follow the style of those for
generalized constraint diagrams [23]. We believe that it is important to restrict
the syntax only where necessary when defining well-formed diagrams so that,
when reasoning, one can make intuitive deductions which might have otherwise
resulted in non-wellformed diagrams. We also intend to more fully explore the
expression of second order statements using this language.

Future work also includes a more thorough exploration of the ways in which
mathematical concepts can be defined and how proofs can be written using con-
straint diagrams. By producing a large variety of cases studies, we will be able to
extract a set of reasoning (inference) rules that allow the construction of formal
diagrammatic proofs that correspond well to those one would write in a rigorous
setting. Such an approach to defining a reasoning system for these diagrams will
have obvious benefits, since it will bring the way in which a mathematician typ-
ically works (i.e. by constructing rigorous proofs) closer to formal mathematics.
An obvious challenge lies in promoting the uptake of diagrammatic formalization
and reasoning in mathematics; this is challenging because of the overwhelmingly
prevalent use of symbolic notations throughout mathematics.

Acknowledgements. This research is supported by EPSRC grant EP/E011160
for the Visualization with Euler Diagrams project. Thanks to the anonymous
reviewers for their helpful comments.
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Abstract. Typically it is considered a strength of a language that the
same situation can be described in different ways. However, when a hu-
man or a program is to check whether two representations are essentially
the same it is much easier to deal with normal forms. For instance, (in-
finitely many) different sets of formulae may normalize to the same clause
set. In the case of propositional logic formulae with a fixed number of
boolean variables, the class of all clause sets is finite. Since it grows dou-
bly exponentially, it is not feasible to construct the complete class even
for small numbers of boolean variables. Hence further normalizations are
necessary and will be studied. Furthermore some potential applications
will be discussed.

1 Introduction

There are many different ways to represent the same situation and for particular
problem classes particular logics have been developed. Even within a particular
logic it is possible to state the same fact in different ways. We can ask, for
instance, how many different ways there are to express a particular fact in a
particular logic and typically there are infinitely many ways. Even a logic as
simple as propositional logic allows a lot of variation and typically infinitely
many ways exist to express the same situation. Let us look at this situation in
more detail for very simple propositional logics with few boolean variables.

If we do not have any vocabulary (propositional logic with no boolean vari-
ables) then we have only one single option, namely to remain silent, we cannot
say anything. With one boolean variable, things do not get much more interest-
ing. However, it is already possible to state infinitely many consistent facts, e.g.,
X1, X1 ∧ X1, X1 ∧ (X1 ∧ X1), X1 ∧ (X1 ∧ (X1 ∧ X1)) and so on, which mean all the
same; as well as inconsistent facts X1 ∧ ¬X1; and tautological statements such
as X1 ∨ ¬X1; and obviously we still can remain silent. While there are infinitely
many different formulae, they all are (logically) equivalent to only four different
situations, namely the clause sets:
� I would like to thank Riccardo Poli for stimulating discussions which inspired this

work.
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– {X1}, that is, X1 must be true,
– {¬X1}, that is, X1 must be false,
– {X1,¬X1}, that is, an inconsistent statement, and
– ∅, that is, X1 may be true or may be false.

That is, the infinite class of possible formulae can be reduced to a finite class
of four different clause sets. For this reason it is much better to ask how many
different clause sets there are. Formulae which reduce to the same clause set are
logically equivalent.

Note that we do not have any tautologies in the clause sets above, and actu-
ally if we allowed them in we would have infinitely many clause sets. Deleting
tautologies from a clause set is a cheap procedure, since it is local, that is, it
needs to look at a single clause only at a time, that is, the complexity of the
simplification is linear in the size of the clause set. It is typically applied in
theorem proving; it does not change the meaning since tautologies do not carry
any information. For instance, the clause sets {X1 ∨ X2, X2 ∨ ¬X2} and {X1 ∨ X2}
carry the same information. For this reason we assume in the following that a
clause set does not contain any tautologies. As a consequence, given n boolean
variables there are only finitely many clause sets. How many? We will look at
this next.

After the removal of all tautologies, any clause can be characterized as a string
over the alphabet {0, 1,#}: Assumed we have n boolean variables X1, X2, . . . , Xn
then we can represent a (non-tautological) clause C by a string c1c2 · · · cn as
follows: for every i

ci =

⎧
⎨

⎩

0 if Xi occurs negatively in C
1 if Xi occurs positively in C
# if Xi does not occur in C

For instance, for n = 6, the string 0 #11 1# represents ¬X1 ∨ X3 ∨ X4 ∨ X5 and
1##10 # represents X1 ∨ X4 ∨ ¬X5.2

With this string representation of clauses we see that there are 3n different
clauses altogether. Since the clause sets which contain the empty clause, repre-
sented as ## · · ·#, are all unsatisfiable anyway and can not only be identified
semantically, but also recognized as such computationally very cheaply, we can
take all these clause sets out of our consideration. That is, we get 3n − 1 dif-
ferent (non-empty) clauses with n boolean variables. Hence there are all in all
f(n) = 23n−1 different clause sets (without tautologies and without clauses which
do contain the empty clause). Although finite, this set grows doubly exponen-
tially in the number of boolean variables. Normalization beyond clause normal
form should be applied or a study becomes infeasible even for very small n.3

2 The terminology is taken from the area of classifier systems. In SAT solvers like
zChaff one would rather number the clauses and mention them only if they occur,
either without prefix if positive, or a “-” if negative. For instance, the clause set
{¬X1 ∨ X3 ∨ X4 ∨ X5, X1 ∨ X4 ∨ ¬X5} can be represented by the two lines -1 3 4 5 0
and 1 4 -5 0. The 0 indicates the end of a clause.

3 Because of the doubly exponential growth, just taking out the clause sets which
contain the empty clause halves the size of all clause sets under consideration.
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n f(n)

0 1
1 4
2 256
3 67108864
4 1208925819614629174706176
5 7067388259113537318333190002971674063309935587502475832486424805170479104

For n = 0 there is only the one possibility to remain silent. For n = 1, we have
the clauses X1, ¬X1, and the four clause sets: ∅, {X1}, {¬X1}, and {X1,¬X1}. For
n = 3 there are already more than sixty million different clause sets.

In the following we will consider how to categorize the clause sets for n = 2
and n = 3 so that we have only relatively few classes to consider for a complete
analysis of these cases. First, however, we will look in the next section at the
reductions we want to apply and then – in the section after that – at an important
property which a reduction may or may not have.

2 Reductions

Normally we select the names of boolean variables very carefully and asso-
ciate some meaning with these names. It makes a difference to us as humans
whether we say Loves john mary ∨ ¬Loves mary john or Mortal socrates ∨
¬Mortal aristotle. On an abstract level, however, the two different represen-
tations are structurally equivalent, and if we use variable names Xi only, the
two formulae are represented as X1 ∨¬X2. In the same line, however, the clauses
X1 ∨ ¬X2 and X2 ∨ ¬X1 are structurally equivalent as well4, since they can be
transformed into each other by swapping the names of X1 and X2. That is, if we
are interested in the characterization of fundamentally different representations,
then we can identify clause sets which can be transformed into each other by
swapping variable names.

In this paper, we will look at four different normalizations. They are different
in type; the one type consists of classical reductions as found in traditional
theorem proving textbooks [1]: purity and subsumption. The other type is about
symmetries: the renaming one above, and flipping the polarity of variables. Some
of them are stable under the construction of the full class of all clause sets, one
not. In the following it will be made precise what is meant by stable and which
reductions do and do not have this property. Roughly spoken stable means that
when creating the powerset we may apply stable reductions before applying the
recursive step, but not instable ones (without changing the result). Before we go
into details about stability, let us take a closer look at the four reductions we
want to apply:

4 Note that the second clause is represented as 01 and as a clause considered identical
to ¬X1 ∨ X2. Note furthermore that the two clauses X1 ∨ ¬X2 and X2 ∨ ¬X1 are not
logically equivalent. In order not to get confused what is meant by equivalent, we
use the term “structurally equivalent”.
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permutation. When considering a class of clause sets then we can partition
the whole class into equivalence classes of those clause sets which can be
obtained from each other by permuting the boolean variables. For instance,
{X1∨X3∨X4, ¬X1∨X2∨X3∨¬X4} (represented as {1#1 1 , 0 11 0 }) and {X2∨
X3∨X4, X1∨¬X2∨X3∨¬X4} (represented as {#11 1 , 10 10 }) are structurally
equivalent, since we can transform them into each other by permuting the
first and the second variable.

flip. Flip the polarity of some variables. For instance, in {X2 ∨ X3 ∨ X4, X1 ∨
¬X2 ∨ X3 ∨ ¬X4} (represented as {#1 11 , 1 01 0}), we can flip the polarity of
the first variable and get the structurally equivalent clause set {X2 ∨ X3 ∨
X4, ¬X1 ∨ ¬X2 ∨ X3 ∨ ¬X4} (represented as {#1 1 1 , 0 01 0 }).

pure. Remove pure literals. We say that a literal is pure if for this literal there
is no corresponding literal of opposite sign in the whole clause set, that is, if
the clause contains Xi, but there is no ¬Xi in the clause set (or conversely if
it contains a literal ¬Xi, but there is no Xi in the clause set). If we have in
a clause a pure literal then this clause can be trivially satisfied by assigning
to it the corresponding truth value, that is, true for a positive and false for
a negative literal. Then the whole clause, in which it occurs, can be deleted
from the clause set, and essentially a problem which originally contained n
propositional logic variables is reduced to one with n−1 variables. Note that
the deletion of clauses containing pure literals may make further literals pure
so that the process is to be repeated until no more pure literals are left. The
fully reduced clause set is considered.

subsumed. Remove all subsumed clauses, that is, remove less specific information
in the presence of more specific information. For instance, {X1 ∨ ¬X3, X1 ∨
X2 ∨¬X3, ¬X1 ∨¬X2 ∨X3} (represented as {1#0 , 11 0 , 00 1}) can be reduced
to {X1 ∨ ¬X3, ¬X1 ∨ ¬X2 ∨ X3} (represented as {1 #0 , 00 1 }) since X1 ∨ ¬X3
(represented as 1#0 ) subsumes X1 ∨ X2 ∨ ¬X3 (represented as 11 0 ).

When a class of clause sets is given, we want to reduce it by the reductions so
that for every equivalence class only one representative is left in the clause set
after exhaustive application of all reductions.

Although it is theoretically possible to follow a naive approach and to first
generate the whole class of all clause sets and then reduce it, this is not feasible
for doubly exponential problems even for small n. The set of all clauses can be
effectively generated for n ≤ 10 (or modestly bigger n; for n = 10 there are
3n − 1 = 59049 different clauses). Even for n = 3 there are, however, more
than 60 million different clause sets. For any bigger n it is certainly infeasible
to compute the full class of all clause sets. For this reason it is necessary to
keep the set on construction as small as possible, that is, we want to apply
the reductions on construction as much as possible. But may we? Or will we
change the result this way? We call the reductions which may be applied during
construction stable. We will establish that the properties permutation, flip,
and subsumed are stable, and that pure is not. Let us make this more precise in
the next section.
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3 Stability of Reductions in Generating All Clause Sets

Definition 1 (Reduction). Let S be a class of clause sets and R be a set
of reduction rules. Let SR be the set of equivalence classes produced from S by
completely reducing the clause sets in S by reductions from R. Two clause sets
S1 and S2 are said to be structurally equivalent if there are r1 and r2 in R∗ such
that r1(S1) = r2(S2) (that is, the clause sets can be made equal by applying any
number of reductions to S1 and any number of reductions to S2).

Let us now clarify what we mean by stable with respect to the powerset con-
struction.5

One way to compute the powerset (in Lisp code) is

(defun powerset(set)
(if (null set)

(list nil)
(let* ((prev-level (powerset (rest set)))

(first (first set)))
(append (mapcar #’(lambda(el) (cons first el)) prev-level)

prev-level))))

The corresponding version in which reductions are applied at each recursive
step is:

(defun powersetR(set R)
(if (null set)

(list nil)
(let* ((prev-level

(apply-reductions (powersetR (rest set) R) R))
(first (first set)))

(append (mapcar #’(lambda(el) (cons first el)) prev-level)
prev-level))))

where apply-reductions applies the reductions exhaustively until the set is
reduced as much as possible. We say that the powerset algorithm is stable with
respect to the set of reductions R if and only if for all sets holds (again the
reductions R are applied exhaustively):

R(powersetR(set, R)) = R(powerset(set)).

Remember, the class of all clause sets is generated as the powerset of the set
of all clauses.

Property 1. Powerset generation is not stable with respect to purity reduction,
that is, it is not possible in the recursive call of powerset to first reduce by recur-
sively deleting all pure clauses.
5 The notion can be easily generalized to arbitrary recursive procedures and any re-

ductions, but we keep it at a concrete level here, since we are interested only in the
powerset construction.
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Proof: It is sufficient to show that when we delete pure clauses in the class
of clauses sets with one boolean variable that then we do not get the full class
when we create the class of clause sets with two boolean variables.

The set of all clause sets with boolean variable X2 is {∅, {¬X1}, {X1}, { }}.
If we apply purity reduction the class is reduced to the two elements {∅, { }}.
If we now add in the recursive call either ¬X1, X1, or nothing, we get as class
of all reduced sets {∅, {¬X1}, {X1}, { }}, which reduces under purity reduction
to {∅, { }}.6 However, the full class must contain more elements (there are 164
different clause sets which do not contain pure literals or the empty clause), for
instance, the clause set {¬X1 ∨ X2, X1 ∨ ¬X2}, which does not contain any pure
literals. �

Property 2. Powerset generation is stable with respect to reductions which
identify clauses generated by component-wise negation.

Proof: Clause sets such as {X1∨¬X2∨¬X3, X1∨X3, ¬X1∨X2, X2∨X3} (represented
as {10 0 , 1#1 , 0 1#,#1 1 }) and {¬X1 ∨ ¬X2 ∨ ¬X3, ¬X1 ∨ X3, X1 ∨ X2, X2 ∨ X3}
(represented as {00 0 , 0#1 , 1 1 #,#11 }), which can be transformed into each
other by component-wise negation are identified since they can be transformed
into each other by flipping the sign of some variables (of the first variable in the
example). In the process of generating the powerset we have the commutative
relationship that it does not matter whether we first flip and then add another
component or the other way around first add another component and then flip.

�

Property 3. Powerset generation is stable with respect to reductions which
identify clauses which are generated by permutations.

Proof: If one clause of length n is a permutation of another then by adding
the same n + 1st component to each of them the resulting two clauses are per-
mutations of each other. �

Property 4. Powerset generation is stable with respect to subsumption.

Proof: If one clause of length n subsumes another then by adding the same
n + 1st component to each of them the first resulting one subsumes the second
resulting one. �

Property 5. The combination of the application of reductions by component-
wise negation and permutation is more powerful than the two reductions applied
consecutively.

Proof: With the reduction by negation, clause sets such as {X1∨¬X2, X1∨X2∨
X3} (represented as {10#, 1 11 }) and {¬X1 ∨ ¬X2, ¬X1 ∨ X2 ∨ X3} (represented
as {00 #, 0 11 }) are identified (via negation of the first component). In the case
of permutation clause sets such as {X1 ∨ ¬X2, X1 ∨ X2 ∨ X3} (represented as

6 Likewise all sets for bigger n would contain always only two elements.
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{10 #, 1 11 }) and {¬X1 ∨ X2, X1 ∨ X2 ∨ X3} (represented as {0 1#, 11 1 }) are
identified (by permuting the first and second elements). However the second
two clause sets, {¬X1 ∨ ¬X2, ¬X1 ∨ X2 ∨ X3} (represented as {00 #, 01 1}) and
{¬X1 ∨ X2, X1 ∨ X2 ∨ X3} (represented as {01 #, 1 11 }) are not related by either
permutation or negation alone. �

Property 6. Purity reduction and subsumption do not commute.

Proof: Purity reduction and subsumption each change the structure of clauses
and after the application of subsumption further clauses may become pure. How-
ever, by the deletion of pure clauses no further clauses may become subsumed.
For instance for n = 2, the clause set {¬X1∨X2, X1, X1∨¬X2, X1∨X2} (represented
as {01 , 1#, 10 , 11 }) does not reduce under purity. Application of subsumption
results in {¬X1 ∨ X2, X1} (represented as {01 , 1#}), in which the first clause is
pure in the second literal. �

It is advisable to apply the reductions in an order, namely apply subsumption
and the combined negation/permutation reduction on construction and apply
purity reduction last, since purity firstly cannot be used on construction and
after the application of the other reductions has only a relatively small impact.
Purity reduction should be applied after subsumption. Likewise permutation
reduction should be applied after subsumption.

4 The Cases for n ≤ 3

For n = 3, the total class with a size of 67108864 elements can be reduced by the
application of subsumption to 15935 elements. This can be reduced further by
the combined application of permutation/negation reduction to 522 elements.
Finally purity reduction reduces the set to 410 elements.

Summarizing we get the following numbers of different clause sets after the
cumulative application of reductions:

n no red. subsum subsum+neg/perm subsum+neg/perm+purity
1 4 4 3 2
2 256 47 14 8
3 67108864 15935 522 410

E.g., for n = 2 the 8 elements after all reductions are:

NIL

("00" "11")
("#1" "#0")

("00" "01" "10")
("#0" "01" "11")
("#0" "0#" "11")
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("00" "01" "10" "11")
("#0" "#1" "0#" "1#")

These eight cases are clearly non-isomorphic since they can be classified by
the number of clauses contained (0, 2, 3, or 4), and within these classes by
the total number of # symbols contained in the clause sets. It is under current
investigation to find a similar classification for the 410 elements for n = 3. If
we had a general classification principle, this could be used in order to come
up with an effective mechanism to create the reduced class of clause sets for
n = 4 without having to go back to the powerset construction. Note, however,
that it cannot be expected that the growth in number of the reduced clause set
classes is in a better complexity class compared to the full class. That is, they are
expected to be doubly exponential as well. However, the much reduced numbers
make them more accessible to complete investigation for small n, in particular
for n = 4. Because of the special situation of two-clauses, the case n = 3 is the
first really interesting case and it would be good to have at least the case n = 4
at hand as well to come up with generalizable conjectures.

5 Unsatisfiable Clauses for n = 3

In the reduced class of clause sets we can investigate properties of the whole class.
One of them is to ask: Given an unsatisfiable clause set how many resolution
steps are necessary at most for a node to reduce it to the empty clause, and how
many at least for the same node?

Let us add the empty clause to the class of reduced clause sets. Of the 411
different cases, 207 are not satisfiable and 204 are satisfiable. The non-satisfiable
ones can be ordered as a partial order with respect to a relation of clause sets in
which the empty clause comes lowest. A clause set is immediately below another
one if the first can be generated from the second by a single application of the
binary resolution rule. The resulting acyclic directed graph7 is displayed in Fig. 1,
however, it would be necessary to zoom in order to get detailed information from
it.

The top most clause set is
{ ¬X1 ∨ ¬X2 ∨ ¬X3, ¬X1 ∨ ¬X2 ∨ X3, ¬X1 ∨ X2 ∨ ¬X3, ¬X1 ∨ X2 ∨ X3,
X1 ∨ ¬X2 ∨ ¬X3, X1 ∨ ¬X2 ∨ X3, X1 ∨ X2 ∨ ¬X3, X1 ∨ X2 ∨ X3 }

represented as {"000" "001" "010" "011" "100" "101" "110" "111"};
the bottom most one is the clause set consisting just of the empty clause. In
order to get from the top most by binary resolution to the empty clause it is
necessary to apply binary resolution at least 7 times and at most 18 times. That
means that any heuristic to reduce proof search can at best reduce the search
from 18 steps to 7 steps for this particular example. A long term goal of this
work to theorem proving is to better understand the impact of theorem proving
heuristics on the class of all problems rather than on a set of challenge problems.

7 The figure is created with the help of the “dot (Graphviz)” graph visualization tool.
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Fig. 1. Relationship of unsatisfiable clause sets with 3 boolean variables

This way this work may contribute to a better understanding of heuristics and
help to speed up theorem provers.8 The hope would be to generalize from cases
with few propositional logic variables (e.g., n = 2, n = 3, and n = 4) to the
arbitrary propositional logic case and to lift results to first order logic.

Another application of this work is in the search of similar expressions. The
work can be used in order to detect structurally equivalent formulae. This is
relevant when different formulations of the same problem are given; in this case
these formulations are typically not logically equivalent. This becomes more
relevant for logics which are more powerful than the ones studied here.

6 Related Work

The reduction of clause sets has been studied in theorem proving since the inven-
tion of the resolution principle by Robinson [5] in 1965 and it is well described
in the text books on automated theorem proving such as [1]. Symmetry has
been studied in the area of constraint satisfaction problems, see in particular
the work by Frisch et al.[2,3], where permutations and changes of polarity of
boolean variables play a major role. Representations and studies in the com-
plexity of classifier systems [4] are related insofar as the same problem can be
represented – using the string representation of clauses described in this paper
– in different ways resulting in different complexities.

7 Conclusion

In this paper we looked at normalizations of very simple logical systems. The
reduction was achieved by symmetry reductions as well as the traditional reduc-
tions of purity and subsumption. By these reductions it is possible to consider
8 Note that two reductions used in this research (subsumption and purity) are rou-

tinely employed in theorem proving, while the others (permutation and flip) would
not change the complexity of a particular theorem proving task.
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instead of more than 60 million different clause sets only 410 structurally differ-
ent ones. This reduction allows to answer, for instance, the question how many
resolution steps may be necessary at most in order to show that a clause set
with three different boolean variables is unsatisfiable.

The classification of the different cases is ongoing work and will lead hopefully
to a computationally cheaper way to generate representative classes. In this con-
text it is also interesting to see whether all 410 clause sets are non-isomorphic
and whether the reductions used in this work are in some precise way best possi-
ble, that is, that any further identification would identify problems which should
not be identified. Having a cheaper way to generate the set of all equivalence
classes of reduced clause sets would allow to investigate the corresponding class
for n = 4 and generate some conjectures by generalizing from the cases n = 2, 3,
and 4.

The reduction to equivalence classes can be used to recognize and classify
problems of a particular type. However, in the current paper only first steps
have been made and a deeper understanding is necessary.
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Abstract. Notations are central for understanding mathematical dis-
course. Readers would like to read notations that transport the meaning
well and prefer notations that are familiar to them. Therefore, authors
optimize the choice of notations with respect to these two criteria, while
at the same time trying to remain consistent over the document and their
own prior publications. In print media where notations are fixed at pub-
lication time, this is an over-constrained problem. In living documents
notations can be adapted at reading time, taking reader preferences into
account.

We present a representational infrastructure for notations in living
mathematical documents. Mathematical notations can be defined declar-
atively. Author and reader can extensionally define the set of available
notation definitions at arbitrary document levels, and they can guide the
notation selection function via intensional annotations.

We give an abstract specification of notation definitions and the flex-
ible rendering algorithms and show their coverage on paradigmatic ex-
amples. We show how to use this framework to render OpenMath and
Content-MathML to Presentation-MathML, but the approach extends
to arbitrary content and presentation formats. We discuss prototypical
implementations of all aspects of the rendering pipeline.

1 Introduction

Over the last three millennia, mathematics has developed a complicated two-
dimensional format for communicating formulae (see e.g., [Caj93,Wol00] for de-
tails). Structural properties of operators often result in special presentations,
e.g., the scope of a radical expression is visualized by the length of its bar. Their
mathematical properties give rise to placement (e.g., associative arithmetic op-
erators are written infix), and their relative importance is expressed in terms of
binding strength conventions for brackets. Changes in notation have been influ-
ential in shaping the way we calculate and think about mathematical concepts,
and understanding mathematical notations is an essential part of any mathemat-
ics education. All of these make it difficult to determine the functional structure
of an expression from its presentation.

Content Markup formats for mathematics such as OpenMath [BCC+04] and
content MathML [ABC+03] concentrate on the functional structure of math-
ematical formulae, thus allowing mathematical software systems to exchange
mathematical objects. For communication with humans, these formats rely on a
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“presentation process” (usually based on XSLT style sheets) that transforms the
content objects into the usual two-dimensional form used in mathematical books
and articles. Many such presentation processes have been proposed, and all have
their strengths and weaknesses. In this paper, we conceptualize the presentation
of mathematical formulae as consisting of two components: the two-dimensional
composition of visual sub-presentations to larger ones and the elision of for-
mula parts that can be deduced from context.

Most current presentation processes concentrate on the relatively well-under-
stood composition aspect and implement only rather simple bracket elision al-
gorithms. But the visual renderings of formulae in mathematical practice are
not simple direct compositions of the concepts involved: mathematicians gloss
over parts of the formulae, e.g., leaving out arguments, iff they are non-essential,
conventionalized or can be deduced from the context. Indeed this is part of what
makes mathematics so hard to read for beginners, but also what makes mathe-
matical language so efficient for the initiates. A common example is the use of
log(x) or even log x for log10(x) or similarly [[t]] for [[t]]ϕM, if there is only one
model M in the context and ϕ is the most salient variable assignment.

Another example are the bracket elision rules in arithmetical expressions:
ax+ y is actually (ax) + y, since multiplication “binds stronger” than addition.
Note that we would not consider the “invisible times” operation as another
elision, but as an alternative presentation.

In this situation we propose to encode the presentational characteristics of
symbols (for composition and elision) declaratively in notation definitions,
which are part of the representational infrastructure and consist of “prototypes”
(patterns that are matched against content representation trees) and “render-
ings” (that are used to construct the corresponding presentational trees). Note
that since we have reified the notations, we can now devise flexible management
process for notations. For example, we can capture the notation preferences of
authors, aggregators and readers and adapt documents to these. We propose
an elaborated mechanism to collect notations from various sources and specify
notation preferences. This brings the separation of function from form in math-
ematical objects and assertions in MKM formats to fruition on the document
level. This is especially pronounced in the context of dynamic presentation me-
dia (e.g., on the screen), we can now realize “active documents”, where we can
interact with a document directly, e.g., instantiating a formula with concrete
values or graphing a function to explore it or “living/evolving documents” which
monitor the change of knowledge about a topic and adapt to a user’s notation
preferences consistently.

Before we present our system, let us review the state of the art. Naylor,
Smirnova, and Watt [NW01a,SW06b,SW06a] present an approach based on
meta stylesheets that utilizes a MathML-based markup of arbitrary notations
in terms of their content and presentation and, based on the manual selec-
tion of users, generates user-specific XSLT style sheets [Kay06] for the adap-
tation of documents. Naylor and Watt [NW01a] introduce a one-dimensional
context annotation of content expressions to intensionally select an appropriate
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notation specification. The authors claim that users also want to delegate the
styling decision to some defaulting mechanism and propose the following hierar-
chy of default notation specification (from high to low): command line control,
input documents defaults, meta stylesheets defaults, and content dictionary de-
faults.

In [MLUM05], Manzoor et al. emphasize the need for maintaining uniform
and appropriate notations in collaborative environments, in which various au-
thors contribute mathematical material. They address the problem by providing
authors with respective tools for editing notations as well as by developing a
framework for a consistent presentation of symbols. In particular, they extend
the approach of Naylor and Watt by an explicit language markup of the content
expression. Moreover, the authors propose the following prioritization of differ-
ent notation styles (from high to low): individual style, group, book, author or
collection, and system defaults.

In [KLR07] we have revised and improved the presentation specification of
OMDoc1.2. [Koh06] by allowing a static well-formedness, i.e., the well-formed-
ness of presentation specifications can be verified when writing the presentations
rather than when presenting a document. We also addressed the issue of flexible
elision. However, the approach does not facilitate to specify notations, which are
not local tree transformations of the semantic markup.

In [KMM07] we initiated the redefinition of documents towards a more dy-
namic and living view. We explicated the narrative and content layer and ex-
tended the document model by a third dimension, i.e., the presentation layer. We
proposed the extensional markup of the notation context of a document, which
facilitates users to explicitly select suitable notations for document fragments.
These extensional collection of notations can be inherited, extended, reused,
and shared among users. For the system presented in this paper, we have re-
engineered and extended the latter two proposals.

In Sect. 2, we introduce abstract syntax for notation definitions, which is used
for the internal representation of our notation objects. (We use a straightforward
XML encoding as concrete syntax.) In Sect. 3, we describe how a given notation
definition is used to translate an OpenMath object into its presentation. After
this local view of notation definitions, the remainder of the paper takes a more
global perspective by introducing markup that permits users to control which
notation definitions are used to present which document fragment. There are
two conflicting ways how to define this set of available notation definitions:
extensionally by pointing to a notation container; or intensionally by attaching
properties to notation definitions and using them to select between them. These
ways are handled in Sect. 4 and 5, respectively.

2 Syntax of Notation Definitions

We will now present an abstract version of the presentation starting from the
observation that in content markup formalisms for mathematics formulae are
represented as “formula trees”. Concretely, we will concentrate on OpenMath
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objects, the conceptual data model of OpenMath representations, since it is
sufficiently general, and work is currently under way to re-engineer content
MathML representations based on this model. Furthermore, we observe that
the target of the presentation process is also a tree expression: a layout tree
made of layout primitives and glyphs, e.g., a presentation MathML or LATEX
expression.

To specify notation definitions, we use the one given by the abstract grammar
from Fig. 1. Here |, [−], −∗, and −+ denote alternative, bracketing, and non-
empty and possibly empty repetition, respectively. The non-terminal symbol ω
is used for patterns ϕ that do not contain jokers. Throughout this paper, we will
use the non-terminal symbols of the grammar as meta-variables for objects of
the respective syntactic class.

Intuitions. The intuitive meaning of a notation definition ntn = ϕ1, . . . , ϕr �
(λ1 : ρ1)p1 , . . . , (λs : ρs)ps is the following: If an object matches one of the pat-
terns ϕi, it is rendered by one of the renderings ρi. Which rendering is chosen,

Notation declarations ntn ::= ϕ+ � [(λ : ρ)p]+

Patterns ϕ ::=
Symbols σ(n, n, n)
Variables | υ(n)
Applications | @(ϕ[, ϕ]+)
Binders | β(ϕ, Υ, ϕ)
Attributions | α(ϕ, σ(n, n, n) �→ ϕ)
Symbol/Variable/Object/List jokers | s | v | o | l(ϕ)

Variable contexts Υ ::= ϕ+

Match contexts M ::= [q �→ X]∗

Matches X ::= ω∗|S∗|(X)
Empty match contexts μ ::= [q �→ H ]∗

Holes H ::= |“”|(H)

Context annotation λ ::= (S = S)∗

Renderings ρ ::=
XML elements 〈S〉ρ∗〈/〉
XML attributes | S = ”ρ∗”
Texts | S
Symbol or variable names | q

Matched objects | qp

Matched lists | for(q, I, ρ∗){ρ∗}
Precedences p ::= −∞|I |∞
Names n, s, v, l, o ::= C+

Integers I ::= integer
Qualified joker names q ::= l/q|s|v|o|l
Strings S ::= C∗

Characters C ::= character except /

Fig. 1. The Grammar for Notation Definitions
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depends on the active rendering context, which is matched against the context
annotations λi (see Sect. 5). Each context annotation is a key-value list des-
ignating the intended rendering context. The integer values pi give the output
precedences of the renderings.

The patterns ϕi are formed from a formal grammar for a subset of Open-

Math objects extended with named jokers. The jokers o and l(ϕ) correspond
to \(.\) and \(ϕ\)+ in Posix regular expression syntax ([POS88]) – except that
our patterns are matched against the list of children of an OpenMath object
instead of against a list of characters. We need two special jokers s and v, which
only match OpenMath symbols and variables, respectively. The renderings ρi

are formed by a formal syntax for simplified XML extended with means to re-
fer to the jokers used in the patterns. When referring to object jokers, input
precedences are given that are used, together with the output precedences, to
determine the placement of brackets.

Match contexts are used to store the result of matching a pattern against an
object. Due to list jokers, jokers may be nested;therefore, we use qualified joker
names in the match contexts (which are transparent to the user). Empty match
contexts are used to store the structure of a match context induced by a pattern:
They contain holes that are filled by matching the pattern against an object.

Example. We will use a multiple integral as an example that shows all aspects
of our approach in action.

∫ b1

a1

. . .

∫ bn

an

sinx1 + x2 dxn . . . dx1.

Let int, iv, lam, plus, and sin abbreviate symbols for integration, closed real
intervals, lambda abstraction, addition, and sine. We intend int, lam, and plus
to be flexary symbols, i.e., symbols that take an arbitrary finite number of argu-
ments. Furthermore, we assume symbols color and red from a content dictionary
for style attributions. We want to render into LATEX the OpenMath object

@
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),
β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color �→ red)

))

as \int_{a1}^{b1}. . . \int_{an}^{bn}\color{red}{\sinx1+x2}dxn. . . dx1

We can do that with the following notations:

@(int, ranges(@(iv, a, b)), β(lam, vars(x), f))
� ((format = latex) :

for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

α(a, color �→ col) � ((format = latex) : {\color{ col } a∞ })−∞

@(plus, args(arg)) � ((format = latex) : for(args,+){arg})10

@(sin, arg) � ((format = latex) : \sin arg)0

The first notation matches the application of the symbol int to a list of ranges
and a lambda abstraction binding a list of variables. The rendering iterates first
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over the ranges rendering them as integral signs with bounds, then recurses
into the function body f, then iterates over the variables rendering them in
reverse order prefixed with d. The second notation is used when f recurses into
the presentation of the function body α(@(plus,@(sin, υ(x1)), υ(x2)), color �→
red). It matches an attribution of color, which is rendered using the LATEX
color package. The third notation is used when a recurses into the attributed
object @(plus,@(sin, υ(x1)), υ(x2)). It matches any application of plus, and the
rendering iterates over all arguments placing the separator + in between. Finally,
sin is rendered in a straightforward way. We omit the notation that renders
variables by their name.

The output precedence −∞ of int makes sure that the integral as a whole is
never bracketed. And the input precedences ∞ make sure that the arguments
of int are never bracketed. Both are reasonable because the integral notation
provides its own fencing symbols, namely

∫
and d. The output precedences of

plus and sin are 10 and 0, which means that sin binds stronger; therefore, the
expression sinx is not bracketed either. However, an inexperienced user may
wish to display these brackets: Therefore, our rendering does not suppress them.
Rather, we annotate them with an elision level, which is computed as the dif-
ference of the two precedences. Dynamic output formats that can change their
appearance, such as XHTML with JavaScript, can use the elision level to de-
termine the visibility of symbols based on user-provided elision thresholds: the
higher its elision level, the less important a bracket.

Well-formed Notations. A notation definition ϕ1, . . . , ϕr � (λ1 : ρ1)p1 , . . . , (λs :
ρs)ps is well-formed if all ϕi are well-formed patterns that induce the same empty
match contexts, and all ρi are well-formed renderings with respect to that empty
match context.

Every pattern ϕ generates an empty match context μ(ϕ) as follows:

– For an object joker o occurring in ϕ but not within a list joker, μ(ϕ) contains
o �→ .

– For a symbol or variable with name n occurring in ϕ but not within a list
joker, μ(ϕ) contains n �→ “”.

– For a list joker l(ϕ′) occurring in ϕ, μ(ϕ) contains
• l �→ ( ), and
• l/n �→ (H) for every n �→ H in μ(ϕ′).

In an empty match context, a hole is a placeholder for an object, “” for a
string, ( ) for a list of objects, (( )) for a list of lists of objects, and so on. Thus,
symbol, variable, or object joker in ϕ produce a single named hole, and every
list joker and every joker within a list joker produces a named list of holes (H).
For example, the empty match context induced by the pattern in the notation
for int above is

ranges �→ ( ), ranges/a �→ ( ), ranges/b �→ ( ), f �→ ,

vars �→ ( ), vars/x �→ (“”)

A pattern ϕ is well-formed if it satisfies the following conditions:
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– There are no duplicate names in μ(ϕ).
– List jokers may not occur as direct children of binders or attributions.
– At most one list joker may occur as a child of the same application, and it

may not be the first child.
– At most one list joker may occur in the same variable context.

These restrictions guarantee that matching an OpenMath object against a pat-
tern is possible in at most one way. In particular, no backtracking is needed in
the matching algorithm.

Assume an empty match context μ. We define well-formed renderings with
respect to μ as follows:

– 〈S〉ρ1, . . . , ρr〈/〉 is well-formed if all ρi are well-formed.
– S = ”ρ1, . . . , ρr” is well-formed if all ρi are well-formed and are of the form
S′ or n. Furthermore, S = ”ρ1, . . . , ρr” may only occur as a child of an XML
element rendering.

– S is well-formed.
– n is well-formed if n �→ “” is in μ.
– op is well-formed if o �→ is in μ.
– for(l, I, sep){body} is well-formed if l �→ ( ) or l �→ (“”) is in μ, all renderings

in sep are well-formed with respect to μ, and all renderings in body are well-
formed with respect to μl. The step size I and the separator sep are optional,
and default to 1 and the empty string, respectively, if omitted.

Here μl is the empty match context arising from μ if every l/q �→ (H) is replaced
with q �→ H and every previously existing hole named q is removed. Replacing
l/q �→ (H) means that jokers occurring within the list joker l are only accessible
within a corresponding rendering for(l, I, ρ∗){ρ∗}. And removing the previously
existing holes means that in @(o, l(o)), the inner object joker shadows the outer
one.

3 Semantics of Notation Definitions

The rendering algorithm takes as input a notation context Π (a list of notation
definitions, computed as described in Sect. 4), a rendering context Λ (a list of
context annotations, computed as described in Sect. 5), an OpenMath object
ω, and an input precedence p. If the algorithm is invoked from top level (as
opposed to a recursive call), p should be set to ∞ to suppress top level brackets.

It returns as output either text or an XML element. There are two output
types for the rendering algorithm: text and sequences of XML elements. We will
use O + O′ to denote the concatenation of two outputs O and O′. By that, we
mean a concatenation of sequences of XML elements or of strings if O and O′

have the same type. Otherwise, O +O′ is a sequence of XML elements treating
text as an XML text node. This operation is associative if we agree that consec-
utive text nodes are always merged. The algorithm inserts brackets if necessary.
And to give the user full control over the appearance of brackets, we obtain the
brackets by the rendering of two symbols for left and right bracket from a special
fixed content dictionary. The algorithm consists of the following three steps.
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1. ω is matched against the patterns in the notation definitions in Π (in the
listed order) until a matching pattern ϕ is found. The notation definition
in which ϕ occurs induces a list (λ1 : ρ1)p1 , . . . , (λn : ρn)pn of context-
annotations, renderings, and output precedences.

2. The rendering context Λ is matched against the context annotations λi in
order. The pair (ρj , pj) with the best matching context-annotation λj is
selected (see Section 5.2 for details).

3. The output is ρj
M(ϕ,ω), the rendering of ρj in context M(ϕ, ω) as defined

below. Additionally, if pj > p, the output is enclosed in brackets.

Semantics of Patterns. The semantics of patterns is that they are matched against
OpenMath objects. Naturally, every OpenMath object matches against itself.
Symbol, variable, and object jokers match in the obvious way. A list joker l(ϕ)
matches against a non-empty list of objects all matching ϕ.

Let ϕ be a pattern and ω a matching OpenMath object. We define a match
context M(ϕ, ω) as follows.

– For a symbol or variable joker with name n that matched against the sub-
object ω′ of ω, M(ϕ, ω) contains n �→ S where S is the name of ω′.

– For an object joker o that matched against the sub-object ω′ of ω, M(ϕ, ω)
contains o �→ ω.

– If a list joker l(ϕ′) matched a list ω1, . . . , ωr, then M(ϕ, ω) contains
• l �→ (ω1, . . . , ωr), and
• for every l/q in μ(ϕ): l/q �→ (X1, . . . , Xr) where q �→ Xi in M(ϕ′, ωi).

We omit the precise definition of what it means for a pattern to match against
an object. It is, in principle, well-known from regular expressions. Since no back-
tracking is needed, the computation of M(ϕ, ω) is straightforward. We denote
by M(q), the lookup of the match bound to q in a match context M .

Semantics of Renderings If ϕ matches against ω and the rendering ρ is well
formed with respect to μ(ϕ), the intuition of ρM(ϕ,ω) is that the joker references
in ρ are replaced according to M(ϕ, ω) =: M . Formally, ρM is defined as follows.

– 〈S〉ρ1 . . . ρr〈/〉 is rendered as an XML element with name S. The attributes
are those ρi

M that are rendered as attributes. The children are the concate-
nation of the remaining ρi

M preserving their order.
– S = ”ρ1 . . . ρr” is rendered as an attribute with label S and value ρ1

M +
. . .+ ρn

M (which has type text due to the well-formedness).
– S is rendered as the text S.
– s and v are rendered as the text M(s) or M(v), respectively.
– op is rendered by applying the rendering algorithm recursively to M(o) and p.
– for(l, I, ρ1 . . . ρr){ρ′1 . . . ρ′s} is rendered by the following algorithm:

1. Let sep := ρ1
M + . . . + ρr

M and t be the length of M(l).
2. For i = 1, . . . , t, let Ri := ρ′1

Ml
i + . . .+ ρ′s

Ml
i .

3. If I = 0, return nothing and stop. If I is negative, reverse the list R, and
invert the sign of I.
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4. Return RI + sep+R2∗I . . . + sep+RT where T is the greatest multiple
of I smaller than or equal to t.

Here the match context M l
i arises from M as follows

– replace l �→ (X1 . . . Xt) with l �→ Xi,
– for every l/q �→ (X1 . . . Xt) in M : replace it with q �→ Xi, and remove a

possible previously defined match for q.

Example. Consider the example introduced in Sect. 2. There we have

ω = @
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),

β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color �→ red)

))

And Π is the given list of notation definitions. Let Λ = (format = latex).
Matching ω against the patterns in Π succeeds for the first notation definitions
and yields the following match context M :

ranges �→ (@(iv, a1, b1), . . . ,@(iv, an, bn)), ranges/a �→ (a1, . . . , an),

ranges/b �→ (b1, . . . , bn), f �→ α(@(plus,@(sin, υ(x1)), υ(x2)), color �→ red),

vars �→ (υ(x1), . . . , υ(xn)), vars/x �→ (x1, . . . , xn)

In the second step, a specific rendering is chosen. In our case, there is only
one rendering, which matches the required rendering context Λ, namely

ρ = for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

To render ρ in match context M , we have to render the three components and
concatenate the results. Only the iterations are interesting. In both iterations,
the separator sep is empty; in the second case, the step size I is −1 to render
the variables in reverse order.

4 Choosing Notation Definitions Extensionally

In the last sections we have seen how collections of notation definitions induce
rendering functions. Now we permit users to define the set Π of available nota-
tion definitions extensionally. In the following, we discuss the collection of nota-
tion definitions from various sources and the construction of Πω for a concrete
mathematical object ω.

4.1 Collecting Notation Definitions

The algorithm for the collection of notation definitions takes as input a tree-
structured document, e.g., an XML document, an object ω within this document,
and a totally ordered set SN of source names. Based on the hierarchy proposed
in [NW01b], we use the source names EC, F , Doc, CD, and SD explained below.
The user can change their priorities by ordering them.
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The collection algorithm consists of two steps: The collection of notation def-
initions and their reorganization. In the first step the notation definitions are
collected from the input sources according to the order in SN . The respective
input sources are treated as follows:

– EC denotes the extensional context, which associates a list of notation
definitions or containers of notation definitions to every node of the input
document. The effective extensional context is computed according to the
position of ω in the input document (see a concrete example below). EC is
used by authors to reference their individual notation context.

– F denotes an external notation document from which notation defi-
nitions are collected. F can be used to overwrite the author’s extensional
context declarations.

– Doc denotes the input document. As an alternative to EC, Doc permits
authors to embed notation definitions into the input document.

– CD denotes the content dictionaries of the symbols occurring in ω. These
are searched in the order in which the symbols occur in ω. Content dictionar-
ies may include or reference default notation definitions for their symbols.

– SD denotes the system default notation document, which typically occurs
last in SN as a fallback if no other notation definitions are given.

In the second step the obtained notation context Π is reorganized: All occur-
rences of a pattern ϕ in notation definitions in Π are merged into a single
notation definition preserving the order of the (λ:ρ)p (see a concrete example
below).

Fig. 2. Collection Example

We base our further illustration on the input document in Fig. 2 figure above,
which includes three mathematical objects. For simplicity, we omit the cdbase
and cd attributes of symbols.

ω1 : @(σ(opair), υ(a), υ(b)) � (a, b) ω2 : @(σ(power), σ(img), 2) � i2 ω3 : σ(img) � j
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The dashed arrows in the figure represent extensional references: For example,
the ec attribute of the document root doc references the notation document
“myntn”, which is interpreted as a container of notation definitions.

We apply the algorithm above with the input object ω3 and SN = (EC, SD)
and receive Πω3 in return. For simplicity, we do not display context annotations
and precedences.

1. We collect all notation definitions yielding Πω3

1.1 We collect notation definitions from EC
1.1.1 We compute the effective extensional context based on the position of ω3 in
the input document: ec(ω3) = (ntnimg, myntn)
1.1.2 We collect all notation definition based on the references in ec(ω3):
Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair)
1.2. We collect notation definitions from SD and append them to Πω3

Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair, ntnopair, ntnimg, ntnpower)
1.3. The collected notation definition form the notation context Πω3

Πω3 = ( ϕ1 � j, ϕ2 � ab , ϕ1 � i, ϕ3 � [a, b], ϕ3 � pair(a, b), ϕ1 � imaginary,
ϕ2 � power(a, b) )

2. We reorganize Πω3 yielding Π ′
ω3

Π ′
ω3 = ( ϕ1 � j, i, imaginary; ϕ2 � ab , power(a, b); ϕ3 � [a, b], pair(a, b) )

To implement EC in arbitrary XML-based document formats, we propose an
ec attribute in a namespace for notation definitions, which may occur on any
element. The value of the ec attribute is a whitespace-separated list of URIs
of either notation definitions or any other document. The latter is interpreted
as a container, from which notation definitions are collected. The ec attribute
is empty by default. When computing the effective extensional context of an
element, the values of the ec attributes of itself and all parents are concatenated,
starting with the inner-most.

4.2 Discussion of Collection Strategies

In [KLM+08], we provide the specific algorithms for collecting notation defini-
tions from EC, F , Doc, CD and SD and illustrate the advantages and draw-
backs of basing the rendering on either one of the sources. We conclude with the
following findings:

1. Authors can write documents which only include content markup and do not
need to provide any notation definitions. The notation definitions are then
collected from CD and SD.

2. The external document F permits authors to store their notation definitions
centrally, facilitating the maintenance of notational preferences. However,
authors may not specify alternative notations for the same symbol on gran-
ular document levels.

3. Authors may use the content dictionary defaults or overwrite them by pro-
viding F or Doc.
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4. Authors may embed notation definitions inside their documents. However,
this causes redundancy inside the document and complicates the mainte-
nance of notation definitions.

5. Users can overwrite the specification inside the document with F . However,
that can destroy the meaning of the text, since the granular notation contexts
of the authors are replaced by only one alternative declaration in F .

6. Collecting notation definitions from F or Doc has benefits and drawbacks.
Since users want to easily maintain and change notation definitions but also
use alternative notations on granular document levels, we provide EC. This
permits a more controlled and more granular specification of notations.

5 Choosing Renderings Intensionally

The extensional notation context declarations do not support authors to select
between alternative renderings inside one notation definition. Consequently, if
relying only on this mechanism, authors have to take extreme care about which
notation definition they reference or embed. Moreover, other users cannot change
the granular extensional declarations in EC without modifying the input doc-
ument. They can only overwrite the author’s granular specifications with their
individual styles F , which may reduce the understandability of the document.

Consequently, we need a more intelligent, context-sensitive selection of ren-
derings, which lets users guide the selection of alternative renderings. We use
an intensional rendering context Λ, which is matched against the context an-
notations in the notation definitions. In the following, we discuss the collection
of contextual information from various sources and the construction of Λω for a
concrete mathematical object ω.

5.1 Collecting Contextual Information

We represent contextual information by contextual key-value pairs, denoted by
(di = vi). The key represents a context dimension, such as language, level of
expertise, area of application, or individual preference. The value represents a
context value for a specific context dimension. The algorithm for the context-
sensitive selection takes as input an object ω, a list L of elements of the form
(λ : ρ)p, and a totally ordered set SC of source names. We allow the names GC,
CCF , IC, and MD. The algorithm returns a pair (ρ, p).

The selection algorithm consists of two steps: The collection of contextual
information Λω and the selection of a rendering. In the first step Λω is computed
by processing the input sources in the order given by SC . The respective input
sources are treated as follows:

– GC denotes the global context which provides contextual information dur-
ing rendering time and overwrites the author’s intensional context declara-
tions. The respective (di = vi) can be collected from a user model or are
explicitly entered. GC typically occurs first in SC .

– CCF denotes the cascading context files, which permit the contextual-
ization analogous to cascading stylesheets[Cas99].
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Fig. 3. Rendering Example

– IC denotes the intensional context, which associates a list of contextual
key-value pairs (di = vi) to any node of the input document. These express
the author’s intensional context. For the implementation in XML formats,
we use an ic attribute similar to the ec attribute above, i.e., the effective
intensional context depends on the position of ω in the input document (see
a concrete example below).

– MD denotes metadata, which typically occurs last in SC .

In the second step, the rendering context Λω is matched against the context
annotations in L. We select the pair (ρ, p) whose corresponding context annota-
tion satisfies the intensional declaration best (see [KLM+08] for more details).

In Fig. 3, we continue our illustration on the given input document. The
dashed arrows represent extensional references, the dashed-dotted arrows rep-
resent intensional references, i.e., implicit relations between the ic attributes
of the input document and the context-annotations in the notation document.
A global context is declared, which specifies the language and course dimen-
sion of the document. We apply the algorithm above with the input object ω3,
SC = (GC, IC), and a list of context annotations and rendering pairs based on
the formerly created notation context Πω3 . For convenience, we do not display
the system’s default notation document and the precedences.

1. We compute the intensional rendering context 1.1. We collect
contextual information from GC
Λω3 = (lang = en, course = GenCS) 1.2. We collect contextual
information from IC an append them to Λω3

Λω3 = (lang = en, course = GenCS, area = physics, area = math)

2. We match the rendering context against the context annotations
of the input list L and return the rendering with the best
matching context annotation: L = [ (λ0 = j), (λ1 = i), (λ2 = imaginary) ]
λ0 = (area = physics),
λ1 = (area = maths), and λ2 = ∅
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For simplicity, we compute the similarity between Λω3 and λi based on the
number of similar (di = vi): λ0 includes (area = physics). λ1 includes (area =
math). λ2 is empty. λ0 and λ1 both satisfy one (di = vi) of Λω3 . However, since
(λ0 = ρ0) occurs first in Πω3 , the algorithm returns ρ0.

5.2 Discussion of Context-Sensitive Selection Strategies

In [KLM+08], we illustrate and evaluate the collection of contextual information
from GC, CCF , IC and MD in detail. We conclude with the following findings:

1. The declaration of a global context provides a more intelligent intensional
selection between alternative (λ : ρ)p triples inside one notation definition:
The globally defined (di = vi) are matched against the context-annotations
λ to select an appropriate rendering ρ. However, the approach does not let
users specify intensional contexts on granular levels.

2. Considering metadata is a more granular approach than the global context
declaration. However, metadata may not be associated to any node in the
input document and cannot be overwritten without modifying the input
document. Moreover, the available context dimensions and values are limited
by the respective metadata format.

3. The intensional context supports a granular selection of renderings by asso-
ciating an intensional context to any node of the input document. However,
the intensional references cannot be overwritten on granular document levels.

4. Cascading Context Files permit a granular overwriting of contexts.

6 Conclusion and Future Work

We introduced a representational infrastructure for notations in living mathe-
matical documents by providing a flexible declarative specification language for
notation definitions together with a rendering algorithm. We described how au-
thors and users can extensionally extend the set of available notation definitions
on granular document levels, and how they can guide the notation selection via
intensional context declarations. Moreover, we discussed different approaches for
collecting notation definitions and contextual information.

To substantiate our approach, we have developed prototypical implementa-
tions of all aspects of the rendering pipeline:

– The Java toolkit mmlkit [MMK07] implements the conversion of OpenMath

and Content-MathML expressions to Presentation-MathML. It supports
the collection of notation definitions from various sources, constructs render-
ing contexts based on contextual annotations of the rendered object, identi-
fies proper renderings for the conversion.

– The semantic wiki SWiM [Lan08] supports the collaborative browsing and
editing of notation definitions in OpenMath content dictionaries.

– The panta rhei [Mül07] reader integrates mmlkit to present mathematical
documents, provides facilities to categorize and describe notations, and uses
these context annotations to adapt documents.
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We will invest further work into our implementations as well as the evaluation
of our approach. In particular, we want to address the following challenges:

– Write Protection: In some cases, users should be prevented to overwrite the
author’s declaration. On the contrary, static notations reduce the flexibility
and adaptability of a document (see [KLM+08] for more details).

– Consistency: The flexible adaptation of notations can destroy the meaning
of documents, in particular, if we use the same notation to denote different
mathematical concepts.

– Elision: In [KLM+08], we have already adapted the elision of arbitrary parts
of formulae from [KLR07].

– Notation Management: Users want to reuse, adapt, extend, and categorize
notation definitions (see [KLM+08] for more details).

– Advanced notational forms: Ellipses and Andrews’ dot are examples of ad-
vanced notations that we cannot express yet.
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2 LIG, Université Joseph Fourier, Grenoble, France
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Abstract. Intergeo is a European project dedicated to the sharing of in-
teractive geometry constructions. This project is setting up an annotation
and search web platform which will offer and provide access to thousands of
interactive geometry constructions and resources using them. The search
platform should cross the boundaries of the curriculum standards of Eu-
rope. A topics and competency based approach to retrieval for interac-
tive geometry with designation of the semantic entities has been adopted:
it requests the contributor of an interactive geometry resource to input
the competencies and topics involved in a construction, and allows the
searcher to find it by the input of competencies and topics close to them;
both rely on plain-text-input.

This paper describes the current prototypes, the input-methods, the
workflows used, and the integration into the Intergeo platform.

1 Introduction

The last decade has seen a bloom in tools that allow teachers to enrich their
teaching with interactive data, whether in face-to-face or distant mode. This
wealth has its drawbacks and teachers need support to navigate through this
diversity: which software should I use, where can I find resources, will this
resource work for my class? Indeed, apart from pioneer work by dedicated
teachers, the actual practices in the classroom have not evolved much. The rea-
sons are manifold. Here are the three main ones:

– All the communities that have grown around the different technical solutions
and software available have produced resources that they share in one way
or another. They have all thought about their practice and produced diffe-
rent approaches. Currently these cannot be merged, because the data they
produce is scattered, both physically and semantically. The resources need
to be centrally visible and exchangeable.

– As well as being difficult to find and analyze, the resources are usually diverse
in quality and relevance to a specific need. Teachers are unsure in which
situation a given resource, even if apparently interesting, could actually be
used, and whether it adds pedagogical value to the learning experience [1,2].
They wait for a bolder colleague to report on her attempt. The resources
need to be tested, and published reports need to reflect these tests.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 520–535, 2008.
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– Mastering a piece of software is time-consuming, and very few teachers grow
to become power-users of their tool. The resources need to be easy to use,
share and adapt, in spite of software choices.

In order to solve these issues at least for one specific subject, interactive
geometry, we propose to centralize educational resources from this field on the
Intergeo web platform. All resources will have clear Intellectual Property Rights,
promoting open licences. And they will be there in an interoperable file format
we are going to create, based on OpenMath [3]. This format will be supported
by the most common software programs for interactive geometry, so teachers can
keep on using their own. In this article we will detail the way in which resources
are annotated and how our search tool works with the competencies of many
curriculum standards.

1.1 Outline

Sub-section 1.2 provides a very short description of what interactive geome-
try software is. Section 2 is a survey of learning object repositories comparable
to what the Intergeo platform should be and presents some of the rationale
behind the choice of platform. Section 3 deals with the preliminary phase of the
development of the search tool while analyzing the workflow for the search and
annotation tasks. Section 4 describes the design process of the ontology used for
both representing the various European curricula and the resources we want to
see shared among all users. Section 5 describes the two methods of inputting
queries, by typing and explicitly selecting competencies and topics or by point-
ing in a curriculum or a textbook. The search process, from the query to a list of
resources ordered by matching scores, is described in section 6. The paper ends
with a vision towards the dynamic evolution of the ranking algorithm (section 8).

1.2 What Is Interactive Geometry?

The Intergeo project is driven by European leaders in interactive geometry soft-
ware. We are going to explain what is understood by interactive or dynamic
geometry, a way of doing geometry which is required of math and science teach-
ers more and more often. Interactive geometry allows for the manipulation and
the visualization of a construction (a figure) on a computer. The construction de-
pends on some free parameters, like the position of one or several control points.
The user manipulates the figure through the keyboard, the mouse or a tracking
device, by changing one or more of these free parameters. The construction then
changes accordingly.

Of course, the main entities and relations in interactive geometry are of geome-
trical type. You will find triangles, circles, lines and points, barycentres, tangents,
secants with given angles and distances [4]. But it is much more general than
antique Greek geometry – you can have functions, derivatives, colors, random
variables, all sorts of constructs that allow you to visualize and manipulate
concepts that arise in all sorts of contexts, inside mathematics as well as outside
[5,6,7].



522 P. Libbrecht et al.

2 Survey of Current Repositories

In order to approach the realization of the intergeo platform for sharing inter-
active geometric constructions across curriculum boundaries, we give a brief
survey of the state of learning object repositories which are closest to what the
intergeo platform should be.

2.1 Annotations and Retrieval in Learning Object Repositories

As far as we could observe, learning object repositories all classify learning objects
of a highly variable nature using a certain amount of bibliographic information
augmented by pedagogical and topical information. Unfortunately, there is rarely
enough information to allow fine-grained search. Topical information is, at most,
encoded in broad taxonomies such as the Mathematical Science Classification
(MSC)[8]. The most fine-grained taxonomy for mathematics seems to be the
WebALT repository [9] which attempts to refine the MSC to a level close to a
curriculum standard but seems to stick to a single organization.

Other approaches that tend to be fine-grained are the tag-based approaches,
where any tag can be attributed freely by any person providing content. While
this approach works fine for statistical similarity and in communities that share
a single language, it could only offer translation capabilities if mostly used by
multilingual users and users that bridge several communities; we have not found,
yet, such users to be common.

A learning object repository that provides topical information directly within
the curriculum is GNU Edu [10]: this platform catalogues learning objects accor-
ding to the skills described in a curriculum, split into years and chapters. GNU
Edu allows the skills to be annotated with keywords which can be used to access
the skills directly. The keywords are translated and this is how GNU Edu achieves
cross-curriculum search: a query matches a set of keywords, each matching skills
from each curriculum. GNU Edu does not, however, rank the results or generalize
a query so that related keywords also matched.

The emergent repository TELOS from the LORNET research network, and
its associated competency framework [11] have been considered, but rejected for
their too generic approach. We are not concerned with the design and organiza-
tion of coherent courses or evaluations; on the contrary, Intergeo resources will
be aimed at being used as building blocks by more elaborate Learning Content
Management Systems.

Several approaches to link resources to curricula are available. England’s Cur-
riculum Online [12], a concerted effort between the Education Board of England
and several publishers to present the curriculum standard of England associated
with resources that schools may purchase. Microsoft Lesson Connection is a joint
of effort of Microsoft and a publisher to do the same for the curricula of the USA
[13]. Most of these approaches seem to be based on directly and manually asso-
ciating resources to lines in curricula, something which is clearly not an avenue
for us, since we want the resources to cross the curriculum barriers, even being
available for a freshly encoded curriculum.
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The American commercial project ExploreLearning [14] has a similar view on
cross-curriculum and textbook search: They propose interactive figures that are
associated to both curricula of the different states of the United States, and to
standard textbooks. We don’t know whether this association relies on skills and
topics ontology or (more probably) is performed manually.

The analysis above leads us to the belief that text search engines, based on
information retrieval principles, still tend to be the most used approach for
learning object identification. Information retrieval, the science of search engines,
is a very mature field with pioneer works such as [15]. Software tools such as
Apache Lucene [16] provide a sturdy basis to apply the theories of this field with
good performance expectations. Indeed, we shall exploit partial search queries as
often as 100 times a second for the purpose of designating the topics. Information
retrieval is mostly for word matches. It has taught us the fundamental approach
to quantify the relevance of a document matching a query: this yields search
results that are ranked from most to least relevant and expects users to read
only the most relevant results.

One way to generalize a query is to make it tolerant to typos or to match pho-
netically. Another way is to generalize the search by including semantically close
words. An example is the Compass tool [17], which uses an ontology of all concepts
to generalize queries using concepts related to the query words. But even the Com-
pass approach needs to be complemented for cross-curriculumsearch of interactive
geometry, since we wish that a search in French for the topic théorème de Thalès
should match (at least mildly) a construction contributed by an English speaker
who has annotated it with the competency of recognizing an enlargement. As a re-
sult, the Intergeo project needed an approach that imitates the query-expansion
mechanism found in Compass and others but that performs this expansion with
the mathematical relationships. Hence we need to tackle the work of encoding the
geometric parts of curriculum standards of Europe in a way that identifies the
common topics and their relationships. In particular, the search engine that asso-
ciates topics and competencies to queries will be able to help annotate forthcoming
curricula quickly and resources matching its entries will appear instantly.

2.2 Choice of Repository Platform

Learning object repositories can be compared by the services they offer. We shall
tackle services which are relevant for interactive geometry constructions, on the
authoring side, in order to upload, version, preview, convert, encapsulate into
easily edited web-content, deliver and annotate the resources, and on the user’s
side communicate and report within a chosen community, especially in order to
promote enhancement quality cycles through quality evaluation of resources and
more casual forums.

In order to obtain all these objectives, we settled on building on the foundation
of the Curriki learning object portal [18], an open-source extension of the XWiki
platform, which provides textschtml-editing and communication services, and
appeared easy enough to be developed further to accomodate needed extensions
such as the search tool.
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Having documented the general problematics of applicable technologies, we
now turn to a more precise description of the user workflows, and afterwards
shall cover the literature relevant to curriculum encoding.

3 User Workflow for Searching and Annotating

The Intergeo platform’s main goal is to allow sharing of interactive geometric con-
structions and related materials. This material can take on the form of interactive
geometric constructions, with or without concrete learner tasks attached to them,
as well as web-based materials that encompass these. We shall use the term re-
source here, as has been done often on the web, to denote any of these data types.
What does the sharing mean? Overall, it is the execution of the following roles:

– the annotator role: provision of authoring, licensing, topical, and pedagogical
information about a resource contributed to the Intergeo platform;

– the searcher role: navigation and search through the platform’s database to
find relevant resources to use in teaching, to edit, or to evaluate.

The roles described here shall be complemented with the curriculum encoder
role (described below) and the quality evaluator role described in section 7.

A crucial condition for the annotator’s and searcher’s roles to work is that to-
gether, they use a similar vocabulary to input the information about the resources
and to search for the resources. A fundamental aspect of Intergeo is to solve this in
a cross curriculum fashion, so that the annotator and searcher can express them-
selves in vocabularies that may be in different human languages and in different
environments.

Fig. 1. Théorème de Thalès.
AB/BC = A′B′/B′C′ = 1.62.

A simple example of a matching that
crosses curriculum boundaries is the con-
struction of the division of a segment in
n equal parts. This should be matched by
queries using strings such as “divide in
equal parts”, “diviser en parties de même
longueur”, etc. Curriculum standards, how-
ever, do not all speak about this topic in
the very same way. The English curricu-
lum only mentions the operation of enlarge-
ment, whereas the French national program
of study mentions “connâıtre et utiliser dans
une situation donnée les deux théorèmes suivants” and provides the formulation
of the “Théorème de Thalès” and its converse [19].

A simple example of a mismatching across some of the curriculum boundaries
is the name “Thales’ Theorem”. In French (théorème de Thalès) and Spanish
(teorema de Tales) it indicates the intercepting lines theorem, concluding pro-
portionalities of segments, as in figure 1. However, Thales’ Theorem in English
or in German (Satz des Thales) refers to the theorem that if one takes a point
on a circle and draws segments to the two endpoints of a diameter of the circle,
these segments will be perpendicular, as in figure 2.
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Fig. 2. Satz des Thales

Thus the role of the annotator is to provide suf-
ficiently detailed topical and educational context in-
formation so that users in other curricula can find
resources using the language of their curriculum as
well as using everyday language. For this to work,
we have added a third role to this workflow, that of
curriculum encoder. This person makes sure that ev-
ery competency and topic in a curriculum standard
he or she is responsible for, is encoded in our ontol-
ogy. The curriculum standards come from different

sources, mainly official ones such as ministries of education publications, and of-
ten go by a different name. But everyday practices of teachers lead us to consider
more practical implementations of curricula: textbooks that teachers ordinarily
use in the classroom. We will ask editors to provide at least the table of contents
of their textbooks and manuals to annotate them similarly.

4 GeoSkills: a Cross-Curriculum Ontology for Geometric
Constructions

4.1 Ontologies and Sub-ontologies

The Intergeo project defines an ontology called GeoSkills [20], consisting of
several sub-ontologies (to which we also simply refer as ontologies in themselves).
These contain classes for competencies, topics and educational level, respectively.
The first two reflect an agreement of the community as to what is actually being
taught. The third one will be discussed a little more in the next section. The
ontology mostly describes mathematics learned at the secondary school level,
but could of course be extended to cover much more. Let’s make clear what we
mean by competencies, topics and educational levels:

– a topic is an object of knowledge such as isosceles triangle or Thales theorem;
– a competency is the compound of an ability (a verb) and a topic such as

identify parallel lines;
– an educational level is a stage in the development of a learner, in the con-

text of a specific educational region and educational pathway (school type).
For example ”Eerste klas” of the pathway ”secundair onderwijs” in ”Vlaan-
deren”, an educational region within Belgium.

The competency ontology makes it possible to represent that the competency
“use of scale” taken from the English national program of study [21] is related to
“intercept theorem”, itself linked to triangle, enlargement, similarity of triangles,
measuring segments and measuring angles. And it enables us to capture the fact
that the resource depicted in figure 2 refers to this competency.

One thing the ontology aims at is providing European curriculum experts the
means to encode localized geometry curricula with a common semantics. An-
other is to enable searching, which will be discussed in the next section. The
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goal of this section is to describe the approach and the design decisions made in
order to provide the ontology for curriculum encoding by experts. It presents the
tool we used to create the ontology collaboratively. The methodology we followed
is to rely on mature and widespread tools and practices both at the theoretical
and practical level. On the theoretical level, the approach is to rely on well-
defined semantics, decidable knowledge representation and widely interoperable
languages. On the practical level, the idea is to use tools providing enough affor-
dance for non computer scientists like curriculum experts from several countries,
and to ask them to collaboratively construct the ontology and benchmark it with
instances.

4.2 Other Projects

To design the competency ontology, we first surveyed tools providing curriculum
mappings, encodings, and cross-curriculum search, especially in Europe.

Dragan Gasevic and Marek Hatala [22] developed a curriculum mapping
using SKOS between the ACM (Association for Computing Machinery) clas-
sification [23] and the IEEE Information Management Course Curriculum Rec-
ommendation [24].

The CALIBRATE EU project has been working on curriculum encoding of
competencies for curriculum-based resource browsing [25]. Their ontology is com-
posed of an Action Verb Taxonomy and a Topic Taxonomy. A text fragment is
tagged with a specific competency described with an Action Verb and a set of
Topics taken from the ontology, together called a Tuple. The Tuple approach is
well-suited for curriculum indexing. They also developed TopicMapper, a tool
enabling curriculum expert to encode curriculum texts in html format into
this ontology. It is a tool based on the XTM language providing an easy-to-use
Graphical User Interface. However, Topic Mapper is a standalone application. It
does not work on the web and uses local files.

We chose to use a similar approach to CALIBRATE’s one (a verb plus a set
of topics) to design our competency ontology.

4.3 Editing GeoSkills with Protégé OWL

The Protégé tool [26] has been chosen, both to design and edit the curriculum
ontology and to provide an ontology-based curriculum encoding facility for the
national experts. It corresponds to our need of a widespread tool. Protégé is
the most widely used ontology editor at this moment. It also provides a simple
Graphical User Interface for designing the concepts and properties of the onto-
logy and for encoding curriculum competencies as instances of this ontology.

Protégé offers two major ontological representations (and a corresponding
interface): frame based language [27] or OWL. We chose OWL, because it is an
interoperable format provided by the W3C [28], and because it has a well-defined
semantics. OWL-DL has been proven to be decidable, which was therefore our
final choice. Additionally, several inference engines are available that could help
searching [29,30,31]. This contrasts with the previously mentioned topic maps.
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There exists a standardised language [32] for them and an editing tool [33]. But
this editor is less widely used than Protégé and, more importantly, there are no
results about the decidability of algorithms on topic maps.

In order to collaboratively design and populate the ontology with our sam-
ple curriculum, we first tried to use the WEB versioning system (LibreSource
so6 synchronizer [34]). After some files were corrupted, we switched to the use
of Protégé Server. It saves changes of each concurrent co-author in real time,
thanks to JAVA RMI, thus providing a truly collaborative tool. The limits we
encountered are twofold. Firstly, as RMI saves each change on the server, the
network bandwidth is critical and sometimes not enough. Secondly, Protégé’s
user interface is not editable in the server version, despite it really being impor-
tant to let curriculum experts work. It was solved by stopping the server when
performing changes to the user interface, which was quite rarely.

At this moment, a first version of the curriculum and resource ontology have
been designed and the parts of curricula around the intercepting lines theorem
have been encoded for four countries (Great Britain, France, Germany, Spain)
without major difficulties.

4.4 Design of the Ontology

The competency ontology contains two main concepts. The first is the class
Competency, a hierarchy of action verbs divided in two main subclasses :
TransversalCompetency (such as Apply, Calculate, Explore) and Geo-
metricCompetency (such as Construct, Infer, ToMeasure). An instance
of one of the Competency class is described with:

– a set of instances of the topic ontology (at least one);
– a set of curricula it belongs to;
– names (strings) that can be common names, uncommon names, rare names

or false friends.

The various names properties provide an easy way to qualify the type of names
related to a competency and consequently serve as a basis to implement a fuzzy
search among names (a common name is more probable to be matched than
any other type). They also provide a way to manage localized names in a simple
way, as Protégé OWL provides a user-interface requesting the language of each
string.

The second main class is Topic, a hierarchy of geometry topics mainly divided
into the following sub-classes : Object, Operation, Proof, Theorem and
Tool. Part of the topic ontology is shown in figure 3.

Educational levels are encoded following [35]. Similar to competencies and
topics, levels are named. The levels branch of the ontology encodes the pathways
of learning in the countries of the EU, and the particular country and age that are
associated with a certain context. The latter two pieces of information then allow
the system to find resources of the appropriate educational level with ordering
and distance provided by the pathway and age range.
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Fig. 3. An extract of the Topics branch of the GeoSkills ontology

To test the ontology with concrete resources, a second simple ontology has
been developed representing them. It contains a three class hierarchy: Resource,
LearningSubject and SchoolLevel. A resource is described by a title and an URI.
It is linked to school levels, learning subjects, and competencies (taken from the
competency ontology). This represents the objects which shall be indexed well.

5 Using the Ontology in Searching

Search engines are a crucial part of everyday internet usage, they are the appli-
cations that power information retrieval (see [15]). Both the comprehensive
nature of the major search engines on the web and their simple query mech-
anism are extremely attractive. This simplicity is created on the one hand by
simple text input and on the other hand by the responsiveness of results. These
stimulate numerous search attempts and refinements to attain the right set of
documents.

But because search engines are generally text-based, they are improper to
search for conceptual entities such as described in the previous section, which
can be made of several (overlapping) words. Therefore we designed two means
to let the users easily designate nodes of the ontology.

5.1 Designating by Typing: SkillsTextBox

To let users designate a node of the ontology, we extend the familiar auto-
completion: they can type a few words in the search field, these are matched
to the terms of the names of the individual nodes; the auto-completion pop-up
presents, as the user types, a list of matching nodes similar to figure 4. This
list presents, for each candidate ontology node, the full name of the node, the
number of related resources, an icon of the type, and a link to browse the ontology
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around that node. When chosen using either a click, or a few presses of the down
key followed by the return key, the sequence of words is replaced by the name
of the node, surrounded by square brackets to indicate an exact reference to a
conceptual entity in our ontology.

Fig. 4. Choosing among competencies about
“Thales conf”

This process is used not only
to search but also when anno-
tating a resource: individual com-
petencies, topics, and educa-
tional usage are then provided.

SkillsTextBox uses a simple
HTML form equipped with a
GWT script [36]. SkillsTextBox
also uses the Rocket GWT li-
brary. This script submits the
fragments typed to the index
on the server which uses all
the retrieval matching capabili-
ties (stemming, fuzziness through
edit distance or phonetic matching) to provide an object description of the
best matching 20 nodes of the ontology, which the script renders as an auto-
completion list. This process is depicted in figure 5. More information about it
is at http://www.activemath.org/projects/SkillsTextBox/.

5.2 Which Names to Match?

For SkillsTextBox to come up with the right resources, it is also vital that it
knows the educational context in which a query is submitted. For one, it is a
basic necessity that the system works transparently for the user: when typing a
query, the user should be able to use his or her own language.

Ontology
Nodes

Names Index

input text

query for 
text

matches
(fuzzy...)

node-ids

completion
proposal

symbols'
description

Fig. 5. Token designation using SkillsTextBox

http://www.activemath.org/projects/SkillsTextBox/
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The resulting suggestions for competencies and topics should also be in this
language, and the returned resources probably suitable for students native to
that language should be higher ranked. So letting the person who inputs a query
select their language is a first step (done once in the user’s preferences). This
measure will solve the ambiguity of the name “Thales” either in German or in
French. But the problem runs deeper, for there is a bigger cultural context, that
of the educational pathway in which the user is working. Not regarding this
aspect can create false friends when searching.

One example of a false friend would be when a French-speaking teacher
searches for a resource suitable for grade 5ème. The intergeo system could match
the educational programme where the typical age 10–11 of Western Switzerland
or that of France where the typical age 12–13. The context of use can exploited
to disambiguate.

5.3 Designating by Pointing in a Book

Supplementary to letting users search for resources by explicitly selecting com-
petencies and topics, we will offer the possibility to do this implicitly by letting
the system infer these automatically from specific sections in curriculum stan-
dards or in text books they know well and that include geometry. Although we
shall mostly not be able to offer whole text books to browse through, we expect
it to be unproblematic to display tables of contents.

A user can then browse through a table of content and click on sections
of interest. This click will trigger the selection of the competencies and topics
associated to these sections, adding the necessary queries in the search field.

6 The Search Tool at Work

We have described, in the previous section how a set of words is used to identify
interactively a node in the ontology, such as a competency or an educational
level. In this section we turn to the actual search, from a query as simple-text
to a list of documents, ordered by matching score.

Once a query is launched by the user, it is decomposed into a boolean com-
bination of search terms. Fragments of texts between square brackets indi-
cate queries to individual node names in the ontology whereas isolated words
indicate the generic word-query. Consider the example [Identify parallel
lines] [Enlargement] keystage 3, which includes a reference to a compe-
tency [Identify...], a topic [Enlargement] and two words keystage and 3
that do not yet designate an educational level.

First, the plain words appearing in the query are matched with names of the
nodes of the ontology. The query is then expanded to include queries for the
competencies that include these words, with a low boosting. Next, the query is
transformed as follows:

– query competencies and topics pointed to with high boost;
– for each competency queried, expand with a query for a competency with

the parent competency-verb with lower-boost;
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– for each competency and topics queried, add weakly boosted queries for the
ingredient nodes.

This last expansion step is where a query for the word Thalès, not identified
with a topic by the auto-completion mechanism, is expanded to a query for
Thales-theorem (with high boost) or for enlargement (with lower boost), or for
the task of dividing a segment in equal parts or for parallel lines (both with low
boost). The isolated words appearing in this query are also matched outside of
the ontology (in order of preference):

– in the title of the construction;
– in the author names;
– in the names (along their varying degree of commonality) of the nodes asso-

ciated to each resource;
– in the plain-text content of the resources.

The expanded query for the example above might look like:

comp:identify parallel lines · 100 + top:Identify · 30 + top:Parallel r · 30
+ top:Enlargement r · 100 + top:Amplification r · 100
+ top:Reduction r · 100 + top:Operation r · 100 + txt-en:keystage · 20
+ txt:keystage · 5 + txt-en:3 · 20 + txt:3 · 20 + lvl:keystage 3 · 5

This expanded query has now taken full advantage of the ontology, it is passed
to the resources’ index, also a Lucene index, which returns the first few matching
documents with the highest overall score. A presentation similar to the prototype
of figure 6 is being implemented.

The combination described yields a search engine with the following
characteristics:

– Most importantly, the nodes of the GeoSkills ontology, encoded in the query
and in the annotation, are matched against each other. The queries are gene-
ralized using the relationships in the ontology. This is multilingual and multi-
cultural, e.g., through the use of topics and competencies, but is expressed
using a language-dependent and culture-dependent vocabulary.

– Less importantly, the query words are matched to the resources information
and contents. This match is mostly single-language: e.g. queries in english
search contents in english and maybe contents in another language

7 Enhancing Quality of Retrieval and Resources

In this section we will present our vision towards a dynamic evolution of the
ranking algorithm based on social network behavior and quality evaluation by
peers.

First, the quality asserted by peer review is going to play an important
role [37]: the eLearning objects that we gather on our website will be used in the
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Fig. 6. Prototype of the result of searching for [Identify parallel lines in
intercept theorem] [Enlargement] keystage 3

classroom, and we will organize and collect data about this use. We will collect
automatic server data like the number of downloads of the resource but also user
reports on the usage: on informal forums and chats where user’s opinions will be
expressed in their own words, but as well through a short questionnaire regard-
ing the adequacy of the resource for the advertised purpose. This questionnaire
will be available online to every identified user, for a priori quality assessment for
a teacher enrolling for a teaching experience, and a posteriori quality assessment
after the experimentation in the classroom has taken place.

Therefore a resource with many positive users feedback will be ranked before
a resource with fewer or absent or negative feedback. To achieve this, we shall en-
rich the index, during nightly updates, with the results of the quality statements,
and queries will be expanded to take it in account. A forum will be attached to
resources to promote the evolution of the resource that should not always be used
“as is” but should be periodically revised, adapted and improved. This quality
assessment as well as the sense of community (see below) will promote respon-
sibility and we expect that authors will syndicate around subjects to organize
the evolution and production of quality educational content.

Second, the pedagogical and personal context has to be taken into account,
with items such as the country and the language in which the teaching is going to
happen, the circle of friends a user has or pioneer experts she tries to emulate; we
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might want that a resource deemed relevant with regard to the internationalized
query to be ranked before another one, despite its lower query-matching score,
because it was previously used and appreciated by fellow teachers belonging in
the same real or virtual community. This shall be realized by enriching quality
results in the index with contextual informations (per educational context and
per named-user), the query expansion will then favour resources validated in a
similar educational level or by a user tagged as a friend [38].

The paradigm behind this is philosophical as well as practical: the users know
better. Therefore the social interactions and the actual use of the resources should
dictate the distances and the scoring, not the reverse.

8 Conclusion

8.1 Implementation Status

The GeoSkills ontology is reaching completeness in structure, it can be seen
at http://i2geo.net/ontologies/dev/GeoSkills.owl and a rendering can
be seen at http://i2geo.net/ontologies/dev/index.html. The ontology is
being completed for the most learning pathways of Germany, France, UK, The
Netherlands and Spain, before October 2008. Curriculum-encoding will then be
done by contributing curriculum-experts during the remaining two years of the
intergeo project.

The SkillsTextBox GWT project can be enjoyed and downloaded from its
project page http://ls.activemath.org/projects/SkillsTextBox. It is
made available under the Apache Public License. The Search Tool is under active
development and will be made available to the public in the summer.

The intergeo platform is under a first harvesting phase where interested par-
ties report about intent to contribute interactive geometry constructions, with
license. Since its launch several hundreds of reports have been submitted. The
platform is accessible on http://i2geo.net/. The second phase will be acti-
vated at the end of Spring, based on Curriki, the annotations system will be
incorporated in August. Finally, the quality framework will be embedded in the
platform and in the search engine at the end of the year.

8.2 Summary

In this paper we have presented an approach to cross-curriculum search relying
on a multinational and domain-aware ontology. The ontology basis is the major
ingredient for both helping annotating and searching the constructions, of which
we expect to receive several thousands. It will be the result of the coordinated
work of curriculum encoders, which we expect to be done by curriculum experts
in their community aware of the language of others cultures. This ontology is
the key to enable the multinationality of the seach and annotation process tool.

http://i2geo.net/ontologies/dev/GeoSkills.owl
http://i2geo.net/ontologies/dev/index.html
http://ls.activemath.org/projects/SkillsTextBox
http://i2geo.net/
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Abstract. The ubiquity of text search is both a boon and bane for the
quest for math search. A bane in that user’s expectations are high regard-
ing accuracy, in-context highlighting and similar features. Yet also a boon
with the availability of highly evolved search engine libraries; Youssef
has previously shown how an appropriate ‘textualization’ of mathemat-
ics into an indexable form allows standard text search engines to be
applied.

Furthermore, given sufficiently semantic source forms for the math,
such as LATEX or Content MathML, the indexed form can be enhanced
by co-locating synonyms, aliases and other metadata, thus increasing the
accuracy and richness of expression.

Unfortunately, Content MathML is not always available, and the con-
version from LATEX to Presentation MathML (pMML) is too complex to
carry out on the fly. Thus, one loses the ability to provide query-specific,
fine-grained highlighting within the pMML displayed in search results to
the user.

Where semantic information is available, however, such as for pMML
generated from a richer representation, we propose augmenting the gener-
ated pMML with those semantics from which synonyms and other meta-
data can be reintroduced. Thus, in this paper, we aim to have both the
high accuracy introduced by semantics while still obtaining fine-grained
highlighting.

1 Introduction

The achievements of modern text search on the web have raised standards and
user expectations. The relevance of the top ranked results to the query are of-
ten astounding. Concise summaries of the search results with matching terms
highlighted allows users to quickly scan to find what they are looking for. Search
has become, for better, sometimes worse, one of the first tools used to solve
many information problems. These high expectations are carried over to math
search; anecdotally, we see users uninterested in its unique challenges — the
chess playing dog rationalization1 carries little weight.
1 He doesn’t play well, but that he plays at all is impressive.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 536–542, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Search results for BesselJ = trigonometric with coarse-grained math high-
lighting

In previous work [1], we described a strategy for math-aware search in which
the mathematics, in whatever representation, is encoded into a linear textual
form that can be processed by a conventional text search engine. This allows us
to leverage the advances and tools in that field[2]. Recently, we have reported
progress in improving the accuracy and ranking of math-aware search through
the embedded semantics [4,5], and work in these areas continue.

In this paper, we describe on-going work in which we will add fine-grained
highlighting to our math search engine. Our test corpus is the Digital Library
of Mathematical Functions2. In the search results ‘hit list’, we show a summary
of each matching document containing the fragments that match the query.
Rather than merely highlighting complete math expressions that have matches

2 http://dlmf.nist.gov/
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(See Figure 1 for an example), we intend to refine the presentation so that only
the individual terms within the MathML3 that match are highlighted. The ex-
pectation is that this will help users scan the hit list to select the most appropri-
ate ones. Of course, this must be accomplished without sacrificing the previous
improvements.

2 The Role of Semantics

Document processing typically proceeds through several levels of transforma-
tion beginning with the ‘authored’ form possibly passing through semantically-
enhanced forms (e.g. some XML variant), and ending up in a presentational form
for display to the user (e.g. HTML). In our case, the authored form is LATEX;
we use LaTeXML [3] to carry out the conversion which involves TEX-like pro-
cessing, expansion, parsing of the mathematics, and data reorganization, while
preserving as much authored information (both presentational and semantic) as
we can — the process is fairly time-consuming for the large documents involved,
and is clearly better suited for batch processing than server-side usage.

As we will show, the semantic form is the most useful for many information
extraction tasks, particularly indexing for search. The highlighting necessarily
involves the presentation form. The cooperation between these levels for the
purposes of search, is influenced by what information can be carried between
levels, and whether the conversions are efficient enough to do on-the-fly, in the
server. In particular, we must decide at exactly which level search indexing is
applied.

Mathematical notation is extremely symbolic; much information can be con-
veyed by a single letter or slight change in position. A J may stand for the
Bessel function Jν , or the Anger function Jν , or perhaps Jordan’s function Jk.
Of course, any content-oriented markup worth its salt will make these distinc-
tions clear.

Yet, a user may search for a specific function, say BesselJ, expecting only
matches to the first function, or may search more generically for J and reason-
ably expect to match all of the above functions. Thus, for good accuracy and
expressiveness, the indexed form of math needs to reflect both semantic and pre-
sentational aspects. A technique we call token co-location allows storing multiple
forms of a term in the search index. Aliases, synonyms and other metadata can
also be handled in this way, such as associating ‘trigonometric’ with sin and cos.
The query in Figure 1 demonstrates these aspects. Furthermore, by co-locating
the aliases, they are stored as if they appeared at the same document location,
preserving information which will be essential for highlighting.

It is important to note at this point that, given the smaller corpus of a digital
library like the DLMF[1], such techniques as latent semantic indexing are harder
to apply, but may be worth investigating in the future to turn latent semantics
into explicitly stated semantics for richer search capabilities.

3 http://www.w3.org/Math/
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3 The Role of Presentation

If the application needs only to find which documents match a query, one has
much flexibility regarding at which level of processing the document is indexed.
However, it is very useful to a reader to see the portions of the matching docu-
ments that match the query, along with some context. Given that a search query
is at best a crude approximation to what they really wanted, such summaries
help them select the most documents from the results.

In the case of text documents, a common approach is to break each matching
document into fragments (typically sentences) at search time. The query is then
reapplied to the fragments to select the relevant ones. Finally, the matching
tokens within each fragment are then marked for highlighting.

This approach needs to be refined to deal with richly structured XML docu-
ments. In such cases, reasonable summary fragments can include not only sen-
tences, but equations, figures and portions of tables. Moreover, the reconstructed
summary must itself also be a valid XML document. Furthermore, one would
like to store the fragments as XML document fragments, and thus the indexing
must ‘skip over’ the XML markup. In fact, this is easily achieved by manipulat-
ing term positions during indexing, and thus the eventual highlighting preserves
the XML structures.

This additional complexity is a strong inducement to carry out the fragment-
ing in batch mode, rather than during search, and to generate a separate frag-
ment index. At search time, the query is applied to the document index to find
the relevant documents, as before. But, to summarize each document, the frag-
ment index is searched to find matching fragments for that document.

Moreover, this argues for indexing the documents at the presentation level,
in contrast to the arguments of the previous section. This greatly simplifies the
processing needed at search time — one never gives up the hubris that one’s
site will be The Next Big Thing. However, token co-location again can be used
to associate any desired semantics with the presentational tokens, provided they
are made available.

Turning to the mathematics specific aspects of this argument, we note that
in our previous work, each math entity was treated as a unit by converting it to
a textual form corresponding to the LATEX markup originally used to author it.
Since we have adopted a semantically enhanced LATEX markup (e.g. macros like
\BesselJ)[3], we gain the benefits discussed in the previous section. However,
converting from LATEX form to presentation on-the-fly is not feasible, and so we
lose the direct correspondence with the structure of the Presentation MathML.
Consequently, we are unable to highlight individual mathematical terms or vari-
ables within the summary, but are only able to highlight the entire formula, as
can be seen in Figure 1.

4 A Strategy

We propose the following strategy to work around the limitations and contra-
dictions described in the previous sections. Firstly, we will convert from the
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Fig. 2. The query of Figure 1 with fine-grained highlighting

content-oriented level of representation to the presentation-oriented level while
augmenting the presentation with any semantic information available. In our par-
ticular case, we can simply carry the ‘meaning’ attribute of LaTeXML’s internal
representations over to the generated Presentation MathML token elements in a
special attribute, say ltxml:meaning. These ‘meanings’ form a rough ontology,
and could be (but have not yet been) defined by OpenMath4 Content Dictionar-
ies. Associated with each such meaning is a set of keywords and aliases. Thus,
associated with the sin, generated by \sin, are the keywords: trigonometric,
sine, function, elementary and periodic. A similar approach could be used when
converting Content MathML or other representations.

A careful treewalk of the augmented MathML generates the same textualiza-
tion as was produced by textualizing the LATEX, as described above. In this case,
however, we take care to manipulate the positions of the textualized tokens as
they are being indexed so that each corresponds to the appropriate MathML
fragment with the expression. This assures that the eventual highlighting will be
both possible, and that the result will be well-formed XML. Whenever a token
with assigned meaning is encountered, the additional aliases are co-located with
the principal MathML token.

5 Preliminary Results

A preliminary implementation of these ideas has been carried out, with the result
as shown in Figure 2. Although no detailed benchmarking has been carried out,
there appears to be no execution time penalty for either indexing or search.

Two kinds of highlighting inaccuracies could be expected from this relatively
simple approach.

4 http://www.openmath.org/
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Fig. 3. First hit from the query J 1(z)

– tokens present in the query but not matching the full query may be high-
lighted when they should not;

– non-indexed tokens or markings (e.g. parentheses, surds) may fail to be high-
lighted when they should be.

And in fact, the first is seen in Figure 2 and both are demonstrated in Figure 3.

Although subjectively exploring the DLMF corpus with fine-grained high-
lighting is more pleasant and helpful than the coarse-grained whole-formula
highlighting, the errors, especially the first type can be quite distracting; the
second problem is more an aesthetic issue.

In fact, the over-highlighting problem is commonly seen in text search engines,
but it simply is not as disturbing as within math. For example, in Figure 3, every
occurrence of z is highlighted, not just when it is the argument of J1. Users
may find this confusing, and it begins to defeat the purpose of the fine-grained
highlighting, namely to make easy the selection of good matches.

The solution will be to apply more of the restrictive ‘logic’ of the query (ands,
ors, proximity) to the highlighting phase than is currently done. The search
engine we are using, Lucene5, apparently only makes token positions available
when searching using primitive token queries. If that is indeed the case, we will
be forced to reimplement or approximate some of that logic during highlighting.
Tedious, but doable.

The second problem seems less serious but may yield to one of two approaches.
One would be to extend the textualization language to allow indexing MathML
structural schema rather than just token elements. Another would be to broaden
the highlighting to a parent when many children of a node are highlighted.

5 http://lucene.apache.org/
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6 Conclusion

We have described techniques that should give math-aware search engines the
capabilities of both high accuracy and relevance, while still presenting the user
with a concise and appropriate summary of each result that indicates how the
document relates to the query.

This paper describes work that is in progress. However, initial implementation
gives satisfying results, with some flaws. We anticipate being able to remedy some
or all of those flaws and demonstrate the results at the conference.
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Abstract. There is a commonMathematics SubjectClassification(MSC)
System used for categorizing mathematical papers and knowledge. We
present results of machine learning of the MSC on full texts of papers
in the mathematical digital libraries DML-CZ and NUMDAM. The F1-
measure achieved on classification task of top-level MSC categories
exceeds 89%. We describe and evaluate our methods for measuring the
similarity of papers in the digital library based on paper full texts.

1 Introduction

We thrive in information-thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,

discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,

summarize, itemize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats. (Edward R. Tufte)

Mathematicians are used to classifying their papers. One of the first mathemat-
ical classification schemes appeared in the subject index for Pure Mathematics
of 19 volumes of the Catalogue of Scientific Papers 1800–1900 [1]. This attempt
was continued but not completed by the International Catalogue of Scientific
Literature (1901–1914). About two hundred classes were used. Headings in the
Jahrbuch [2] may be considered as another classification scheme.

The Library of Congress classification system has 939 subheadings under the
heading QA–Mathematics. Another schemes used in many libraries around the
world are the Dewey Decimal system and the Referativnyi Zhurnal System used
in the Soviet Union. To add to this wide variety of schemes, we may men-
tion systems used by NSF Mathematics Programs, by various encyclopaedia
projects such as Wikipedia, or by the arXiv Preprint project. However, the most
commonly used classification system today is the Mathematics Subject Classi-
fication (MSC) scheme (http://www.ams.org/msc/), developed and supported
jointly by reviewing databases Zentralblatt MATH (Zbl) and Mathematical Re-
views (MR).
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In order to classify papers some system of paper categorization has to be
chosen. We may pick up some established system developed by human experts
or we may try to induce one from digital library of papers by clever document
clustering and machine learning techniques.

1.1 Mathematics Subject Classification

It is clear that no fixed classification scheme can survive longer time period, since
new areas of mathematics appear every year. Mathematicians entered the new
millennium with the MSC version 2000, migrating from MSC of 1991. Draft
version of MSC 2010 has already been prepared and published at msc2010.org
recently. The primary and secondary keys of MSC 2000, requested today by most
mathematical journals are used for indexing and categorizing a vast amount of
new papers—see the exponential growth of publications in Figure 1.

We believe that automated classification system, good article similarity mea-
sures and robust math paper classifiers allowing more focused math searching
capabilities will help to tackle the future information explosion as predicted by
Stephen Hawking:

“If [in 2600] you stacked all the new books being published next to each
other, you would have to move at ninety miles an hour just to keep up
with the end of the line. Of course, by 2600 new artistic and scientific
work will come in electronic forms, rather than as physical books and
paper. Nevertheless, if the exponential growth continued, there would be
ten papers a second in my kind of theoretical physics, and no time to
read them.”

Editors of mathematical journals usually require the authors themselves to in-
clude the MSC codes in manuscripts submitted for publication. However, most
retrodigitized papers published before the adoption of MSC are not classified yet.

.

Fig. 1. Number of references in The Collection of Computer Science bibliographies
(http://liinwww.ira.uka.de/bibliography/) as of March 2008
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Some projects, e.g. Jahrbuch, use MSC 2000 even for the retroclassification
of papers. Human classification needs significant resources of qualified math-
ematicians and reviewers. A similar situation is in the other retrodigitization
projects such as NUMDAM [3] (http://www.numdam.org), or DML-CZ [4,5]
(http://www.dml.cz): classifying digitized papers with MSC 2000 manually is
expensive.

As there are already many papers properly classified (by authors and review-
ers) in recent publications, methods of machine learning may be used to train
an automated classifier based on the full texts author- and/or reviewer-classified
papers.

This paper is organized as follows. In Section 2 we start by describing our data
sources and preprocessing needed for our experiments. Section 3 on page 547
discusses results of automated document classification. In Section 4 on page 550
we show what results we obtained while computing mathematical document
similarity. Finally, we discuss possible future experiments and work in Section 5
on page 555.

2 Data Preprocessing

We run carelessly to the precipice, after we have put something before us to prevent
us seeing it. (Blaise Pascal)

The data available for experiments are metadata and full texts of mathematical
journals covered by the DML-CZ and NUMDAM projects.

2.1 Primary Data

During the first three years of the DML-CZ project, we digitized and collected
data in the digital library, accessible via a web tool called Metadata editor
(editor.dml.cz). To date (March 2008), in the digitized part there are 369 vol-
umes of 14 journals and book collections: 1,493 issues, 11,742 articles on 177,615
pages.

From NUMDAM, we got another 15,767 full texts of articles (in simple XML
format) for our research. We converted them into DML-CZ format as utf8 en-
coded text and excluded 134 articles due to inconsistencies such as having the
same ID for parts of paper, invalid MSC etc. There were 5,697 papers tagged as
English, 4,587 as French, 384 as Italian, 84 as German and there was no language
tag for the remaining 4,881 papers available—language can be reliably detected
by established statistical methods [6].

For experiments, we have used two types of data:

1. Texts from scanned pages of digitized journals (usually before 1990, where
no electronic data are available). There are of course errors in full text,
especially in mathematical formulae, as these were not recognized by OCR.

2. Texts from ‘digital-born’ papers, written in TEX, as papers of the journal
Archivum Mathematicum (http://www.emis.de/journals/AM/) from years
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1992–2007, where we had access to TEX source files. The workflow of the
paper publishing process in some journals was modified somewhat so that
all fine-grained metadata including the full text are exported for the digital
library for long-term storage (CEDRAM project).

We started our experiments with retrodigitized articles, where texts were ob-
tained by the OCR process [7].

After excluding papers with no MSC code we were left with 21,431 papers.
From those, we only used papers tagged as English and with only a primary
MSC classification (no secondary MSC) for our current experiments. This left
us with 5,040 articles.

We started with our experiments with the task of classification of top-level
(the first 2 digits) MSC categories. To ensure meaningful results, we used only
a part of the text corpus: only top-level categories with more than 30/40/60
papers in them were considered. Without this pruning step, we could not expect
the automated classifiers to learn well: given tiny classes comprising only a few
papers, generalizing well is not straightforward. In this way, we were left with
31, 27 and 20 top-level MSC classes for the minimum 30, 40 and 60 papers per
class limit, respectively. The total amount of articles after this pruning step is
4,618, 4,481 and 4,127 articles, respectively.

2.2 Preprocessing and Methods Used

It is widely known that the design of the learning architecture is very important,
as is preprocessing, learning methods and their parameters [8].

For the purpose of building an automated MSC classification system, we
chose the standard Vector Space Model (VSM) together with statistical Machine
Learning (ML) methods. In order to convert the text in the natural language
to vectors of features, several preprocessing steps must be taken—for a more
thorough explanation, see e.g. [8]. A detailed description of all ML methods
and IR notions is beyond the scope of this paper; the reader is referred to the
overviews [9,10,11] for exact definitions and notation used.

The setup of the experiments is such that we run a vast array of training
attempts in multidimensional learning space of tokenizers, feature selectors, term
weighting types, classifiers and learning methods’ parameters:

tokenization and lemmatization: the first part of the preprocessing relates
to how the text is split into tokens (words)—alphabetic, lowercase, Krovetz
stemmer [12], lemmatization, bi-gram tokenization (collocations chosen by
MI-score);

feature selectors: how to choose the tokens that discriminate best—χ2, mu-
tual information (MI-score) [13,14,15];

feature amount: how many features are needed to classify best—500, 2,000 or
20,000 features [14];

term weighting: how the features will be weighted (tfidf variants [16] or [11,
Fig. 6.15]) and smart weights normalizations (atc (augmented term fre-
quency), bnn and nnn) [17];
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classifiers: Naïve Bayes (NB), k-Nearest Neighbours (kNN), Support Vector
Machines (SVM), decision trees, Artificial Neural Nets (ANN), K-star al-
gorithm, Hyperpipes;

threshold estimators: how to choose the category status of the classifier based
on a threshold—fixed or s-cut strategy for threshold setting [18];

evaluation and confidence estimation: how results are measured and how
the confidence is estimated in them—Receiver Operating Characteristic
(ROC), Normalized Cross Entropy (NCE) [19].

To give an example, evaluating one particular combination might mean that
we tokenize the corpus using an alphabetic tokenizer, convert the tokens to lower
case, select the best 2,000 tokens (words aka features aka terms) using χ2 and
weigh them using an atc scheme. One part of the corpus is then used for training
the binary classifiers and the rest is evaluated to see whether the predicted MSC
equals the expected MSC. Each binary classifier is responsible for one category
(MSC class), and given a full text on input, returns whether the input belongs
to the category or not. Each article may thus be predicted to belong to any
number of categories, including none or all.

Out of the seven classifiers listed above, only the first three were used in
the final experiments. The other four were discarded on the ground of poor
performance in preliminary experiments not reported here. On the other hand,
there are several recent hierarchical classification algorithms [20] that we did not
have time to explore yet.

In order to evaluate the quality of each learned classifier, we compute an
average of ten cross-validation runs. We measure micro/macro F1, accuracy,
precision, recall, correlation coefficient, break-even point and their standard de-
viations [11,8]. Since the popular accuracy measure is highly unsuitable for our
task (extremely unbalanced ratio of positive/negative test examples), we will
report results using the even more popular F1 measure in this paper.

All these results are then compared to see which ‘points’ in the parameter
space perform best. Our framework allows easy comparison of the evaluated
parameters with visualization of the whole result space methods chosen—see
multidimensional data visualization on Figure 2.

As the number of different learning setup combinations grows exponentially,
methods that performed poorly in preliminary tests were excluded in the full
testing.

3 MSC 2000 Automated Classification

The classification here adopted has been the subject of more or less unfavourable
criticism; the principal objection to it, however, seems to be that it is different from

any of those previously employed, and is therefore to this extent inconvenient without
any obvious advantage in the innovations. (J.A. Allen, [21])

A detailed evaluation of classification accuracy shows that, while automatically
classifying the first two letters of primary MSC, we can easily reach an 80% F1
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Fig. 2. Framework for comparing learning methods [8]. The two differently colored
curves correspond to the chosen learning methods (k-NN, Naïve Bayes in the legend
on the right). From the colors below chosen function values, one immediately sees which
combination (at the bottom) of preprocessing methods leads to which particular value.

classification score with almost any combination of methods. With fine-tuning the
best method (Support Vector Machines with a large number of features seems to
be the winner) we can increase the F1 score to 89% or more. The microaveraged
accuracy measure is above 99%, but is uninteresting as the baseline score, which
can be achieved by a trivial reject-all classifier, is as high as 30/31 = 97%. The
same difficulty does not arise with microaveraged F1, where trivial classifiers score
under 6%. In this light, our best result of nearly 90% F1 score is quite encouraging.

In Figure 3 on the facing page there is a side-by-side plot of three different
corpora which result from setting the 30/40/60 minimum articles per category
threshold. The intuition is that, given less training examples, the task of learning
a classifier would become harder and classification accuracy would drop. This
can indeed be observed here. On the other hand, the drops are not dramatic but
rather graceful (about two F1 percentage points for going from a minimum of
60 to 40, and another 1% for going from 40 to 30). Also to be noted is another
factor contributing to this drop—with a lower article per category threshold, we
are in fact classifying into more classes (recall that the number of classes for the
60, 40 and 30 threshold is 20, 27 and 31 classes, respectively). Again, this makes
more room for error and lowers the score.
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Fig. 3. Dependency of performance on the number of examples per class limit. From
the three curves one can see that by increasing the threshold of minimum category size
one gets better results in every aspect (color square combination at the bottom).

Figure 4 on the next page enables us to examine the best performing combi-
nations of methods and parameters. It may be observed that the best classifiers
are exclusively SVM and kNN; the performance of NB depends heavily on term
weighting. Also the aggressive feature selection of only 500 features performed
poorly. The best result of the micro-averaged F1 score of 89.03% was achieved
with SVM with linear kernel, χ2 feature selection of 20,000 features, atc term
weighting and decision threshold selected dynamically by s-cut. In the light of
the previous comment, it is unsurprising that this maximum occurred in the
dataset selected with a minimum article per category threshold of 60. F1 scores
at the very same configuration, but with a threshold of 40 and 30 articles per
category read 86.28% and 85.72%, respectively.

Similarly, we measure and can visualize training times (computation expense)
for every method tried. Many of these are computationally expensive—it takes
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Fig. 4. Classifiers’ learning methods comparison by F1 measure. SVM and kNN run
hand in hand while NB lags behind. The major influence is due to the threshold on
minimum category size (see Figure 3 on the preceding page).

days to weeks on a server with four multithreaded processors to compute all the
results to visualize and analyze.

4 Mathematical Document Similarity

It’s false to assume that mathematics consists of discrete subfields, it’s false to
assume that there is an objective way to gather those subfields into main divisions,
and it’s false to assume that there is an accurate two-dimensional positioning of the

parts. (Dave Rusin [22])

Recall that one of the purposes of the automated MSC classification detailed
above is to enable a similarity search. Given MSC categories, the user may
browse articles with similar MSCs and thus (hopefully) with similarly relevant
content.

http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
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But we have also been intrigued by similarity searches based on raw full
text, and not on metadata such as MSC codes. This differs in that there is no
predefined class taxonomy that the articles ought to follow (such as MSC). The
similarity of two articles is gauged directly based on the articles’ content, with
no reference to human-entered or human-revised metadata.

Because fine linguistic analysis tools would be ineffective (recall that our texts
come from OCR, with errors appearing as early as at the character level), we
opted for ‘a brute’ Information Retrieval approach. Namely, we tried comput-
ing paper similarities using tfidf [16] and Latent Semantic Analysis (LSA) [23]
methods. Again, both use a Vector Space Model, first converting articles to vec-
tors and then using the cosine of the angle between the two document vectors to
assess their similarity. [11] The difference between them is that while tfidf works
directly over tokens, LSA first extracts concepts, then projects the vectors into
this conceptual space where it only computes similarity. For LSA we chose the
200 top latent dimensions (concepts) to represent the vectors, in accordance with
standard Information Retrieval practise [23].

Evaluating the effectiveness of our similarity schemes is not as straightforward
as in the classification task. This is due to the fact that, as far as we know,
there exists no corpus with an explicitly evaluated similarity between each pair
of papers. In this way, we are left with two options: either constructing such
corpus ourselves, or approximating it. As the first option appears too costly, we
decided to assume that MSC equality implies content similarity. Accordingly, we
evaluated how closely the computed similarity between two papers corresponds
to the similarity implied by them sharing the same MSC.

Again, to avoid data sparseness, we only took note of the top MSC categories
(first two letters of the MSC codes). In Figures 5 and 6 on page 553 there are
tfidf and LSA plots of similarities between all English papers in our database
that are tagged only with a primary MSC code.

Two things can be seen immediately from the plot:

– articles within one top MSC group are usually very similar (lighter squares
along the diagonal);

– the similarities of articles from different MSC groups are low (dark rectangles
off diagonal).

There are also exceptions, such as patches of light colour off the diagonal
as well as dark patches within the MSC group squares. This is however to be
expected from noisy real-world data and cannot be fixed nor explained without
actually inspecting the articles by hand. Clear small square areas in matrix detail
on Figure 7 on page 554 show that papers exhibit similarity of MSC even when
sharing MSC code prefix of length 3 or higher.

4.1 Experiments with Latent Semantic Analysis

Next experiment we tried with Latent Semantic Analysis [23] was to see which
concepts are the most relevant ones.

http://www.ams.org/msc/
http://www.ams.org/msc/
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http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
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Fig. 5. MSC-sorted documents’ similarity matrix computed by tfidf. The axes of this
5104×5104 matrix are articles, grouped together by their MSC code (white vertical
and horizontal lines separate different top-level MSC categories) and sorted lexico-
graphically by full five letter MSC code. The intensity of the plot shows similarity,
with white being the most similar and black being completely dissimilar. Note that
because the ordering of articles along both axes is identical, all diagonal elements must
necessarily be white (completely similar), as each article is always fully similar to itself.

There were papers in several different languages in the Czechoslovak Mathe-
matical Journal (CMJ). When we listed the top concepts in LSA of the CMJ
corpus, it was clear that the first thing the method was going to decide was its
language, as the first terms of top concepts are:

1. 0.3 "the" +0.19 "and" +0.19 "is" +0.18 "that" +0.15 "of" +0.14 "we" +0.14 "for"
+0.11 "ε" +0.11 "let" +0.11 "then" +. . .

2. −0.41 "ist" −0.40 "die" −0.28 "und" −0.26 "der" −0.23 "wir" −0.21 "für"
−0.17 "eine" −0.17 "von" −0.14 "mit" −0.13 "dann" +. . .

http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
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Fig. 6. MSC-sorted documents’ similarity matrix computed by LSA. Interpretation is
identical to Figure 5.

3. −0.31 "de" −0.30 "est" −0.29 "que" −0.27 "la" −0.26 "les" −0.2 "une"
−0.2 "pour" −0.20 "et" −0.18 "dans" −0.18 "nous" +. . .

4. −0.36 "qto" −0.29 "dl�" −0.23 "pust�" −0.19 "iz" −0.19 "esli" −0.16 "tak"
−0.16 "to" −0.14 "na" −0.14 "togda" −0.131169 "my" +. . .

5. −0.33 "semigroup" −0.25 "ideal" −0.19 "group" −0.18 "lattice" +0.18 "solution"
+0.16 "equation" −0.16 "ordered" −0.15 "ideals" −0.15 "semigroups" +. . .

6. 0.46 "graph" +0.40 "vertices" +0.36 "vertex" +0.23 "graphs" +0.2 "edge"
+0.19 "edges" −0.18 "ε" −0.15 "semigroup" −0.13 "ideal" +. . .

7. 0.81 "ε" −0.25 "semigroup" −0.16 "ideal" +0.12 "lattice" −0.11 "semigroups"
+0.10 "i" −0.1 "ideals" +0.09 "ordered" +0.09 "ř" −0.08 "idempotent" +. . .

8. 0.29 "semigroup" −0.22 "space" +0.2 "ε" +0.19 "solution" +0.19 "ideal"
+0.18 "equation" +0.16 "oscillatory" −0.15 "spaces" −0.16 "compact" +. . .

http://www.ams.org/msc/
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Fig. 7. Detail of MSC-sorted documents’ similarity matrix computed by LSA for top-
level MSC code 20-xx Group theory and generalizations. The white lower right square
corresponds to the 20Mxx Semigroups subject papers. We can see strong similarity
of 20Mxx to 20.92 Semigroups, general theory and 20.93 Semigroups, structure and
classification (white lower left and upper right rectangles).

The first concepts clearly capture the language of the paper (EN, DE, FR,
RU), and only then topical term-sets start to be grabbed. It is not surprising—
the classifiers then have to be trained either for every language, or the document
features have to be chosen language-independently by mapping words to some
common topic ontology. To the best of our knowledge, nothing like EuroWordNet
for mathematical subject classification terms or mathematics exists.

Given the amount of training data—papers of given MSC code for given
language—we face the sparsity problem for languages such as Czech, Italian,
German and even French presented in the digital library.

When we trained LSA on the monolingual corpora of Archivum Mathe-
maticum, where mathematics formulae were used during tokenization (subcorpus

http://www.ams.org/msc/
http://www.ams.org/msc/
http://www.ams.org/msc/
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created from original TEX files), we saw that even in the first concepts, there
was significant proportion of mathematical terms with high weights in concepts
created by LSA:

1. −0.32 "t" −0.24 "ds" −0.17 "u" −0.17 "_" −0.17 "x" −0.15 "solution"
−0.12 "equation" −0.11 "q" −0.11 "x_" −0.11 "oscillatory" +. . .

2. 0.28 "ds" +0.28 "t" −0.22 "bundle" −0.16 "natural" +0.15 "oscillatory"
−0.15 "vector" +0.13 "solution" −0.13 "connection" −0.13 "manifold"
+0.11 "t_0" +. . .

3. −0.22 "bundle" +0.19 "ring" −0.17 "natural" −0.16 "oscillatory" +0.15 "fuzzy"
−0.15 "ds" +0.12 "ideal" −0.11 "t" −0.11 "$r_0$" −0.11 "nonoscillatory" +. . .

It supports the idea that mathematical formulae have to be taken into
account—having robust math OCR and finding its good discriminative fea-
ture representation we may get much better similarity and classification results
in the future.

5 Conclusions and Future Work

Words differently arranged have a different meaning,
and meanings differently arranged have different effects.

(Blaise Pascal)

Our results convincingly demonstrated the feasibility of a machine learning ap-
proach to the classification of mathematical papers. Although we compared and
reported the results according to the F1 measure, our approach can easily be
tweaked to favour a different trade-off between higher recall and/or precision.
Results in the form of guessed MSC and similarity lists are going to be directly
used in the DML-CZ project.

Given enough data, when we extrapolate the best results of preliminary exper-
iments done on our limited data, with linear machine learning methods (creating
separable convex spaces in multidimensional feature space) we were able to ap-
proach a very high precision of 96% and recall of 92.5%, which are the current
bests, for a combined F1 score of well over 90%. Future research thus extends to
evaluating the classification on all 64 top MSC categories, and using hierarchi-
cal classifiers to cover the full MSC taxonomy. With ambitions for even higher
recall, there are several approaches, namely to either improve the preprocessing
for vectors representing the documents by NLP techniques (characteristic words,
bi-words, etc.) or use higher order models (deep networks). Mainstream machine
learning research was concentrated on using “convex”, shallow methods (SVM,
shallow neural networks with back-propagation training) so far. State-of-the-art
fine tuned methods allow very high accuracy even on large scale classification
problems. However, the training of these methods is exceptionally high and the
models are big. Using the ensembles of classifiers makes the situation even less
satisfactory (size even bigger), and the final models need to be regularized. In
future, we plan to try new algorithms for a hierarchical text classification [20]
and training large models with non-convex optimization [24] that may give clas-
sifications that does not exhibit overfitting.

http://www.ams.org/msc/
http://dml.cz
http://www.ams.org/msc/
http://www.ams.org/msc/
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Further studies will encompass a fine-grained classification trained on bigger
collections (using MSC tagged mathematical papers from (ArXiv.org), growing
NUMDAM and DML-CZ libraries etc.), and a rigorous measure confidence
evaluation [19].

For final large scale applications scaling issues, and fine-tuning the best perfor-
mance by choosing the best set of preprocessing parameters and machine learning
methods remains to be done. We will watchApache Lucene Mahout project’s code
when scalability of machine learning will arise as a serious issue.
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Abstract. A child, or young human-like robot of the future,
needs to develop an information-processing architecture, forms of
representation, and mechanisms to support perceiving, manipulating,
and thinking about the world, especially perceiving and thinking
about actual and possible structures and processes in a 3-D
environment. The mechanisms for extending those representations and
mechanisms, are also the core mechanisms required for developing
mathematical competences, especially geometric and topological
reasoning competences. Understanding both the natural processes and
the requirements for future human-like robots requires AI designers to
develop new forms of representation and mechanisms for geometric and
topological reasoning to explain a child’s (or robot’s) development of
understanding of affordances, and the proto-affordances that underlie
them. A suitable multi-functional self-extending architecture will enable
those competences to be developed. Within such a machine, human-like
mathematical learning will be possible. It is argued that this can support
Kant’s philosophy of mathematics, as against Humean philosophies. It
also exposes serious limitations in studies of mathematical development
by psychologists.

Keywords: learning mathematics, philosophy of mathematics, robot
3-D vision, self-extending architecture, epigenetic robotics.

1 Introduction: Approaches to Mathematics

Some people have a central interest in mathematics, e.g.: mathematicians,
whose job is to extend mathematical knowledge and to teach it; scientists, who
routinely use mathematics to express data, analyse data, formulate theories,
make predictions, construct explanations, etc.; and engineers, who use it to derive
requirements for their designs and to check consequences of designs.

Others study aspects of mathematics: e.g. philosophers who discuss the nature
of mathematical concepts and knowledge; psychologists who study how and
when people acquire various mathematical concepts and kinds of mathematical
competence; biologists interested in which animals have any mathematical
competence, what genetic capabilities make that possible, how it evolved, and
how that is expressed in a genome; and AI researchers who investigate ways of
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giving machines mathematical capabilities. Finally there are the children of all
ages who are required to learn mathematics, including a subset who love playing
with and learning about mathematical structures and processes, and many who
hate mathematics and make little progress learning it.

My claim is that there are connections between these groups that have not
been noticed. In particular, if we can understand how children and other animals
learn about, perceive and manipulate objects in the environment and learn to
think about what they are doing, we shall discover that the competences they
need are closely related to requirements for learning about mathematics and
making mathematical discoveries. Moreover, if we make robots that interact with
and learn from the environment in the same way, they too will be able to be
mathematical learners – a new kind of biologically inspired robot. The insights
that we can gain from this link can shed light on old problems in philosophy of
mathematics, and psychology of mathematics.

And finally, if we really make progress in this area, we may be able to
revolutionise mathematical education for humans, on the basis of a much deeper
understanding of what it is to be an intelligent learner of mathematics.1

2 Philosophies of Mathematics

Over many centuries, different views of the nature of mathematical knowledge
and discovery have been developed. Those include differing philosophical views
about the nature of numbers, for example (simplifying enormously):

1. Number concepts and laws are abstractions from operations on perceived
groups of objects. (J.S.Mill [1] and some developmental psychologists. See
[2] for discussion.)

2. Numbers are mental objects, created by human mental processes.
Facts about numbers are discovered by performing mental experiments.
(Intuitionist logicians, e.g. Brouwer. Heyting [3], Kant? [4])

3. Numbers and their properties are things we can discover by thinking about
them in the right way (Kant, and many mathematicians, e.g [5]).

4. Numbers are sets of sets, or predicates of predicates, definable in purely
logical terms. E.g. the number one is the set of all sets capable of being
mapped bi-uniquely onto the set containing nothing but the empty set.
(Frege [6], Russell [7], and other logicists).

5. Numerals are meaningless symbols manipulated according to arbitrary rules.
Mathematical discoveries are merely discoveries about the properties of such
games with symbols. (Formalists, e.g. Hilbert.)

6. Numbers are implicitly defined by a collection of axioms, such as Peano’s
axioms. Any collection of things satisfying these axioms can be called a set
of numbers. The nature of the elements of the set is irrelevant. Mathematical

1 See also http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#math-robot
(PDF presentation on whether a baby robot can grow up to be a mathematician).
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discoveries about numbers are merely discoveries of logical consequences of
the axioms. (Many mathematicians)

7. It doesn’t matter what numbers are: we are only interested in which
statements about them follow from which others (Russell, [8]).

8. There is no one correct answer to the question ‘what are numbers?’ People
play a motley of ‘games’ using number words and other symbols, and a
full account of the nature of numbers would simply be an analysis of these
games (including the activity of mathematicians) and the roles they play in
our lives. (Wittgenstein: Remarks on the Foundations of Mathematics)

J.S. Mill claimed that mathematical knowledge was empirical, abstracted
from experiences of actions like counting or matching sets, and capable of
being falsified by experience. Most thinkers regard mathematical knowledge
as non-empirical, and not refutable by experiments on the environment,
though interacting with the environment, including making drawings, or doing
calculations on paper, help us notice mathematical truths, or help us find
counter-examples to mathematical claims (Lakatos [9]).

Some philosophers who regard mathematical knowledge as non-empirical
think it is all essentially empty of content, because it merely expresses definitions
or “relations between our ideas” – i.e. such knowledge is “analytic” (defined
in [10]). Hume had this sort of view of mathematics. Kant (1781) reacted by
arguing for a third kind of knowledge, which is neither empirical nor analytic
but “synthetic”: these significantly extend our knowledge.

As a graduate student in Oxford around 1960 I found that something like
Hume’s view was common among the philosophers I encountered, so I tried,
in my DPhil thesis [11], to explain and defend Kant’s view, that mathematical
knowledge is synthetic and a priori (non-empirical), which clearly accorded much
better with the experience of doing mathematics.

“A priori” does not imply “innate”. Discovering or understanding a
mathematical proof can be a difficult achievement. Although mathematicians
can make mistakes and may have to debug their proofs, their definitions, their
algorithms, their axiom-systems, and even their examples, as shown by Lakatos
in [9], mathematical knowledge is not empirical in the sense in which geological or
chemical knowledge is, namely subject to refutation by new physical occurrences.
Both flaws and the fixes in mathematics can be discovered merely by thinking.

3 Psychological Theories about Number Concepts

It is often supposed that the visual or auditory ability to distinguish groups
with different numbers of elements (subitizing) displays an understanding of
number. However this is simply a perceptual capability. A deeper understanding
of numbers requires a wider range of abilities, discussed further below.

Rips et al. [2] give a useful survey of psychological theories about number
concepts. They rightly criticise theories that treat number concepts as abstracted
from perception of groups of objects, and discuss alternative requirements for a
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child to have a concept of number, concluding that having a concept of number
involves having some understanding (not necessarily consciously) of a logical
schema something like Peano’s five axioms. They claim that that is what enables
a child to work out various properties of numbers, e.g. the commutativity of
addition, and the existence of indefinitely larger numbers. This implies that
such children have the logical capabilities required to draw conclusions from the
axioms, though not necessarily consciously. That immediately raises the question
how children can acquire such competences. They conclude that somehow the
Peano schema and the logical competences are innately built into the child’s
“background architecture” (but do not specify how that could work).

They do not consider an alternative possibility presented in [12,13] according
to which such competences may be meta-configured, i.e. not determined in the
genome, but produced through interactions with the environment that generate
layers of meta-competences (competences that enable new competences to be
acquired). Some hints about how that might occur are presented below.

Many psychologists and researchers in animal cognition misguidedly search
for experimental tests for whether a child or animal does or does not understand
what numbers are.2 Rips et al. are not so committed to specifying an
experimental test, but they do require a definition that makes a clear distinction
between understanding and not understanding what numbers are.

4 Towards an AI Model of Learning about Numbers

As far as I know, no developmental psychologists have considered the alternative
view, presented 30 years ago in [14], chapter 8, that there is no single distinction
between having and not having a concept of number, because learning about
numbers involves a never-ending process that starts from relatively primitive
and general competences that are not specifically mathematical and gradually
adds more and more sophistication, in parallel with the development of other
competences. In particular, [14] suggests that learning about numbers involves
developing capabilities of the following sorts:

1. performing a repetitive action;
2. memorising an ordered sequence of arbitrary names;
3. performing two repetitive actions together and keeping them in synchrony;
4. initiating such a process and then being able to use different stopping

conditions, depending on the task;
5. doing all this when one of the actions is uttering a learnt sequence of names;
6. learning rules for extending the sequence of names indefinitely;
7. observing various patterns in such processes and storing information about

them, e.g. information about successors and predecessors of numerals, or
results of counting onwards various amounts from particular numerals;

2 Compare the mistake of striving for a definitive test for whether animals of some
species understand causation, criticised here in presentation 3:
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac
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8. noticing commonalities between static mappings and process mappings (e.g.
paired objects vs paired events);

9. finding mappings between components of static structures as well as the
temporal mappings between process-elements;

10. noticing that such mappings have features that are independent of their
order (e.g. counting a set of objects in two different orders must give the
same result);

11. noticing that numbers themselves can be counted, e.g. the numbers between
two specified numbers;

12. noticing possibilities of and constraints on rearrangements of groups of
objects – e.g. some can be arranged as rectangular arrays, but not all;

13. learning to compare continuous quantities by dividing them into small
components of a standard size and counting.

Such competences and knowledge can be extended indefinitely. Some can be
internalised, e.g. counting silently. Documenting all the things that can be
discovered about such structures and processes in the first few years of life
could fill many pages. (Compare [15,16].) The sub-abilities involved in these
processes are useful in achieving practical goals by manipulating objects in the
environment and learning good ways to plan and control such achievements. An
example might be fetching enough cups to give one each to a group of people, or
matching heights of two columns made of bricks, to support a horizontal beam,
or ensuring that enough water is in a big jug to fill all the glasses on the table.

Gifted teachers understand that any deep mathematical domain is something
that has to be explored from multiple directions, gaining structural insights and
developing a variety of perceptual and thinking skills of ever increasing power.
That includes learning new constructs, new reasoning procedures, learning to
detect partial or erroneous understanding, and finding out how to remedy such
deficiencies. [14] presented some conjectures about some of the information-
processing mechanisms involved. As far as I know, nobody has tried giving a
robot such capabilities. It should be feasible in a suitably simplified context. I
had hoped to do this in a robot project, but other objectives were favoured.3

5 Internal Construction Competences

The processes described above require the ability to create (a) new internal
information structures, including, for example, structures recording predecessors
of numbers, so that it is not necessary always to count up to N to find the
predecessor of N, and (b) new algorithms for operating on those structures.
As these internal information-structures grow, and algorithms for manipulating
them are developed, there are increasingly many opportunities to discover more
properties of numbers. The more you know, the more you can learn.

3 See http://www.cs.bham.ac.uk/research/projects/cosy/PlayMate-start.html
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Moreover those constructions do not happen instantaneously or in an
error-free process. Many steps are required including much self-debugging, as
illustrated in [17]. This depends on self-observation during performance of
various tasks, including observations of external actions and of thinking. One
form of debugging is what Sussman called detecting the need to create new
critics that run in parallel with other activities and interrupt if some pattern is
matched, for instance if disguised division by zero occurs.

The ongoing discovery of new invariant patterns in structures and processes
produced when counting, arranging, sorting, or aligning sets of objects, leads
to successive extensions of the learner’s understanding of numbers. Initially this
is just empirical exploration, but later a child may realise that the result of
counting a fixed set of objects cannot depend on the order of counting. That
invariance is intrinsic to the nature of one-to-one mappings and does not depend
on properties of the things being counted, or on how fast or how loud one counts,
etc. However, some learners may never notice this non-empirical character of
mathematical discoveries until they take a philosophy class!

One of the non-empirical discoveries is that the natural numbers form an
infinite set. Kant suggested that this requires grasping that a rule can go on
being applied indefinitely. This contrasts with the suggestion by Rips et al. [2]
that a child somehow acquires logical axioms which state that every natural
number has exactly one successor and at most one predecessor, and that the
first number has no predecessor, from which it follows logically that there is no
final number and the sequence of numbers never loops. Instead, a child could
learn that there are repetitive processes of two kinds: those that start off with a
determinate stopping condition that limits the number of repetitions and those
that do not, though they can be stopped by an external process. Tapping a
surface, walking, making the same noise repeatedly, swaying from side to side,
repeatedly lifting an object and dropping it, are all examples of the latter type.

The general notion of something not occurring is clearly required for intelligent
action in an environment. E.g. failure of an action to achieve its goal needs to
be detectable. So if the learner has the concept of a repetitive process leading
to an event that terminates the process, then the general notion of something
not happening can be applied to that to generate the notion of something
going on indefinitely. From there, depending on the information processing
architecture and the forms of representation available, it may be a small step
to the representation of two synchronised processes going on indefinitely, one of
which is a counting process.

What is more sophisticated is acquiring a notion of a sequence of sounds or
marks that can be generated indefinitely without ever repeating a previous mark.
An obvious way to do that is to think of marks made up of one or more dots
or strokes. Then the sequence could start with a single stroke, followed by two
strokes, followed by three strokes, etc., e.g.

| || ||| |||| ||||| etc.
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That has the disadvantage that the patterns grow large very quickly. That can
motivate far more compact notations, like arabic numerals, though any infinitely
generative notation will ultimately become physically unmanageable.

6 Extending Simple Number Concepts

A different sort of extension is involved in adding zero to the natural numbers,
which introduces “anomalies”, such as that there is no difference between adding
zero apples and subtracting zero apples from a set of apples.

Negative integers add further confusions. This extension is rarely taught
properly, and as a result most people cannot give a coherent explanation
of why multiplying two negative numbers should give a positive number. It
cannot be proved on the basis of previous knowledge because what multiplying
by a negative number means is undefined initially. For mathematicians, it is
defined by the rules for multiplying negative numbers, and the simplest way to
extend multiplication rules to negative numbers without disruption of previous
generalisations, is to stipulate that multiplying two negatives produces a positive.
(Similarly with defining what 3−1 and 30 should mean.)

Some teachers use demonstrations based on the so-called “number line” to
introduce notions of negative integers, but this can lead to serious muddles (e.g.
about multiplication). Pamela Liebeck [18] developed a game called “scores and
forfeits” where players have two sets of tokens: addition of a red token is treated
as equivalent to removal of a black token, and vice versa. (Multiplication was not
included.) The person with the biggest surplus of black over red wins. Giving a
player both a red and a black token, or removing both a red and a black token
makes no difference to the total status of the player. Playing, and especially
discussing, the game seemed to give children a deeper understanding of negative
numbers and subtraction than standard ways of teaching, presumably because
the set of pairs of natural numbers can be used to model accurately the set of
positive and negative integers.

Cardinality and orderings are properties of discrete sets. Extending the notion
of number to include measures that are continuously variable, e.g. lengths, areas,
volumes and time intervals, requires sophisticated extensions to the learner’s
ontology and forms of representation – leading to deep mathematical and
philosophical problems. In humans, an understanding of Euclidean geometry
and topology seems to build on reasoning/planning competences combined
with visual competences, as illustrated in [16]. This requires different forms of
representation from counting and matching groups of entities. Some of these
competences are apparently shared with some other animals – those that are
capable of planning and executing novel spatial actions.

7 Doing Philosophy by Doing AI

After completing my D.Phil defending Kant in 1962, I gradually realised
something was lacking. My arguments consisted mostly of illustrative examples.
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Something deeper was required, to explain what goes on (a) when people acquire
mathematical concepts (e.g. number, infinitely thin line, perfectly straight line,
infinite set, etc.), and (b) when they acquire mathematical knowledge expressed
using those concepts. In 1969, Max Clowes introduced me to programming and
AI, and I soon realised that by building a working human-like mind (or suitable
fragments of one) we could demonstrate the different modes of development
of knowledge discussed by Kant. Many mathematical proofs, especially in
Euclidean geometry and topology, but also in number theory, seemed to rely
on our ability to perceive structures and structural relationships, so I concluded
that explaining how mathematical discoveries were made, depended, in part,
on showing how visual capabilities, or more generally, spatial perception and
reasoning capabilities, were related to some kinds of mathematical reasoning.

At that time the dominant view in AI, represented by McCarthy and Hayes
(1969) was that logical modes of representation and reasoning were all that
an intelligent robot would need. In 1971, I submitted a paper to IJCAI [20],
distinguishing “Fregean” from “analogical” forms of representation and arguing
that spatial analogical forms of representation and reasoning could be used in
valid derivations and could also in some cases help with the organisation of
search. Fregean representations are those whose mode of syntactic composition
and semantic interpretation use only application of functions to arguments,
whereas analogical representations allow properties and relations of parts of a
representation to refer to properties and relations of parts of a complex whole,
though not necessarily the same properties and relations: in general analogical
representations are not isomorphic with what they represent. (E.g. a 2D picture
can represent a 3D scene without being isomorphic with it.) The paper was
accepted, and subsequently reprinted twice. But it was clear that a lot more work
needed to be done to demonstrate how the human spatial reasoning capabilities
described therein could be replicated in a machine.

Many others (e.g. [21]) have pointed out the need to provide intelligent
machines with spatial forms of representation and reasoning, but progress in
replicating human abilities has been very slow: we have not yet developed visual
mechanisms that come close to matching those produced by evolution. In part,
this is because the requirements for human-like visual systems have not been
analysed in sufficient depth (as illustrated in [22,23]). E.g. there is a vast amount
of research on object recognition that contributes nothing to our understanding
of how 3-D spatial structures and processes are seen or how information about
spatial structures and processes is used, for instance in reasoning and acting.4

8 Requirements for a Mathematician’s Visual System

To address this problem, I have been collecting requirements for visual mecha-
nisms since 1971, in parallel with more general explorations of requirements for a
complete human-like architecture (e.g., [14,24,25,26,27,23]). Full understanding
4 Some of the differences between recognition and perception of 3-D structure are

illustrated in http://www.cs.bham.ac.uk/research/projects/cogaff/challenge.pdf
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of the issues requires us to investigate: (a) trade-offs between alternative sets
of requirements and designs, including different biological examples [28,29]; (b)
different kinds of developmental trajectories [30,12]; and (c) requirements for
internal languages supporting structural variability and compositional semantics
in other animals, pre-verbal humans, and future robots [31,13]. I have also
tried to show how that analysis can lead to a new view of the evolution of
language (http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#glang).
In particular, it allows internal languages with compositional semantics to
include analogical forms of representation, whose manipulation can play an
important role both in visual perception and in reasoning. This underlies human
spatial reasoning abilities that are often used in mathematics. Human-like
mathematical machines (e.g. robots that reason as humans do) will also need
such competences.

9 Affordances, Visual Servoing, and Beyond

Analysis of biological requirements for vision (including human vision) enlarges
our view of the functions of vision, requiring goals of AI vision researchers to
be substantially expanded. An example is the role of vision in servo-control,
including control of continuous motion described in [33] and Berthoz [34], as
well as discrete condition-checking.

Gibson’s work on affordances in [35] showed that animal vision provides
information not merely about geometrical and physical features of entities in
the environment, as in [36,37], nor about recognising or categorising objects
(the focus of much recent AI ‘vision’ research), but about what the perceiver
can and cannot do, given its physical capabilities and its goals. I.e. vision needs
to provide information not only about actual objects, structures and motion,
but also what processes can and cannot occur in the environment [38]. In order
to do this, the visual system must use an ontology that is only very indirectly
related to retinal arrays. But Gibson did not go far enough, as we shall see.

All this shows that a human-like visual sub-architecture must be multi-
functional, with sub-systems operating concurrently at different levels of
abstraction and engaging concurrently with different parts of the rest of the
architecture, including central and motor subsystems. For example, painting a
curved stripe requires continuous visual control of the movement of the brush,
which needs to be done in parallel with checking whether mistakes have been
made (e.g. bits not painted, or the wrong bits painted) and whether the task
has been completed, or whether the brush needs to be replenished. For these
reasons, in [24], I contrasted (a) “modular” visual architectures, with information
flowing from input images (or the optic array) through a pipeline of distinct
processing units, as proposed by Marr and others, with (b) “labyrinthine”
visual architectures reflecting the multiplicity of functions of vision and the rich
connectivity between subsystems of many kinds.
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10 Perception of Actual and Possible Processes

Work on an EU-funded cognitive robotics project, CoSy, begun in 2004,5

included analysis of requirements for a robot capable of manipulating 3-
D objects, e.g. grasping them, moving them, and constructing assemblages,
possibly while other things were happening. Analysis of the requirements
revealed (a) the need for representing scene objects with parts and relationships
(as everyone already knew), (b) the need for several ontological layers in
scene structures (as in chapter 9 of [14]), (c) the need to represent “multi-
strand relationships” because not only whole objects but also parts of different
objects are related in various ways, (d) the need to represent “multi-strand
processes”, because when things move the multi-strand relationships change, e.g.
with metrical, topological, causal, functional, continuous, and discrete changes
occurring concurrently, and (e) the need to represent possible processes, and
constraints on possible processes. I call the latter positive and negative “proto-
affordances”, because they are the substratum of affordances, but more general.

Not all perceived changes are produced or can be produced by the perceiver.
Likewise seeing that a process is possible, e.g. an apple falling, or that possibilities
are constrained, e.g. because a table is below the apple, does not presuppose
that the perceiver desires to or can produce the process. So perception of proto-
affordances and perception of processes in the environment makes it possible to
take account of far more than one’s own actions, their consequences and their
constraints. As explained in [22,23], that requires an amodal, exosomatic form
of representation of processes; one that is not tied to the agent’s sensorimotor
processes. That possibly is ignored by researchers who focus only on sensorimotor
learning and representation, and base all semantics on “symbol-grounding”.6

The ability to perceive a multi-strand process requires the ability to have
internal representations of the various concurrently changing relationships. Some
will be continuous changes, including those needed for servo-control of actions,
while others may be discrete changes as topological relations change or goals
become satisfied. Mechanisms used for perceiving multi-strand processes can also
be used both to predict outcomes of possible processes that are not currently
occurring (e.g. when planning), and to explain how a perceived situation came
about. Both may use a partial simulation of the processes.7 (Cf. Grush in [39].)

11 The Importance of Kinds of Matter

A child, or robot, learning about kinds of process that can occur in the
environment needs to be able to extend the ontology she uses indefinitely, and not
5 Described in http://www.cs.bham.ac.uk/research/projects/cosy/
6 Reasons for preferring “symbol-tethering” to symbol-grounding theory are given in:

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#models
7 Examples are given in the presentation in Note 1, and in this discussion paper on

predicting changes in action affordances and epistemic affordances:
http://www.cs.bham.ac.uk/research/projects/cosy/papers/#dp0702
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merely by defining new concepts in terms of old ones: there are also substantive
ontology extensions (as in the history of physics and other sciences). For example,
whereas many perceived processes involve objects that preserve all their metrical
relationships, there are also many deviations from such rigidity, and concepts of
different kinds of matter are required to explain those deviations: string and wire
are flexible, but wire retains its shape after being deformed; an elastic band returns
to its original length after being stretched, but does not restore its shape after
bending. Some kinds of stuff easily separate into chunks in various ways, if pulled,
e.g. mud, porridge, plasticine and paper. A subset of those allow restoration to a
single object if separated parts are pressed together. There are also objects that
are marks on other objects, like lines on paper, and there are some objects that
can be used to produce such marks, like pencils and crayons. Marks produced in
different ways and on different materials can have similar structures.

As demonstrated by Sauvy and Sauvy in [16], children, and presumably future
robots, can learn to play with and explore strings, elastic bands, pieces of wire,
marks on paper and movable objects, thereby learning about many different sorts
of process patterns. Some of those are concerned with rigid motions some not.
Some examples use patterns in non-rigid motions that can lead to development
of topological concepts, e.g. a cup being continuously deformed into a toroid.
Robot vision is nowhere near this capability at present.

12 Perception and Mathematical Discovery

I have argued that many mathematical discoveries involve noticing an invariant
in a class of processes. For example, Mary Ensor, a mathematics teacher, once
told me she had found a good way to teach children that the internal angles of
a triangle add up to a straight line, demonstrated in the figure.

a

b

c

Consider any triangle. Imagine an arrow starting at one corner, pointing
along one side. It can be rotated and translated as indicated, going through
positions shown in the three successive figures. The successive rotations a, b
and c go through the interior angles of the triangle, and because of the final
effect they produce, they must add up to a straight line. This discovery may
initially be made through empirical exploration with physical objects, but the
pattern involved clearly does not depend on what the objects are made of and
changing conditions such as colours used, lengths of lines, particular angles in the
triangle, temperature, strength of gravitational or magnetic field cannot affect
the property of the process. A robot learner should notice that it is not an
empirically falsifiable discovery.
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However, such discoveries can have “bugs” as Lakatos [9] demonstrated using
Euler’s theorem about polyhedra. That is sometimes wrongly taken to imply that
mathematical knowledge is empirical in the same way as knowledge about the
physical properties of matter. The discovery of bugs in proofs and good ways to
deal with them is an important feature of mathematical learning. For example,
the rotating arrow proof breaks down if the triangle is on the surface of a sphere.
Noticing this can lead a learner to investigate properties that distinguish planar
and non-planar surfaces. But that exploration does not require experiments in
a physical laboratory, though it may benefit from them. Kant claimed that
such discoveries are about the perceiver’s forms of perception, but they are not
restricted to any particular perceivers.

13 Humean and Kantian Causation

Adding properties of matter, such as rigidity and impenetrability, to
representations of shape and topology allows additional reasoning about and
prediction of results of processes. An example is the ability to use the fact that
two meshed gear wheels are rigid and impenetrable to work out how rotating
one will cause the other to rotate. That kind of reasoning is not always available.

If the wheels are not meshed, but there are hidden connections, then the
only basis for predicting the consequence of rotating the wheels is to use
a Humean notion of causation: basing predictions of results of actions or
events solely on observed correlations. In contrast, where the relevant structure
and constraints are known, and mathematical proofs (using geometry and
topology) are possible, Kant’s notion of causation, which is structure-based and
deterministic, can be used. Causal relationships represented in Bayesian nets are
essentially generalisations of Humean causation and based only on statistical
evidence. However, a significant subset of the causal understanding of the
environment that a child acquires is Kantian because it allows the consequences
of novel processes to be worked out on the basis of geometric and topological
relationships, and kinds of matter involved. For more on Humean vs Kantian
causation in robots and animals see the presentations by Sloman and Chappell
here: http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac

Many kinds of learning involve strings. If an inelastic but flexible string is
attached to a remote movable object, then if the end is pulled away from the
object a process can result with two distinct phases: (1) curves in the string are
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gradually eliminated (as long as there are no knots), and (2) when the string
is fully straightened the remote object will start moving in the direction of the
pulled end. However, if the string is looped round a fixed pillar, the first sub-
process does not produce a single straight string but two straight portions and
a portion going round the pillar, and in the second phase the attached object
moves toward the pillar, not toward the pulled end.8

14 Russell vs Feynman on Mathematics

At the beginning of the last century Russell and Whitehead [40] attempted
to demonstrate that all of mathematics could be reduced to logic (Frege had
attempted this only for Arithmetic). Despite the logical paradoxes and the
difficulty of avoiding them, Russell thought the goals of the project could be or
had been achieved, and concluded that mathematics was just the investigation
of implications that are valid in virtue of their logical form, independently of
any non-logical subject matter. He wrote: “Mathematics may be defined as the
subject in which we never know what we are talking about, nor whether what
we are saying is true” (Mysticism and Logic [8]). In some ways Russell seems
to have been a philosophical descendant of David Hume, who had claimed that
non-empirical propositions were in some sense trivial, e.g. mere statements of
the relations between our ideas.

In contrast, the physicist Richard Feynman described mathematics as “the
language nature speaks in”. He wrote: “To those who do not know Mathematics
it is difficult to get across a real feeling as to the beauty, the deepest beauty of
nature. ... If you want to learn about nature, to appreciate nature, it is necessary
to understand the language that she speaks in” (in [41]). I believe that Feynman’s
description is closely related to what I am saying about how a child (or a future
robot) can develop powerful, reusable concepts and techniques related to patterns
of perception and patterns of thinking that are learnt through interacting with a
complex environment, part of which is the information-processing system within
the learner. Despite the role of experience in such learning, the results of such
learning are not empirical generalisations. Feynman seems to agree with Kant that
mathematical knowledge is both non-empirical and deeply significant.

15 Conclusion

We need further investigation of architectures and forms of representation that
allow playful exploration by a robot to produce discoveries of patterns in
structures and processes that are the basis of deep mathematical concepts and
mathematical forms of reasoning. The robot should be able to go through the
following stages:

8 More examples and their implications are discussed in the presentation in Note 1 and
in http://www.cs.bham.ac.uk/research/projects/cosy/papers#dp0601: “Orthogonal
recombinable competences acquired by altricial species”.
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1. Acquiring familiarity with some domain, e.g. through playful exploration;
2. Noticing (empirically) certain generalisations;
3. Discovering a way of thinking about them that shows they are not empirical;
4. Generalising, diversifying, debugging, deploying, that knowledge;
5. Formalising the knowledge, possibly in more than one way.

This paper merely reports on a subset of the requirements for working designs.
Some more detailed requirements are in [22]. It is clear that AI still has a long
way to go before the visual and cognitive mechanisms of robots can match the
development of a typical human child going through the earlier steps. There is
still a great deal more to be done, and meeting all the requirements will not be
easy. If others are interested in this project, perhaps it would be useful to set
up an informal network for collaboration on refining the requirements and then
producing a working prototype system as a proof of concept, using a simulated
robot, perhaps one that manipulates 2-D shapes in a plane surface, discovering
properties of various kinds of interactions, involving objects with different shapes
made of substances with various properties that determine the consequences of
the interactions, e.g. impenetrability, rigidity, elasticity, etc.

Perhaps one day, a team of robot mathematicians, philosophers of
mathematics and designers will also be able implement such systems. First we
need a deeper understanding of the requirements.
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Abstract. We describe an experiment of transforming large collections
of LATEX documents to more machine-understandable representations.
Concretely, we are translating the collection of scientific publications of
the Cornell e-Print Archive (arXiv) using the LATEX to XML converter
which is currently under development.

The main technical task of our arXMLiv project is to supply LaTeXML
bindings for the (thousands of) LATEX classes and packages used in the
arXiv collection. For this we have developed a distributed build system
that reiteratively runs LaTeXML over the arXiv collection and collects
statistics about e.g. the most sorely missing LaTeXML bindings and clus-
ters common error events. This creates valuable feedback to both the
developers of the LaTeXML package and to binding implementers. We
have now processed the complete arXiv collection of more than 400,000
documents from 1993 until 2006 (one run is a processor-year-size un-
dertaking) and have continuously improved our success rate to more
than 56% (i.e. over 56% of the documents that are LATEX have been
converted by LaTeXML without noticing an error and are available as
XHTML+MathML documents).

1 Introduction

The last few years have seen the emergence of various XML-based, content-
oriented markup languages for mathematics and natural sciences on the web,
e.g. OpenMath, Content MathML, or our own OMDoc. The promise of these
content-oriented approaches is that various tasks involved in “doing mathemat-
ics” (e.g. search, navigation, cross-referencing, quality control, user-adaptive pre-
sentation, proving, simulation) can be machine-supported, and thus the working
mathematician can concentrate in doing what humans can still do infinitely bet-
ter than machines.

On the other hand LATEX is and has been the preferred document source for-
mat for thousands of scientists who publish results that include mathematical
formulas. Millions of scientific articles have been written and published using
this document format. Unfortunately the LATEX language mixes content and
presentation and also allows to create additional macro definitions. Therefore
machines have great difficulties to parse and analyze LATEX documents and to
extract enough information to represent the written formulas in a XML repre-
sentation.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 574–582, 2008.
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In this paper, we will present an experiment of translating a large corpus of
mathematical knowledge to a form that is more suitable for machine processing.
The sheer size of the arXiv [ArX07] poses a totally new set of problems for
MKM technologies, if we want to handle (and in the future manage) corpora of
this size. In the next section we will review the translation technology we build
on and then present the corpus-level build system which is the main contribution
of this paper.

2 TeX/LaTeX to XML Conversion

The need for translating LATEX documents into other formats has been long
realized and there are various tools that attempt this at different levels of so-
phistication. We will disregard simple approaches like the venerable latex2html
translator that cannot deal with user macro definitions, since these are essential
for semantic preloading. The remaining ones fall into two categories that differ
in the approach towards parsing the TEX/LATEX documents.

Romeo Anghelache’s Hermes [Ang07] and Eitan Gurari’s TeX4HT systems
use special TEX macros to seed the dvi file generated by TEX with semantic in-
formation. The dvi file is then parsed by a custom parser to recover the text and
semantic traces which are then combined to form the output XML document.
While Hermes attempts to recover as much of the mathematical formulae as
Content-MathML, it has to revert to Presentation-MathML where it does not
have semantic information. TeX4HT directly aims for Presentation-MathML.

The systems rely on the TEX parser for dealing with the intricacies of the TEX
macro language (e.g. TEX allows to change the tokenization (via “catcodes”) and
the grammar at run-time). In contrast to this, Bruce Miller’s LaTeXML [Mil07]
system and the SGLR/Elan4 system [vdBS03] re-implement a parser for a
large fragment of the TEX language. This has the distinct advantage that we
can fully control the parsing process: We want to expand abbreviative macros
and recursively work on the resulting token sequence, while we want to directly
translate semantic macros1, since they directly correspond to the content rep-
resentations we want to obtain. The LaTeXML and SGLR/Elan4 systems allow
us to do just this. In our conversion experiment we have chosen the LaTeXML
system, whose LATEX parser seems to have largest coverage.

The LaTeXML system consists of a TEX parser, an XML emitter, and a post-
processor. To cope with LATEX documents, the system needs to supply LaTeXML
bindings (i.e. special directives for the XML emitter) for the semantic macros in
LATEX packages. Concretely, every LATEX package and class must be accompanied
by a LaTeXML binding file, a Perl file which contains LaTeXML constructor-,
abbreviation-, and environment definitions, e.g.

DefConstructor (”\Reals ”,”<XMTok name=’Reals ’/ >”);
DefConstructor (”\SmoothFunctionsOn {}” ,

”<XMApp><XMTok name=’SmoothFunctionsOn’/>#1</XMApp>”);
DefMacro (”\ SmoothFunctionsOnReals ” ,”\ SmoothFunctionsOn\Reals ” ) ;

1 See [Koh08] for a discussion of semantic and abbreviative macros.
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DefConstructor is used for semantic macros, whereas DefMacro is used for
abbreviative ones. The latter is used, since the latexml program does not read
the package or class file and needs to be told, which sequence of tokens to recurse
on. The LaTeXML distribution contains LaTeXML bindings for the most common
base LATEX packages.

For the XML conversion, the latexml program is run, say on a file doc.tex.
latexml loads the LaTeXML bindings for the LATEX packages used in doc.tex and
generates a temporary LTXML document, which closely mimics the structure
of the parse tree of the LATEX source. The LTXML format provides XML coun-
terparts of all core TEX/LATEX concepts, serves as a target format for LaTeXML,
and thus legitimizes the XML fragments in the LaTeXML bindings.

In the semantic post-processing phase, the LATEX-near representation is trans-
formed into the target format by the latexmlpost program. This program ap-
plies a pipeline of intelligent filters to its input. The LaTeXML program supplies
various filters, e.g. for processing HTML tables, including graphics, or con-
verting formulae to Presentation-MathML. Other filters like transformation to
OpenMath and Content-MathML are currently under development. The fil-
ters can also consist of regular XML-to-XML transformation process, e.g. an
XSLT style sheet. Eventually, post-processing will include semantic disambigua-
tion information like types, part-of-speech analysis, etc. to alleviate the semantic
markup density for authors.

3 The Build System

To test and give feedback to improve LaTeXML, and to extend our collection of
valid XHTML+MathML documents which are being used for other projects
such as our MathWebSearch [Mat07], we have chosen to use the articles that
have been published in the arXiv. This large heterogenous collection of scientific
articles is a perfect source for experiments with scientific documents that have
been written in LATEX.

The huge number of more than 400.000 documents (each one may include fig-
ures and its own style files and is located in its own subdirectory) in this collec-
tion made simple manual handling of conversion runs impossible. To handle the
conversion process itself (invocation of ttlatexml and latexmlpost) Makefiles
have been automatically created by scripts. But the usage of make has also some
limitations: It does not easily allow to run distributed jobs on several hosts, a
feature that is essential to be able to massively convert thousands of documents
in one day. While distributed make utilities (such as dmake) or other grid tools
may support distributed builds, all these tools are of limited use when only
a restricted set of specific documents with certain error characteristics should
be converted again, which would require complex and continuous rewriting of
makefiles.

To overcome these limitations we have developed an arXMLiv build system
which allows make jobs to be distributed among several hosts, extracts and ana-
lyzes the conversion process of each document and stores results in its own SQL
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Fig. 1. Schematic overview of the arXMLiv build system

database. The database allows to easily cluster documents which include a macro
that is only partially supported or to gather statistics about the build process.

The arXMLiv build system consists of a file system which is shared among
all hosts, a queue manager, a build manager, and a relational database, which
stores a workqueue and results statistics about each single converted file. The
file system contains all the documents (≈ 150 Gigabytes), classified by topic and
each one located in its own subdirectory. The file system is exported via NFS to
all hosts which take part in the build process.

To schedule conversion jobs, we operate the queue manager via the com-
mand line. A command like php workqueue.php default cond-mat will add
all documents inside the cond-mat subdirectory — the arXiv section for pa-
pers concerning condensed matter — to the current work queue, which is stored
in the relational database.

The build manager is implemented in PHP, where SQL databases as well as
process control functions can be easily used. It keeps an internal list of available
hosts, reads the files to be converted next from the workqueue and distributes
jobs to remote hosts. For each document that is to be converted the build manager
forks off a new child process on the local machine. The child sets a timer to enable a
limiting timeout of 180 s for the conversion process and then creates another child
(the grandchild) which then calls the make on a host via remote ssh execution. The
make process will then invoke latexml and latexmlpost to convert a TEX file
to XML and XHTML. LaTeXML logs the inclusion of style files and also reports
problems while converting from latex to xml to special log files.

After a timeout or the completion of the conversion process the build manager
is notified via typical Unix signal handling. The build manager then parses and
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Fig. 2. The web interface shows the current state of the build system

analyzes log files, extracts information about the result state of conversion and
collects the names of missing macros that are not yet supported. If the conver-
sion has failed, the error message given by LaTeXML is also extracted. For each
processed document the analyzed result data is then stored into the database
for later use. With the stored result data it is also possible to instruct the queue
manager to rerun specific documents which use a certain macro or to rerun all
documents which resulted in a fatal error in the conversion process. The queue
manager will then take care of removing the appropriate files and reset the status
and add these files to the workqueue again. This has been especially useful when
changes to the binding files have been applied or when an improved version of
latexml becomes available.

Developers are able to retrieve the results via a web-interface which is avail-
able at http://arxmliv.kwarc.info. The main page describes the number of
documents, the number of converted files in the last 24 hours and the current
state of the build system. Since the binding files as well as LaTeXML are being
developed in distributed environments, subversion is being used as a version con-
trol system. The current release version of the binding files and LaTeXML are also
shown. Furthermore the active hosts that are currently being used for the con-
version process is also displayed. For our experiment we have used 13 different
hosts on 24 processors.
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Fig. 3. The result status of con-
verted documents

A further table gives detailed information
about the results of the conversion process.
The most important states are success where
latexml has only issued some minor warn-
ings, missing macros, where the conversion
has been successfully completed, but some
macro definitions could not be resolved. In
this case the rendered layout may contain un-
expected elements or not properly displayed
elements. The status fatal error is returned
from the conversion process if there are too
many unresolved macros or if some internal
error condition during the LaTeXML conver-
sion process has been triggered.

Fig. 4. Documents that could not be successfully con-
verted

All these states are
clickable and lead to a
list of recently converted
files with the specified
status. The clickable file
name leads to the source
directory of the docu-
ment where the docu-
ment can be investigated
in all its different rep-
resentations, such as the
TEX source, as an inter-
mediate XML file that
LaTeXML produces or as
the XHTML+MathML

form. Also the full log file
containing detailed error messages can be easily be retrieved via the web
browser.

The backend behind the web interface is also able to analyze the database
content and create cumulated statistics. It applies some regular expressions to
the error messages and clusters and cumulates these. By creating this informa-
tion the backend is able to gather statistics such as a list of Top Fatal Errors
and Top Missing Macros on-the-fly. Especially these two lists have proven to
give valuable information not only the developer of the LaTeXML system but
also to the implementers of binding files that are needed to support the con-
version from LATEX to XML. With this information one can easily determine
the most severe bugs in the still evolving conversion tool as well as determine
the macros that are being used by many documents and that need further
support.

The arXiv articles use a total of more than 6000 different LATEX packages.
Some of these style files are well known ones which are widely used, while other
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Fig. 5. Lists of Top fatal errors and of macros that are currently not supported

Fig. 6. The history of return values in our conversion experiment

are private enhancements which are used only once or very few times. While
same macro names for different things are not a problem, since the binding files
are created for each LATEX package, there might be a problem that authors add
private additions to well-known style files. We have chosen to ignore this problem
since it is statistically insignificant.

With these statistics we have been able to focus on the most important macros
and have been able to improve the success rate to now more than 58%. Al-
though another 29% of the documents have also been successfully converted and
are available as XHTML+MathML, we do not currently count them as full
successes since support for some macros is still lacking and the layout that is
rendered in a web browser might not be fully appropriate.
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4 Conclusion and Outlook

By using the LaTeXML tool with our arXMLiv build system to support the con-
version process of large document collections, we have been able to successfully
convert more than half of the more than 400,000 scientific articles of the arXiv

written in LATEX to a semantically enriched XHTML+MathML representation.
We have been able to expand our collection of scientific MathML documents
which we need for further studies by more than 200,000 (real-world) documents.
The build system has enabled us to cope with the conversion process of this
huge collection of documents and helped us to improve our binding files that are
needed to support various style files. The statistics the build system gathers have
also been valuable contribution to the developer of LaTeXML since they clearly
point to bugs and give hints where to enhance the software.

Although still under development, LaTeXML has shown to be a very promising
tool to convert LATEX documents to XML and hence XHTML+MathML.
Many existing LATEX documents can already be fully converted to an
XHTML+MathML representation which may then be nicely rendered in-
side a browser. The possibility to render and fully integrate these documents
inside a browser will enable us to add features on top of existing articles and
offer added-value services which we might not even think of yet.

Up to now, the work in the arXMLiv project has focused on driving up the
coverage of the translation process and build a tool set that allows us to handle
large corpora. With a conversion rate of over 80% we consider this phase as com-
plete. We are currently working to acquire additional corpora, e.g. Zentralblatt
Math2 [ZBM07].

The next steps in the analysis of the arXiv corpus will be to improve the
LaTeXML post-processing, and in particular the OpenMath/MathML gener-
ation. Note that most of the contents in LATEX documents are presentational
in nature, so that content markup generation must be heuristic or based on
linguistic and semantic analysis. Rather than relying on a single tool like the
latexmlpost processor for this task we plan to open up the build system and
compute farm to competing analysis tools. These get access to our corpus and
we collect the results in a analysis database, which will be open to external
tools for higher-level analysis tasks or end-user MKM services like semantic
search [Mat07]. For this, we will need to generalize many of the build system
features that are currently hard-wired to the translation task and the LaTeXML
system. We also plan to introduce facilities for ground-truthing (i.e. for establish-
ing the intended semantics of parts of the corpus, so that linguistic analysis can
be trained on this). For the arXiv corpus this will mean that we add feedback
features to the generated XHTML+MathML that allow authors to comment
on the generation and thus the arXMLiv developers to correct their LaTeXML
bindings.

2 First tests show that due to the careful editorial structure of this collection and the
limited set of macros that need to be supported, our system can reach nearly perfect
translation rates.
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To allow manual tests for the developers, the build system also includes an ad-
ditional interface (available at http://tex2xml.kwarc.info) where LATEX files
can be manually uploaded and then converted. It allows to test the conversion
without the need to install LaTeXML and also makes use of the many additional
binding files that we have created to support additional style files and are not
part of the standard LaTeXML distribution. This interface may also be used to
convert private LATEX files to XHTML+MathML, but because of limited re-
sources only few users can concurrently use this system.

The build system itself is open source software and can be obtained from the
authors upon request.
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Abstract. Formalizing mathematical argument is a fascinating activ-
ity in itself and (we hope!) also bears important practical applications.
While traditional proof theory investigates deducibility of an individual
statement from a collection of premises, a mathematical proof, with its
structure and continuity, can hardly be presented as a single sequent or
a set of logical formulas. What is called “mathematical text”, as used in
mathematical practice through the ages, seems to be more appropriate.
However, no commonly adopted formal notion of mathematical text has
emerged so far.

In this paper, we propose a formalism which aims to reflect natural
(human) style and structure of mathematical argument, yet to be appro-
priate for automated processing: principally, verification of its correctness
(we consciously use the word rather than “soundness” or “validity”).

We consider mathematical texts that are formalized in the ForTheL
language (brief description of which is also given) and we formulate a
point of view on what a correct mathematical text might be. Logical
notion of correctness is formalized with the help of a calculus. Practically,
these ideas, methods and algorithms are implemented in a proof assistant
called SAD. We give a short description of SAD and a series of examples
showing what can be done with it.

1 Introduction

The question in the title of the paper is one to which we would like to get an
answer formally. What we need to this aim is: a formal language to write down
texts, a formal notion of correctness, a formal reasoning facility. And no matter
what the content of the text in question is.

The idea to use a formal language along with formal symbolic manipulations to
solve complex “common” problems, already appeared in G.W. Leibniz’s writings
(1685). The idea seemed to obtain more realistic status only in the early sixties
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of the last century when first theorem proving programs were created [1]. It is
worth noting how ambitious was the title of Wang’s article! Numerous attempts
to “mechanize” mathematics led to less ambitious and more realistic idea of
“computer aided” mathematics as well as to the notion of “proof assistant” —
a piece of software that is able to do some more or less complex deductions for
you. Usually one has in mind either long but routine inferences or a kind of
case analysis with enormously large number of possible cases. Both situations
are embarrassing and “fault intolerant” for humans.

Mathematical text is not a simple sequence of statements, neither a linear
representation of a sequent tree, nor a λ-term coding a proof. It is a complex ob-
ject that contains axioms, definitions, theorems, and proofs of various kinds (by
contradiction, by induction, by case analysis, etc). What its “correctness” might
stand for? The formal semantics of a text can be given by packing the whole text
in a single statement and considering the corresponding logical formula (which
we may call the formula image of the text). Then the text is declared correct
whenever its formula image is deducible in the underlying logic. The approach
is simple, theoretically transparent but absolutely impracticable, e.g. the precise
notion of correctness obtained in this way can hardly be considered as a formal
specification of a proof assistant we would like to implement. That’s why we
develop a specific notion of text correctness that, though being less straightfor-
ward, can be formalized with the help of a logical calculus on one hand and can
serve as a formal specification on the other.

Our approach to mathematical text correctness is implemented in the proof
assistant called SAD (System for Automated Deduction). The SAD project is
the continuation of a project initiated by academician V. Glushkov at the Insti-
tute for Cybernetics in Kiev more than 30 years ago [2]. The title of the original
project was “Evidence Algorithm” and its goal was to help a working mathe-
matician to verify long and tiresome but routine reasonings. To implement that
idea, three main components had to be developed: an inference engine (we call
it prover below) that implements the basic level of evidence, an extensible col-
lection of tools (we call it reasoner) to reinforce the basic engine, and a formal
input language which must be close to natural mathematical language and easy
to use. Today, a working version of the SAD system exists [3,4,5] and is available
online at http://nevidal.org.ua.

What is the place of SAD in the world of proof assistants w.r.t. proof represen-
tation style? Actually, we observe four major approaches to formal presentation
of a mathematical proof (see also [6] for an interesting and detailed comparison).

Interactive proof assistants, such as Coq [7], Isabelle [8], PVS [9], or HOL
derivatives [10], work with “imperative” proofs, series of tactic invocations.

Systems based on the Curry-Howard isomorphism, such as de Bruijn’s Au-
tomath [11] or Coq, consider a proof of a statement as a lambda term inhabiting
a type that corresponds to the statement. Since writing such a proof directly
is difficult and time-consuming, modern systems of the kind let user build a
proof in an interactive tactic-based fashion and construct the final proof term
automatically.
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The third branch deals with “declarative” proofs, which are structured col-
lections of hypotheses, conjectures and claims expressed in the same language
as the axioms and theorems themselves. The Mizar system [12] is the oldest and
most known proof assistant working with proofs of declarative style. Isabelle,
with introduction of Isar [13], accepts declarative proofs, too. Declarative proof
presentation is employed and thoroughly studied in the works on Mathematical
Vernacular started by N. de Bruijn [11] and later extended to Weak Type Theory
[14,15] and MathLang [16]. In particular, MathLang and the ForTheL language,
presented below, share a lot of similar traits owed to the common striving for a
natural-like formal mathematical language.

Finally, there are systems that do not use user-given proofs and rely instead
on proof generation methods: planning, rewriting, or inference search facilities to
deduce each claim from premises and previously proved statements. The systems
ACL2 (successor to Nqthm) [17], λClam [18], Theorema [19] and any classical
automated prover (e.g. Otter) can be considered as proof assistants of the kind.

In a general setting, SAD may be positioned as a declarative style proof
verifier that accepts input texts written in the special formal language ForTheL
[20,4], uses an automated first-order prover as the basic inference engine and
possesses an original reasoner (which includes, in particular, a powerful method
of definition expansion).

The rest of the paper is organized as follows. In Section 2, we briefly describe
the ForTheL language and write a ForTheL proof of Tarski’s fixed point theorem.
We define correctness of a ForTheL text with the help of a logical calculus in
Section 3. We illustrate this calculus by verifying a simple text in Section 4. We
conclude with a brief list of experiments on formalization performed in SAD.

2 ForTheL Language

Like any usual mathematical text, a ForTheL text consists of definitions, as-
sumptions, affirmations, theorems, proofs, etc. Figure 1 gives an idea of what a
ForTheL text looks like.

The syntax of a ForTheL sentence follows the rules of English grammar. Sen-
tences are built of units: statements, predicates, notions (that denote classes
of objects) and terms (that denote individual entities). Units are composed of
syntactical primitives: nouns which form notions (e.g. “subset of”) or terms
(“closure of”), verbs and adjectives which form predicates (“belongs to”,
“compact”), symbolic primitives that use a concise symbolic notation for pred-
icates and functions and allow to consider usual quantifier-free first-order for-
mulas as ForTheL statements. Of course, just a little fragment of English is
formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language: assumptions, se-
lections, and affirmations. Assumptions serve to declare variables or to provide
some hypotheses for the following text. For example, the following sentences are
typical assumptions: “Let S be a finite set.”, “Assume that m is greater
than n.”. Selections state the existence of representatives of notions and can
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be used to declare variables, too. Here follows an example of a selection: “Take
an even prime number X.”. Finally, affirmations are simply statements: “If p
divides n - p then p divides n.”. The semantics of a sentence is determined by
a series of transformations that convert a ForTheL statement to a first-order for-
mula, so called formula image. For example, the formula image of the statement
“all closed subsets of any compact set are compact” is:

∀ A ((A is a set ∧ A is compact) ⊃
∀ B ((B is a subset of A ∧ B is closed) ⊃ B is compact))

The sections of ForTheL are: sentences,

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminaries

Fig. 1. ForTheL text’s structure

sentences with proofs, cases, and top-level
sections: axioms, definitions, signature exten-
sions, lemmas, and theorems. A top-level sec-
tion is a sequence of assumptions concluded
by an affirmation. Proofs attached to affirma-
tions and selections are simply sequences of
low-level sections. A case section begins with
a special assumption called case hypothesis
which is followed by a sequence of low-level
sections (the “proof” of a case).

Any section A or sequence of sections Δ
has a formula image, denoted |A| or, respec-
tively, |Δ|. The image of a sentence with a
proof is the same as the image of that sentence
taken without proof. The image of a case sec-
tion is the implication (H ⊃ thesis), where
H is the formula image of the case hypothesis
and thesis is a placeholder for the statement
being proved (see Section 3). The formula image of a top-level section is simply
the image of the corresponding sequence of sentences.

The formula image of a sequence of sections A, Δ is an existentially quan-
tified conjunction ∃xA(|A| ∧ |Δ|), whenever A is a conclusion (affirmation, se-
lection, case section, lemma, theorem); or a universally quantified implication
∀xA(|A| ⊃ |Δ|), whenever A is a hypothesis (assumption, axiom, definition, sig-
nature extension). Here, xA denotes the set of variables declared in A and can
only be non-empty when A is an assumption or a selection. This set depends on
the logical context of A, since any variable which is declared above A can not be
redeclared in A. The formula image of the empty sequence is �, the truth.

In this syntax, we can express various proof schemes like proof by contra-
diction, by case analysis, and by general induction. The last scheme merits
special consideration. Whenever an affirmation is marked to be proved by in-
duction, the system constructs an appropriate induction hypothesis and inserts
it into the statement to be verified. The induction hypothesis mentions a bi-
nary relation which is declared to be a well-founded ordering, hence, suitable for
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induction proofs. Note that we cannot express the very property of well-
foundness in ForTheL (since it is essentially a first-order language), so that
the correctness of this declaration is unverifiable and we take it for granted.
After that transformation, the proof and the transformed statement can be ver-
ified in a first-order setting, and the reasoner of SAD has no need in specific
means to build induction proofs. The semantics of this and other proof schemes
is considered in more detail in the next section.

Is ForTheL practical as a formalization language? Our numerous experiments
show that rather often a ForTheL text is sufficiently close to its hand-made
prototype. Consider for example an excerpt of a verified formalization of the
Tarski’s fixed point theorem:

Definition DefCLat. A complete lattice is a set S such that
every subset of S has an infimum in S and a supremum in S.

Definition DefMono. f is monotone iff for all x,y << Dom f
x <= y => f(x) <= f(y).

Theorem Tarski.
Let U be a complete lattice and f be an monotone function on U.
Let S be the set of fixed points of f.
S is a complete lattice.

Proof.
Let T be a subset of S.
Let us show that T has a supremum in S.
Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
Take an infimum p of P in U.
f(p) is a lower bound of P in U and an upper bound of T in U.
Hence p is a fixed point of f and a supremum of T in S.

end.
Let us show that T has an infimum in S.
Take Q = { x << U | x <= f(x) and x is a lower bound of T in U }.
Take a supremum q of Q in U.
f(q) is an upper bound of Q in U and a lower bound of T in U.
Hence q is a fixed point of f and an infimum of T in S.

end.
qed.

3 Text Correctness

We distinguish two types of correctness of a well-formed ForTheL text: ontolog-
ical and logical.

Ontological correctness means that the text in question contains no occurrence
of a symbol (constant, function, notion or relation) that comes from nowhere.
First, every symbol must be either a signature symbol or be introduced by a defi-
nition. Second, in every occurrence of a symbol, the arguments, if any, must satisfy
the guards of the corresponding definition or signature extension. Since ForTheL
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is a one-sorted and untyped language, these guards can be arbitrary logical formu-
las. Therefore, the latter condition cannot be checked by purely syntactical means
nor by type inference of any kind. Instead, it requires proving statements about
terms inside complex formulas, possibly, under quantifiers. Such reasoning can be
performed in a sound way using the notion of local images [21].

Ontological correctness is to ForTheL what type correctness is to typed lan-
guages. It allows early detection of formalization errors which otherwise could
hardly be detected. Indeed, accidental ontological incorrectness most often im-
plies logical incorrectness. However, it is much harder to trace a failure log of a
prover back to an invalid occurrence than to discover it in the first place. Also,
during ontological verification we obtain some important knowledge about the
text which will be used later in logical verification.

x = DVΓ (F ) Γ � ∀x (F ⊃ G′) ⊃ G Γ, (assume F ) �G′ Δ

Γ �G (assume ΘG(F )), Δ

DVΓ (F ) = ∅ Γ �F Λ Γ � (F ∧G′) ⊃ G Γ, (affirm F [Λ]) �G′ Δ

Γ �G (affirm ΘG(F ) [Λ]), Δ

x = DVΓ (F ) Γ �∃x F Λ Γ � ∃x (F ∧G′) ⊃ G Γ, (select F [Λ]) �G′ Δ

Γ �G (select ΘG(F ) [Λ]), Δ

DVΓ (F ) = ∅ Γ, (assume F ) �G Λ Γ, (case (F ⊃ G) [Λ]) �G∨F Δ

Γ �G (case (F ⊃ thesis) [Λ]), Δ

Γ �IT≺
t (G) Δ

Γ �G Δ

DVΓ,Λ(IH≺
t (G)) = ∅ Γ �IT≺

t (G) Λ, (assume IH≺
t (G)), Δ

Γ �G Λ, Δ

Γ � G

Γ �G

Γ � Λ Γ, (toplevel |Λ| [Λ]) � Δ

Γ � (toplevel |Λ| [Λ]), Δ

Γ, (posit F ) � Δ

Γ � (posit F ), Δ

Fig. 2. Calculus of Correctness CTC

Logical correctness is imposed on particular affirmations in the text: theo-
rems, lemmas, intermediate statements in proofs. Any such affirmation must be
deducible from its logical predecessors.

In what follows, a ForTheL section A will be considered as a triple (T |A| [Λ]),
where T denotes the section type, |A| is the formula image of A, and Λ is the
sequence of subsections of A, if any. The type of A can be of the following:
toplevel for any top-level section (axiom, definition, signature extension, the-
orem, lemma), case for a case section, assume for an assumption, select for
a selection, affirm for an affirmation, posit for a postulate. Several remarks
should be made here. A sentence with a supplied proof is considered to be of
the same type as the same sentence without proof. They differ only in the third
component of the triple, the list of subsections, which is empty for a sentence
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without proof. Recall that the formula image of a sentence does not depend on
presence of a proof, too. In a case section, the case hypothesis belongs to the
formula image of the section and does not appear among its subsections. A pos-
tulate is an affirmation at the end of an axiom, definition, or signature extension;
in other words, an affirmation which is not meant to be proved.

A formula F is logically correct in view of a sequence of sections Γ (the logical
context of F ), denoted Γ � F , whenever F can be deduced in the classical
first-order predicate calculus from the formula images of sections from Γ .

Logical correctness of a ForTheL text is deduced from logical correctness of
particular formulas in view of appropriate sets of premises according to the
Calculus of Text Correctness, or CTC, given in Figure 2.

In CTC, we infer sequents of the form Γ $GΔ. Only those sequents are allowed
where every free variable of G occurs free in Γ (FV(G) ⊆ FV(Γ )), and neither
Γ nor G contain occurrences of thesis.

In such a sequent, Δ is a sequence of sections whose correctness is being
verified and Γ is a sequence of sections that logically precede Δ. The formula G
is a current thesis: a formula which we want to deduce from Γ with the help of
auxiliary reasoning in Δ (note the rule Γ�G

Γ�G
). Verification consists in counter-

applying the rules of the calculus, reducing the sequent Γ $G Δ to �-premises
which are to be checked directly.

A ForTheL text Δ is said to be logically correct whenever $�Δ can be inferred.
The expression ΘG(F ) denotes the formula F where some occurrences of G

are replaced with thesis. There may be several ΘG(F ) for given F and G. One
can consider ΘG(F ) as an abbreviated form of F ; when we counter-apply the
rules of CTC during verification, we pass from ΘG(F ) back to F , i.e. we expand
the abbreviation and eliminate the placeholder thesis.

The expression DVΓ (F ) stands for the set of variables which are declared in
the formula F in view of Γ . Basically, that means that x does not occur freely in
Γ and F “says” that x belongs to some class described by a notion (like in “x is
a fixed point of f”). In a similar fashion, we define DVΓ (A) and DVΓ (Δ)
(with the proviso that only assumptions and selections can declare variables).
Recall that the formula image of a sequence of sections, |Δ| actually depends on
DVΓ (Δ) and, hence, on Γ . Note that any free variable in a well-formed text must
be declared either in that very sentence or somewhere above, so that DVΓ (A)
contains those and only those free variables of A which do not occur free in Γ :
DVΓ (A) = FV(A)\FV(Γ ).

The expressions IT≺
t (G) and IH≺

t (G) stand for the induction thesis and in-
duction hypothesis, respectively. They are defined as follows. For a given formula
G of the form ∀x1 (H1 ⊃ ∀x2 (H2 ⊃ . . . ∀xn (Hn ⊃ F ) . . . )), an arbitrary term
t, and a binary relation symbol ≺:

IH≺
t (G) = ∀x′

1 (H1σ ⊃ ∀x′
2 (H2σ ⊃ . . . ∀x′

n (Hnσ ⊃ (tσ ≺ t ⊃ Fσ)) . . . ))
IT≺

t (G) = ∀x1 (H1 ⊃ ∀x2 (H2 ⊃ . . . ∀xn (Hn ⊃ (IH≺
t (G) ⊃ F )) . . . ))

where σ is the renaming substitution [x′
1/x1,x

′
2/x2, . . . ,x

′
n/xn] and x′

1, x′
2, . . . ,

x′
n are some fresh variables.
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The induction thesis IT≺
t (G) is equivalent to the original thesis G on condition

that ≺ denotes a well-founded ordering. Note that the well-foundness of ≺ cannot
be finitely expressed in a first-order language and the calculus CTC takes it on
trust. In other words, correctness of a ForTheL text is verified assuming the
following axiom scheme of general induction: Ind = (IT≺

t (G) ⊃ G), where G
and t are placeholders for a formula and a term, respectively.

Note that IT≺
t (G) is equivalent to G if ≺ is the always false relation. Therefore

the extension of first-order logic with the symbol ≺ and the axiom scheme Ind
is conservative.

The first induction handling inference rule of CTC says that by proving the
induction thesis, we automatically prove the initial one. In counter-application,
it means that the verifier has the right to substitute the appropriate induction
thesis for the initial thesis, when verifying a proof by induction. The second
induction handling rule says additionally that the induction hypothesis need not
to be put explicitly in the proof, but can be silently inserted there by the verifier.
However, the induction hypothesis can not appear in the proof before all the free
variables in it are declared.

Case section handling is another rule where an implicit logical predecessor,
namely, the case hypothesis, is added by the verifier (in counter-application).
Note that the Θ operation is not applied to a case hypothesis in the conclusion
of the rule. That means that the word thesis can not appear in a ForTheL case
hypothesis sentence, or it will not be verified.

Thesis handling. In the rules of CTC for assumptions, selections, and affirma-
tions, we see �-premises that relate a current thesis G to a new thesis G′ (by
“new”, we mean that G′ is used as the thesis for subsequent ForTheL proof
sequence). Such a transformation of thesis reflects our perception of a proof
development when a complex formula is being demonstrated.

For instance, whenever we want to prove a conjunction F ∧G and succeed to
derive one part of it, say F , and write down the affirmation of F in the text,
then the thesis can be reduced just to G. Furthermore, if we prove a universal
statement about sets ∀x (x is a set ⊃ F ) then we can begin by an assumption
declaring x a set, thus reducing the thesis to F .

When we see such a connection between the current thesis and a sentence
under consideration, we call that sentence motivated. Motivated affirmations,
selections, assumptions allow to reduce the thesis to a new formula which would
be probably simpler to prove. Sometimes, the connection is evident from the syn-
tax, e.g. when the thesis is an implication and the assumption is the antecedent
formula. Sometimes, the connection depends on several reasoning steps: for ex-
ample, if variables S, T have been declared as sets and the current thesis is
“S is a subset of T”, then the assumption “let x be an element of S” is
motivated and reduces the current thesis to “x is an element of T”.

There is nothing special in non-motivated affirmations or selections. Whenever
we meet such a sentence, we simply do not change the thesis. On the contrary,
in a well-written mathematical proof, assumptions should be always motivated,
i.e. “suggested” by a current thesis. A non-motivated assumption is an unjustified
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narrowing of the search space. Also, it may happen that our reasoning capabilities
are too weak to discover the justification.

Now, how can we infer Γ $G (assume F ), Δ, if F is in no visible relation with
G? Though the calculus CTC admits various solutions, in our implementation,
the choice of the new thesis is guided by the form of Δ. Whenever the formula
images of sentences in Δ contain occurrences of thesis (e.g. when there are case
sections), we suppose that the proof of G continues under the non-motivated
assumption and leave the thesis unchanged:

x = DVΓ (F ) Γ � ∀x (F ⊃ G) ⊃ G Γ, (assume F ) $G Δ

Γ $G (assume ΘG(F )), Δ

The premise Γ � ∀x (F ⊃ G) ⊃ G is nontrivial: its is equivalent to the disjunc-
tion G ∨ (∃xF ). Recall that the free variables of G are all declared in Γ and
thus cannot be among x.

If thesis does not occur in the formula images in Δ, we suppose that the
rest of the proof is a sort of independent argument which should be considered
by itself. Therefore we take for the new thesis the image of the whole rest of the
proof sequence. The inference is as follows:

x = DVΓ (F ) Γ � ∀x (F ⊃ |Δ|) ⊃ G Γ, (assume F ) $|Δ| Δ

Γ $G (assume ΘG(F )), Δ

Note that the new variables in Δ, not known from Γ or F , are all bound in |Δ|.
Each assumption in Δ is an antecedent in the new thesis |Δ| and therefore

will be considered as motivated. Each affirmation or selection in Δ will reduce
the thesis, too, so that at the end of Δ the thesis will be simply �. The premise
Γ � ∀x (F ⊃ |Δ|) ⊃ G finishes the demonstration by deducing G from the
formula image of the proof sequence (assume F ), Δ.

Altogether, the following theorem can be seen as the statement of soundness
of CTC:

Theorem 1. Let Γ and Δ be arbitrary sequences of ForTheL sections and G,
an arbitrary formula. If Γ $G Δ can be inferred in CTC then Ind, Γ � G.

Proof. The claim can be proved by induction on the number of steps in the
inference of Γ $G Δ. Let us consider the last inference step. If it is made by
a rule with $� in conclusion, then G is �, and the claim is trivial. Otherwise,
we have seven cases to consider. We will denote the cases by the form of the
conclusion of the corresponding inference rule.

Case Γ $G. The premise of this rule is Γ � G, hence the claim.
Case Γ $G (assume ΘG(F )), Δ. By the premises of the rule, we have Γ �

∀x (F ⊃ G′) ⊃ G and Γ, (assumeF )$G′Δ, where x=DVΓ (F ) = FV(F )\FV(Γ ).
By the induction hypothesis, the latter implies Ind, Γ, F � G′. Also, FV(G) ⊆
FV(Γ ) and FV(G′) ⊆ FV(Γ ) ∪ FV(F ). Therefore, FV(F ⊃ G′)\FV(Γ ) = x.
Hence Ind, Γ � ∀x (F ⊃ G′) and we have the claim.

Case Γ $G (affirm ΘG(F ) [Λ]), Δ. This is subsumed by the next case.
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Case Γ $G (selectΘG(F )[Λ]), Δ. We have Γ $∃x F Λ and Γ � ∃x (F∧G′) ⊃ G,
and Γ, (select F [Λ]) $G′ Δ, where x = FV(F )\FV(Γ ). By the induction
hypothesis, we have Ind, Γ � ∃xF and Ind, Γ, F � G′. Also, FV(G) ⊆ FV(Γ )
and FV(G′) ⊆ FV(Γ ) ∪ FV(F ). Hence FV(F ∧G′)\FV(Γ ) = x and Ind, Γ �
∀x (F ⊃ G′). This implies Ind, Γ � ∃x (F ∧G′) and we have the claim.

Case Γ $G (case (F ⊃ thesis) [Λ]), Δ. From the premises, we obtain
Γ, (assume F ) $G Λ and Γ, (case (F ⊃ G) [Λ]) $G∨F Δ. Also, DVΓ (F ) = ∅
which means that FV(F ),FV(G) ⊆ FV(Γ ). By the induction hypothesis, we
have Ind, Γ, F � G and Ind, Γ, (F ⊃ G) � (G∨F ). The former gives Ind, Γ �
(F ⊃ G). The latter gives Ind, Γ, (F ⊃ G) � G and we have the claim.

Cases Γ $G Δ and Γ $G Δ,Λ (induction handling rules). By the premise of
the rule and the induction hypothesis, we have Ind, Γ � IT≺

t (G). By definition
of Ind, we have the claim. #�

4 Verification Example

Let us consider an example of a well-formed ForTheL text which, while being
simple, contains proofs by case analysis and by induction (the symbol -<- below
denotes a well-founded binary relation).

[number/numbers] # let the parser know it is the same word

Signature Nat. # 0
A natural number is a notion. # 0.0

Signature Zer. # 1
0 is a natural number. # 1.0

Signature Suc. # 2
Let i be a natural number. # 2.0
succ i is a natural number. # 2.1

Signature Add. # 3
Let i,j be natural numbers. # 3.0
i + j is a natural number. # 3.1

Signature Ord. # 4
Let i,j be natural numbers. # 4.0
i -<- j is an atom. # 4.1

Axiom ZerSuc. # 5
For any natural number i if i != 0 then # 5.0
there exists a natural number j such that succ j = i.

Axiom AddZer. # 6
For any natural number i (i + 0 = i). # 6.0

Axiom AddSuc. # 7
For all natural numbers i,j (i + succ j = succ (i+j)). # 7.0

Axiom OrdSuc. # 8
For any natural number i (i -<- succ i). # 8.0

Lemma ZerAdd. # 9
For any natural number i (0 + i = i). # 9.0
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Proof by induction.
Let i be a natural number. # 9.0.0
Case i = 0. # 9.0.1
obvious.
Case i != 0. # 9.0.2
Take a natural number j such that succ j = i. # 9.0.2.0
We have j -<- i. # 9.0.2.1
Hence 0 + j = j. # 9.0.2.2
Then we have the thesis. # 9.0.2.3

end.
qed.

Note the numerical indexes in the comments. Each index denotes a position
of a particular ForTheL section in the text. For example, 9.0 is the position of
the main affirmation in the lemma ZerAdd, 9.0.0 is the position of the starting
assumption in the proof, 9.0.1 and 9.0.2 point at the case sections.

Let us reconsider this text with the formula images in place of ForTheL sen-
tences. In what follows, t εNatNum stands for “t is a natural number”.

toplevel Nat
posit ∀x (x ε NatNum ⊃ %)

toplevel Zer
posit ∀x (x ≈ 0 ⊃ x εNatNum)

toplevel Suc
assume i ε NatNum
posit ∀x (x ≈ succ i ⊃ x εNatNum)

toplevel Add
assume i ε NatNum ∧ j εNatNum
posit ∀x (x ≈ i + j ⊃ x ε NatNum)

toplevel Ord
assume i ε NatNum ∧ j εNatNum
posit i ≺ j ⊃ %

toplevel ZerSuc
posit ∀i (i εNatNum ⊃ i �= 0 ⊃ ∃j (j εNatNum ∧ succ j ≈ i))

toplevel AddZer
posit ∀i (i εNatNum ⊃ i + 0 ≈ i)

toplevel AddSuc
posit ∀i (i εNatNum ⊃ ∀j (j ε NatNum ⊃ i + (succ j) ≈ succ (i + j)))

toplevel OrdSuc
posit ∀i (i εNatNum ⊃ i ≺ succ i)

toplevel ZerAdd
affirm ∀i (i εNatNum ⊃ 0 + i ≈ i)

assume i ε NatNum
case i = 0 ⊃ thesis
case i �= 0 ⊃ thesis

select j εNatNum ∧ (succ j) ≈ i
affirm j ≺ i
affirm 0 + j ≈ j
affirm thesis
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We are going to study the inference steps which prove correctness of the
main lemma (the top level of the text is pretty trivial). In order to fit into
the page width we will write position indexes in parentheses in place of the
corresponding sections. We proceed in a bottom-top manner, moving from the
desired conclusion to axioms.

Γ $� (9.0)
Γ $|(9.0)| (9.0.0), (9.0.1), (9.0.2)

Γ $G (9.0.0),A, (9.0.1), (9.0.2)

Γ � (|(9.0)| ∧ �) ⊃ � Γ, (9.0) $�
Γ, (9.0) � �

where

Γ = (0), . . . , (8)
A = (assume H)

|(9.0)| = ∀i (i εNatNum ⊃ 0 + i ≈ i)
G = IT≺

i (|(9.0)|) = ∀i (i εNatNum ⊃ (H ⊃ 0 + i ≈ i))
H = IH≺

i (|(9.0)|) = ∀i′ (i′ εNatNum ⊃ (i′ ≺ i ⊃ 0 + i′ ≈ i′))

Note the fragment of inference where we apply the induction rule. Instead of
proving the statement of the affirmation (9.0) as is, we descend into the proof
with a weakened current thesis G having the additional induction hypothesis H .

We begin by inserting that induction hypothesis H into the proof. Note that
the variable i which is free in H is declared in (9.0.0) and therefore known at
the position of added hypothesis. Also note how the two assumptions reduce the
current thesis from G to G′ and then to G′′.

Γ $G (9.0.0),A, (9.0.1), (9.0.2)
Γ � ∀i (i εNatNum ⊃ G′) ⊃ G Γ, (9.0.0) $G′ A, (9.0.1), (9.0.2)

Γ, (9.0.0) $G′ A, (9.0.1), (9.0.2)
Γ, (9.0.0) � (H ⊃ G′′) ⊃ G′ Γ, (9.0.0),A $G′′ (9.0.1), (9.0.2)

where

G′ = (H ⊃ 0 + i ≈ i) G′′ = (0 + i ≈ i)

The first case section is very short. Note that thesis in the formula image of
(9.0.1) is replaced with the actual thesis in (9.0.1)′:

Γ, (9.0.0),A $G′′ (9.0.1), (9.0.2)
Γ, (9.0.0),A,C1 $G′′

Γ, (9.0.0),A,C1 � G′′

Γ, i εNatNum, i ≈ 0 � 0 + i ≈ i

Γ, (9.0.0),A, (9.0.1)′ $G′′′ (9.0.2)

where

C1 = (assume i ≈ 0) (9.0.1)′ = (case (i ≈ 0 ⊃ G′′)) G′′′ = G′′ ∨ i ≈ 0



On Correctness of Mathematical Texts 595

The second case section is longer but no more complex:

Δ0 $G′′′ (τ)
Δ0,C2 $G′′′ (τ.0), (τ.1), (τ.2), (τ.3) Δ0, (τ)′ $G′′′∨i�≈0

Δ0, (τ)′ � G′′′ ∨ i �≈ 0
� G′′ ∨ i ≈ 0 ∨ i �≈ 0

Δ1 $G′′′ (τ.0), (τ.1), (τ.2), (τ.3)
Δ1 $∃jF1

Δ1 � ∃jF1

Δ1 � ∃j (F1 ∧G′′′) ⊃ G′′′ Δ1, (τ.0) $G′′′ (τ.1), (τ.2), (τ.3)

Δ2 $G′′′ (τ.1), (τ.2), (τ.3)
Δ2 $j≺i

Δ2 � j ≺ i

Δ2 � (j ≺ i ∧G′′′) ⊃ G′′′ Δ2, (τ.1) $G′′′ (τ.2), (τ.3)

Δ3 $G′′′ (τ.2), (τ.3)
Δ3 $0+j≈j

Δ3 � 0 + j ≈ j

Δ3 � (0 + j ≈ j ∧G′′′) ⊃ G′′′ Δ3, (τ.2) $G′′′ (τ.3)

Δ4 $G′′′ (τ.3)
Δ4 $G′′′

Δ4 � G′′′

Δ4 � 0 + i ≈ i

Δ4 � (G′′′ ∧�) ⊃ G′′′ Δ4, (affirm G′′′ [ ]) $�
Δ4, (affirm G′′′ [ ]) � �

where

τ = 9.0.2 Δ0 = Γ, (9.0.0),A, (9.0.1)′

C2 = (assume (i �≈ 0)) Δ1 = Δ0,C2

Λ = (τ.0), (τ.1), (τ.2), (τ.3) Δ2 = Δ1, (τ.0)
(τ)′ = (case (i �≈ 0 ⊃ G′′′) [Λ]) Δ3 = Δ2, (τ.1)
F1 = j εNatNum ∧ succ j ≈ i Δ4 = Δ3, (τ.2)

A few comments should be made here. First, note the right-hand branch in the
first inference fragment, where the goal G′′∨i ≈ 0∨i �≈ 0 is proved. According to
the rules of our calculus, each additional case section weakens the current thesis
by putting it into a disjunction with the case’s hypothesis. At the end of case
analysis we have to prove the formula G∨H1 ∨ · · · ∨Hn, where G is the original
thesis and H1, . . . , Hn are explored cases. Yet, it is a good style to make case
analyses exhaustive so that just the disjunction H1 ∨ · · · ∨Hn would hold at the
end.

Second, a selection sentence is valid whenever we can prove the existence
of named objects, i.e. the non-emptiness of the classes corresponding to the
listed notions. While in the ForTheL text in question the selection (9.0.2.0) does
not change the current thesis, that may happen when the current thesis is a
statement of existence.
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Third, pay attention that the affirmation (9.0.2.2) is a direct consequence of
the induction hypothesis H and the previous affirmation (9.0.2.1). If the assump-
tion A (whose formula image is H) were not inserted in the proof, the affirmation
(9.0.2.2) could not be proved. However, one can write a proof where no sentence
requires the induction hypothesis in order to be verified. For example, the whole
proof of the affirmation (9.0) could be simply omitted. Then the system would
try to prove just the induction thesis G, which is not difficult and does not
require any induction reasoning capabilities.

Fourth, let us consider the last inference fragment. The formula image of the
affirmation (9.0.2.3) is just the atomic formula thesis, which stands for the
current thesis, G′′′. Once having this affirmation proved, we have no pending
obligations so that the new thesis is simply �. Recall that G′′′ is the formula
0 + i ≈ i ∨ i ≈ 0, that is, we must either prove the initial thesis (G′′) or reduce
the task to the previous case.

Now, assuming the validity of all the first-order leaves (�-sequents) in our
derivation, we have demonstrated the logical correctness of the ForTheL text
under consideration.

5 Experiments

In the course of development of the SAD system, we have conducted a number
of essays on formalization and verification of non-trivial mathematical results:

– Ramsey’s Finite and Infinite theorems.
– Cauchy-Bouniakowsky-Schwarz inequality.
– Newman’s lemma about term-rewriting systems [21].
– The square root of a prime number is irrational: 30 statements in prelimi-

naries (integer numbers), 5 definitions, 7 lemmas, about 50 sentences in the
proof of the main lemma (any prime dividing a product divides one of the
factors), 10 sentences in the proof of the theorem (see [4] for details).

– Chinese remainder theorem and Bezout’s identity in terms of abstract rings:
25 statements in preliminaries (ring axioms, operations on sets), 7 definitions
(ideal, principal ideal, greatest common divisor, etc), 3 lemmas, 8 sentences
in the proof of CRT, about 30 sentences in the proof of Bezout’s identity.

– Tarski’s fixed point theorem (cited above): 11 statements in preliminaries
(ordered sets), 7 definitions (upper and lower bounds, supremum, infimum,
complete lattice, isotone function, fixed point), 2 lemmas, 18 sentences in
the proof of the theorem.

The texts listed above were written in ForTheL and automatically verified
in SAD (using different background provers). This work have taught us many
important lessons. To mention some:

– Formalization style is critical: the choice of symbols to introduce in defini-
tions, the choice of preliminary facts, and even the way a proof is structured
may decide whether the text will be verified or not.
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– It is very desirable to comprehend the proofs before writing them in ForTheL.
The SAD system may succeed to fulfil the gaps in a well thought-out rea-
soning, but it will not invent one for you.

– In most cases, the background prover finds the proof in three seconds — or
does not find it at all.

6 Conclusion

While working on the development of the SAD project, we always felt that we
strongly need an abstract, clear and transparent sight on the whole “formaliza-
tion-and-verification” process. The calculus CTC proposed here is the first step
in this direction. The next one will be a formal description of definition expansion
and other reasoner’s routines which is obviously missing now. Moreover, such a
description must provide users with a kind of specific language to create their own
reasoning strategies. Further on, something like a guide to problem formalization
in a strong mathematical manner would be extremely useful, too.

Our abstract considerations of text verification resulted in the SAD system.
Certainly, we could not give here a detailed description of all nice features of
SAD. SAD is a powerful system and its power lies in its reasoning facility. Ex-
periments show that, for example, the specific strategy of definition processing
contributes a lot to the success of the whole verification process. If we use defi-
nitions straightforwardly — convert them into formula images and add the cor-
responding premises to the sequent that goes into a prover — we cannot verify
the proof of Tarski fixed point theorem as it is formulated above, even when a
winner of CASC competitions is chosen as the background prover.

SAD is not a perfect system (if any!). One can easily see how it may be
improved and developed. Our research and implementation plans with respect
to SAD are: extend ForTheL and SAD with some means to talk and reason
about second-order objects (functions, vectors, sequences) and operations on
them; develop and implement a mathematical library of SAD to accumulate
verified portions of mathematical knowledge and to support further (deeper)
advances in formalization.
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